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Patterns in low frequency airframe vibration ( < 100 Hz) can 

indicate the health of a large number of helicopter mechanical 

components. Unfortunately, helicopter operating conditions 

can also have a dramatic affect on such vibrations which may 

lead to a false interpretation. 

By utilising a comprehensive helicopter math model and recent 

advances in unsupervised machine learning techniques, a 

diagnostic methodology is proposed which mitigates 

operational effects whilst maintaining a good visibility of the 

helicopter mechanical condition. 

Introduction 

A significant proponion of helicopter maintenance relies on 

Appllcntlon of math-dvnamic models (l) 

helicopter opemtlonal effects 

The comprehensive math--dynamic model used in this study has 

been described in detail elsewhere (Ref 3). A fairly unique 

feature is that the model is based on an individual blade 

concept. 

Figures 1 and 2 present actual (not predicted) Oight by Oight, 

airframe vibration measurements at main rotor blade pass 

frequencies (bR). AU measurements were taken at "typical" 

cruise conditions for both the AS332L and S61 helicopters. 

Tagged with these measurements were various operational 

parameters such as all-up-weight, indicated air speed, outside 

air temperature and altitude. 

4 ~R~v~e~rt~lc~a~l~v~lb~r~a~tl~o~n,~I;P~•---------------------, 1.1r 

the interpretation of sensor measurements or aircrew 0.9 

observations. In many cases sensor measurement 

interpretation is simply based on periodically checking a o. 7 

measurement amplitude against a predefined threshold. 

Alternatively, aircrew observations are subjective and variable, 

and often dependent on contemporary e.'<perience. 

Integrated Health and Usage monitoring Systems (!HUMS, 

Ref 1) will provide measurements on a flight by flight basis. 

Examining such data sets, panicularly associated with low 

frequency ( < 100 Hz) airframe vibration measurements, has 

identified serious shoncomings with the traditional threshold 

exceedance criteria. The major difficulty is that an aircraft may 

move in and out of a serviceability state purely as a result of the 

prevailing operating conditions and not because of any 

mechanical deterioration (Ref 2). 

The above scenario, if left unaddressed, will lead to frequent 

false alarms. 1l1is paper sets out some recent developments in 

math-dynamic models in order to better understand bmh 

operational and mecllnnicaJ fault affects on !HUMS 

measurements. The subsequent data processing methodology is 

also described, covering principal measurement selection ::md 

data grouping using machine learning techniques. 
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FIG.1 MEASURED 4R AIRFRAME VIBRATION 
(SPS SENSOR LOCATION), 

AS332L IN THE CRUISE 
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FIG.2 MEASURED 5R AIRFRAME VIBRATION 
(SPP SENSOR LOCATION), S61 IN THE CRUISE 



Llnenr regression nnd correln!lon 

It is readily apparent from figures 1 and 2 that significant tlight 

to flight variations in bR vibration measurements may be 

anticipated. Since this high degree of variability occurred 

between flights where no maintenance actions had taken place, 

it was postulated that the changes were largely attributable to 

operating conditions. 

Simple linear regression was applied to the raw data sets 

assuming 

bRp = kl • variable + k2 

where the variable options considered were all·up-weight 

(AUW), indicated airspeed (lAS) and altitude (AL1'). Both k1 

and kz are constants derived from the linear regression 

process. The "goodness" of fit was assessed by calculating the 

correlation coefficient between the raw bRand predicted bRp 

data sets. From 12 monitoring locations in an AS332L 

airframe, 10 locations returned a correlation coefficient (c) > 
0.5 when the variable was IAS. The mean c value from the 10 

locations was 0.71. For AUW and ALT, 7 and 5 locations 

respectively returned a coefficient value greater than 0.5 
(absolute), with mean values of -0.55 and -0.68. 

The conclusion drawn from the AS332L correlation analysis is 

that bR levels increase with increasing air speed ( as e."':pected) 

but decrease with increasing all-up·weight and incre:lsing 

altitude. 

In contrast, linear regression analysis of $61 bR data concluded 

with relatively poor correlntion with any of the above variables. 

In an attempt to improve correlation a simple p:lrameter 

nonnalisation study was performed. This lead to effective 

variables. For example the nonnalised AUW became: 

where p is the density at the flying altitude and a is the rotor 

angular velocity. 

Repeating the linear regression analysis with normalised 

variables generally improved the values of the correlation 

coefficients. In particular, 6 out of the 12 mensuremenr 

locations returned a positive correlation coefficient of greater 

than 0.5 for nonnalised AUW. 

