Quasi-static loads analysis of a 5-bladed rotor in maneuver using CFD/CSD coupling

Thumbnail Image
Hong, S.
Jung, S.
Kim, K.
Park, S.H.
Lee, D.
Lee, J.
Journal Title
Journal ISSN
Volume Title
The airloads and structural loads of Light Civil Helicopter (LCH) rotor in a pull-up maneuver are investigated using a coupled approach between the computational structural dynamics (CSD) and computational fluid dynamics (CFD) methods. The LCH rotor characterized by 5-bladed system with elastomeric bearing and inter-bladed damper is modeled in the structural dynamics analysis. The periodic rotor solution along with its converged CFD/CSD delta airloads for steady level flight (? = 0.287) is used to perform the transient maneuver analysis. The resulting vehicle attitude angles and velocity profiles are then prescribed for the quasi-static maneuver analysis of the rotor. The predicted section airloads, vortex trajectories, angle of attack (AOA)distributions, and structural moments at specified instants and spatial locations are compared between transient CSD-alone predictions and quasi-static CFD/CSD maneuver results. It is demonstrated that CFD/CSD coupled results indicate more pronounced dynamic stall peaks and stronger 5 /rev oscillations on structural moments than those by the CSD-alone approach.