Simple model approximations 

The previous section ignored any knowledge of the form of the 

vibration which may be expected from fundamental physical 

considerations. A simplified theoretical approach based on 

aerodynamic considerations revealed thnr the hub vibrarory 

loads may be charncterised by 
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[1]. vertical shear, pitching and rolling moments: 

nR = 

[2]. lateral shear and torque: 

nR = 

where, 

EnR(B!,nRJin2 + B2,nRJln + B3,nR)(B4,nRWn2 

+ BS,nRWn + B6,nR)On2 

effective ail up weight 

effective advance ratio 

effective angular speed of rotor 

Coefficients DnR and EnR are Mach number and Reynolds 

number dependent. The Ai,nR and Bi,nR coefficients vary 

slightly with wind direction. However, it is reasonable to 

assume that all these coefficients are constant, particularly for 

the relatively narrow band of operating conditions. 

Based on these equations, a least squares approach produced 

much improved results over the simple linear regression 

analysis. Correlation coefficients throughout were now 

generally greater than 0.5. 

Allemntlve nppronch 

By combining an understanding of the underlying physical 

principles with a procedure known as Principal Component 

Analysis (PCA), an awareness of the dimensionality of the 

problem may be realised. 

Dahl modelling (l) 

As indicated in reference 2, IHUMS will produce in excess of 1 

MByte of data per flight. From this data, a suite of parameters 

(nR vibrations, blade track and lag etc) will be extracted along 

with operational measurements such as rotor torque, outside 

air temperature, altitude, indicated air speed and helicopter 

trim state. Whilst all these features may be considered as 

individual observations, it is prudent to elicit from the math­

dynamic model how, it at all, the discrete features should be 

manipulated in order to mitigate helicopter operational effects. 

If this can be achieved, variations in the data can be more 

readily auributed to the mechanical state of the aircraft 

From simple aerodynamic considerations equations [1] and (2] 

above were derived. Expanding these equations on the basis 

that a linear combination of equations [11 and (2] is valid for 

rigid body motion and simple elastic deflections, a maximum of 

9 individual terms (observations) may be identified · an 

example of which would be 



Without further processing, it may be concluded that 9 
dimensions are required in order to establish the operational 
affects on the bR measurements. TI1e following analysis, 
however, can directly identify the actual dimensionality of the 
problem. 

Princlrnl Component Annlvsls {PC..\) 

The 9 terms described above define the observations which are 
assumed to be related to the outcome · a bR amplitude derived 
from a given sensor signature. Over a number of nights both 
the observations and the outcomes vary. PCA simply multiplies 
the matrix of the observations by its own transpose in order to 
produce the co-variance matrix. This matrix may be further 
conditioned (i.e. mean centring the data and nonnalising by the 
variance) before establishing its eigenvector.; and eigenvalues. 
In this case each eigenvector defines an axis and its associated 
eigenvalue the variance of the observations along it. 

The usefulness of each eigenvector, which now represents one 
dimension, is assessed by the magnitude of its eigenvalue· the 
larger the value the greater its usefulness. 

Dnhl modelling (2) 

PCA can be taken one step further by adding a least squares 
approach to the analysis. The resultant process is often called 
Principal Component Regression (PCR). From PCA the major 
axes (eigenvectors) of the operational parameter combinations 
have been established. PC~ may now be applied in order to 
establish the link between the eigenvectors (observations) and 
the bR measurements (outcomes). 11te link assumes constant 
coefficients, which are determined by applying a least squares 
approach to a statistical SLlmple of observations and outcomes. 

CorT~cfed hR amplffttd('S 

From the PCR analysis, bR amplitudes may now be predicted. 
Furthermore, if all predictions are referenced to a "typical" 
operating state, a serviceability assessment of the helicopter 
becomes a straight forward matter. In equation form the 
corrected bRc vibration amplitude would be 

bRc = (bRm- bRp) + bRpn 

where subscripts c, m, p and pn refer to corrected, me:'lsured, 
predicted and predicted "normal" respectively.Tite latter would 
be determined by using the prediction fonnulation with 
"typical" operating conditions. For example, the measured bR 
amplitude may be 0.9 inches per second (ips), wlterens the 
predicted normal amplitude may only be 0.5 ips. lf the l:lrge 
measurement amplitude was solely due to che operating 
conditions and assuming the predictive model is correct, bRp 
should tend to bRm. Accordingly, the corrected amplitude 
would be around an acceptable 0.5 ips. 
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Worked ~xample (1)- PCR 

Figures 3 and 4 detail measured (bRrn) and corrected (bRc) 

5R amplitudes for an S6l helicopter. The accelerometer 
locarions were adjacent to the port (SPP) and starboard (SPS) 

sponsons , mounted internal to the airframe and aligned in the 
vertical plane. In both cases the dynamic range of the corrected 
amplitudes is less than the raw measurements. 

Figure 5 is a re-plot and scaled up presentation of the 
corrected amplitude trends in figure 4. From inspecting the 
eigenvalues, [WO eigenvecton; (dimensions) were removed from 

the prediction model without loss of engineering accuracy. 

The prediction model does not, however, offer any fault 
discrimination capability -addressing mechanical deterioration 
is pursued in the following sections. 
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FIG.S CORRECTED VIBRATION USING 7 AND 9 
EIGEN VECTORS IN THE PREDICTION MODEL, 

S61 IN THE CRUISE 

Appllcnllon o(malh-dvnnmlc models (2) 

mechanical fault ertects 

In order to establish the applicability of computer based, 

automated pattern separation strategies, a database of 

simulated fault observations was generated by the MJAD 

helicopter math model (Ref 3). These observations were 

limited to vibration components measured by two fuscloge 

mounted tri-axial accelerometers. 

Five fault classes were considered, namely pitch link, tab and 

mass maladjustments along with a damper fault and a blade 
flapwise crack. The intensity of the fault within each class was 

varied such that low to severe vibrations were pro.duced. 

Dnta Clnslerlng 

The aim of data clustering is to establish unambiguous fault 

classes. Data clustering concludes with a set of data groupings, 

each with defined boundaries. Ideally each data grouping will 

be associated will one fault class. 

Worked exnmple (2)- rnuU cl!ls.c;!flcnllon 

obsexvations were composed of complex (vector) ratios • the 

vibration components from the first accelerometer were 

normalised by the respective vibration components from the 

second. 
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FIG.6 FAULT CLASSIFICATION BASED ON 
FIVE VERTICAL VIBRATION COMPONENTS 
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FIG.7 FAULT CLASSIFICATION BASED ON 
15 VIBRATION COMPONENTS 

Number ot cases 

Figure 6 presents a first attempt at separating the 10 

aforementioned five fault classes. TI1e axes of the three 

dimensional plot represent; vertical: number of cases in a 

group (cluster); horizontal: various fault classes, pitch link 

(HP), mass (HM), tab (HT), lag damper (HD) and blade crack 
(HC); oblique: group identifier. The observations selected 

from the database were 1 R to SR vibration components in the 

vertical plane, measured by one accelerometer. Clc:uly, the 

fault classes were not separated. 

Figure 7 presents a second attempt with more observations · 

lR to SR inclusive, in 3 orthogonal planes from one 

measurement location. Fault separation was still not realised. 

By adopting a different tack, and using only two obsctvations 

(see Figure 8), significant progress was made. In this case tile 
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FIG.S FAULT CLASSIFICATION BASED ON 
TWO NORMALIZED VIBRATION COMPONENTS 



As can be seen in Figure 9, full recognition of each fault class 

was realised by using only 3 complex ratio observations. 
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FIG.9 FAULT CLASSIFICATION BASED ON 
THREE NORMALIZED VIBRATION COMPONENTS 

nt.;;cu . .;;~lon 

Alternative approaches to understanding low frequency, 

airframe vibration measurement variability have been 

described. It has been proposed chat this variability may be 

predominantly attributed to two causes • changes in helicopter 

operating conditions and mechanical deterioration. In order to 

avoid false alanns when considering the health of the 

helicopter, the influence of operational conditions must be 

nullified. 

Simple correlnllon 

By applying simple correlation techniques to bR airframe 

vibration measurements a first impression o( operational 

influences was anticipated. Measurement sets from tw-o aircraft 

were considered, namely the AS332L and S61 helicopters. 

Whilst an increase in airspeed was generally associated with an 

increase in bR vibration amplitudes, the influence of all-up­

weight (AUW) was inconsistent • the AS332L measurements 

indicated a decreasing bR amplitude trend with increasing 

AUW in the cruise, and conversely for the S61 (the expected 

trend). 

The apparent inconsistency with the AS332L may be explained 

when the cruise settings are considered. Instead of aiming for a 

predefined indicated air speed (lAS), the pilot trims the 

aircrnft with 15.5 degrees of collective pitch set. 11le resulting 

air speed can vary by more than 25 knots. A high AUW wilt 

result in a lower lAS which will tend to effect a lower bR 

amplitude. Accordingly, whilst simple correlation techniques 

may yield some insight into the nature of operntional effects, 

these examples also draw attention to their shortcomings - a 

number of operational parameters must be considered 

simultaneously. 

211 

Problem dimensionality 

The simple aerodynamic model revealed that 9 observations 

(dimensions) are required to account for helicopter 

operational effects. Principal Component Analysis indicated 

that the observations could be reduced to 7 without loss of 

engineering accuracy (see figure 5). Such pre-processing may 

become paramount if the number of observations are too large 

to manage efficiently. 

Principnl Component Re-gression 

By adding a least squares approach to PCA a number of model 

constanrs were determined, linking observations with bR 

predictions. It was found that these predictions generally 

re[Urned more significant correlation coefficients when 

correlated with raw measurements, than the simple linear 

regression methods. 

However, as indicated in figures 3 and 4, the stability of the 

corrected bR amplitudes (as opposed to predicted) is not yet 

capable of supporting a diagnostic methodology. It is 

postulated that the model can be improved by exploiting other 

IHUMS monitored parameters. First, AUW could be replaced 

by measured rotor torque, since the latter is measured at the 

point of acquisition • AUW is an estimated parameter. Second, 

bR amplitudes are affected by the elastic deflection of the local 

structure to which the sensor is attached and the rigid body 

motion of the complete helicopter about its centre of gravity. 

The latter may be deduced from the measured cyclic pitch 

settings, which again will be recorded at the point of data 

acquisition. These additional terms will be added to the model 

to see if further improvements can be realised. 

The model will also be expanded to consider not only 

aerodynamic intluences ( the forcing) but structural effects 

(forced response). For example, a number of helicopter typeS, 

including the S61, have tuneable devices which operate at a 

"design" main rotor R.P .M., in order to mitigate the bR 

vibrations induced in the airframe. Unfortunately, the actual 

R.P.M. may be more than 2 percent above or below the "tuned" 

frequency. This can have a dramatic affect on the bR 

amplitudes. 

On fa Clu~fering 

Initial attempts at separating mechanical fault classes by 

grouping theoretically generated airframe vibration data 

highlighted a number of apparent difficulties with data 

clustering techniques. The major problem was that a fault from 

a given class could migrate from one data group to another, 

simply because of its intensity. This conclusion remained true 

even when the number of observations (vibration components) 

was increased. 



By pre-processing the data in order to effectively remove fault 

intensity, the desired result was realised. The pre-processing 

was based on complex (vector) ratios of the vibration 

components using data from two accelerometers in the 

airframe. The principle is based on assuming linearity between 

fault intensity and induced vibration amplitudes. It was 

therefore unexpected that the non-linear, blade crack fault was 

uniquely separated from the other linear faults. Increasing the 

number of normalised vibration components to 15 

(observations) and clusters to 7, revealed the non-linearity (see 

figure 10). Whilst each duster is tagged with only one fault, 3 

clusters are now associated with the non-linear bin de crack. 
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FIG.10 FAULT CLASSIFICATION BASED ON 
15 NORMALIZED VIBRATION COMPONENTS 

Conclusions 

• Variations in low frequency airframe vibration ( < 100 

Hz), particular bR, may be attributed to helicopter 

operational conditions and mechanical dcteriorntion. In 

order to pin-point causes of mechanical deterioration, 

the effects of helicopter operating conditions must be 

known a priori. 

• Simple aerodynamic considerations combined with a 

technique for selecting principal observations 

(measurements) has culminated in a mode! for 

correcting bR vibration amplitudes. Improvements to 

the model have been proposed which will further nullify 

helicopter operational effects. 

• It is ancicipaced rhar c/Je interpretation of pactern 

changes in the corrected vibration amplitudes will 

establish the mechanic<:~! state of components which can 

affect !ow frequency airframe vibration. 

• Data clustering techniques have been investigated using 

a theoretically generated database containing vibration 

measurements from 5 separate rotor system faults. 

Using complex ratios of vibrJtion components from two 

airframe accelerometers, it has been shown that 31\ five 

fault classes can be unambiguously identified. 
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