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Abstract

Globai practice in helicopter life time calculation is 1o use measured flight test data and ¢
predetermined mission profile which is set up once for each helicopter type to cover ali the
different operator missions,

In redlity, the operators fly unknown profiles and the design profile has to be chosen very
conservatively. This means that manoeuvres have to be included which are more severe than
those normaily flown by the operator. To estabiish more realistic mission profiles. neural networks
were applied 1o do flight state recognition in the operator's helicopter. A HUMS is sampling and
calculating the data and delivers it to a ground station which enables the operator to
calculate individual life times for each helicepter and each componeant in service.

Severdl selected input values (usually used values in common helicopter) have been
investigated to get the correlation to the flight profile. In addition, different types of neurat
networks were considered.

- The paper presents first results showing that the neural network was able to identify steady
flight states without any problem and gives an cutlook on further investigations which are
nacessary for more reliable recagnition of fransient flight conditions (manoeuvres) and also for
the record of weight and centre of gravity influencing the structural loads.

1. Infroduction

Today all components and systems of o helicopter have fixed e times and fixed TBO's
(Mime Between Cverhaul). The time is counted according to the flight-loghook in which the
pilot is writing the take-off and landing times. This times are summed up and compared with the
fixed life fime of the components.

The life fimes are caiculated by the manufacturer with flight load data from the
certification test flights and with @ mission profile (distribution of flight states) which was set up
once 1o cover dll different operators (Fig. 1), The resdlt is a list of components with fixed life
times and TBO's.
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Fig. 1: Common method of life time calculation

2. HUMS General
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program

Fixed Lifetime
Fixed TBO

A HUMS (Health and Usage Monitoring System) can bring a benefit to an operator. The
distribution of the Direct Operating Costs (DCC) show that there is a large area in which an
HUMS or a UMS (Usage Monitoring System) will reduce costs and save money. Maintenance
which can be done later, saves money. A component which has not to be bought |, saves
money. So about 50% of the DOC can posifively be influenced by a HUMS (Fig. 2)

Fuel and Oil (33,2%) —,

Cemponents (11,3%

On-Condition Components (5,8%)
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Major Components (6,5%)

Engines (33,4%)

Life limited Components (1,5%)
Maintenance §,2%)

Fig. 22 DOC of a Helicopter and the parts of the DOC which can be influenced by HUMS
(BK 117 statistical data 1992)

When the mission is composed of a high percenfage of manoeuvres, the summation of
flight loads reciches the designed load limit earlier than calculated. So, a HUMS which can
recognise this, improves safety. When the helicopter is flown very smoothly the life time limit can
be increased and this is a benefit for the operator (Fig. 3).
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Fig. 3: Risk and benefit of a calculated life limit

3. USAGE Monifori
3.1 Flight State R i

As shown in chapter 2 the life time calculation consists of two main parts:The flight load
data and the mission profile. The flight loads can not be influenced. Each flight load results from
a specific flight state. The distribution of the flight states and the mission profile influences the
load collective. Recognising the actual flight states and summarising them to a mission profile
ailows 1o calculate an individual life time (Fig. 4). The question is how to recognise the actual
flight state. One method is to use & neural network for this fask.

. Mission
Fllghtload profile
data

measured on
each hellcopter

Classification
program

individual Life time
Individual TBO

Fig. 4: Life time calculation with flight state recognition
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12 Using N | Network for Fliaht State R i
2.2.1 How does a Neurgl Network work

The Neurgt Network software simulates the simplified function of human brain with neurones
and synapses (Fig.5). The input layer reads the input signals like flight velocity, control angles
etc. Each neurone of the input layer is connected to each neurone of the next layer, the
hidden layer. Each connection is done by a simple mathematic calculation. Af the end the
output layer generates a code which represents a specific flight state.

Output Layer Result: Flight States

Calculation

Hidden Layer

Flight Measurement

Input Layer

Flight Velocity
Control Angies §
Flight Attitudes {
Angular Rates

Power

Fig. 5: The structure of a neural network with neurones and connections between each neurone

To provide the association between the inpuf data and the flight state, these data are
presented 10 the in- and output layers of the neurdal network. In the so called learning phase
the neural network changes the values of the connections between the neurones. In this way
the neural network adapts itself until it is able to associate input vaiues and flight states in the
right manner. Due to the mathematical model, the neural network used, is called back
propagation network.  Affer the learming phase, the neural network is tested with different

data,

322 Flight State R ition with Neural Networl

Sensors have to be installed in the helicopter, or as far as possible giready instalied sensors
can be used. Amplifiers lead the signals to the input iayer. An example of a signal combination
is shown in Fig.6 . The left hand side is an example for a steqady fight siate, the right hand side
for a transient flight, These examples demonstrate that a transient flight is more difficult 1o
recognise than a steady state. The signals change very quickly as time proceeds and the
neural network needs a longer time section to recognise the signals in the right way.
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Fig.6: Example of measurement input signals for steady and transient flight states

The neural network can be implemented together with amplifiers and a memory in a "black
box", Additionally the duration time of each flight state is stored (Fig. 7). The sfored data will be
tfransferred to a ground station. There individudal lifetime, TBO, historical files and trend anciysis
are caiculated to support the maintenance services.

On Board On Ground

Input Signals Calculation on PC
for each component
Velocity
Altitude UMS Box
Control Angles with NN @ individual life time
Attitude Calculation and @ individual TBO
Engine Torque Storage @ historical files
) @ trendanalysis
-Flight States @ maintenance support

Power Supply -Time

Fig. 7 Principle structure of a usage monitoring system for flight state recognition
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323 TestResults

The neurdl network has been tested in a laboratory test with real flight test measurement
data. The following tables show two recognition matrixes (Fig.8) for steady state flights and for
transient flights. The test data which were used are different from the learning data.

Recognition matrix for steady flight states

Descent 13 100

Tuen right 45° 12 100

Turn ieft 45° 11 100
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Fig. 8a: Test Results for Steady Flight States

Recognition matrix for transient flight states

Turn leftright 16 13

82

Turnright-left 15 77

Stick inp.left 14 100

Stick inp.1i 13 100 3

Stick inp.fwd 12 0
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Recover fi
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Pull up

Quiick stop 87

9
8
7
5
Pull up 5 3 o 29
4
3
2
1

Push over

i 2 3 4 5 & 7 8 9 0N 12 13 14 15

Input Hight States

The missing flight stafes in this matrix are associated 1o steady flight states




Fig. 8b: Test Results for Transient Flight States

On the bottom numbers for the flight states are shown which were given to the neural
network. On the left hand side the same numbers are indicated by the name of the flight state.
If the flight stafe is recognised correctly 100% is wriften in the corresponding box. The
recognition matrix for the steady flight states shows that all flight states are recogrised by 100%.

For transient flights, the situation is more difficult. The numbers which are not placed in the
diagonal illustrate that some manoeuvres are very dlike due to the combination of the input
signals. Consequently, they produce similar loads. Regarding the load aspect the number of
flight states can probably be reduced. This will be a next step in our development,

324 Syst lidii

Conceming hardware the system can be realised very easily. "Black boxes”, which are
capcabie of medasurement amplifying, calculation and storage already exist on the market,
Only the software has to be implemented (Fig.9). Data can be ransported with a memaory
card to the ground station. There, a program has to calculate il the necessary data to support
the operator in his work (Fig. 10).

Sensors

Memory Card
Black Box Data transfer
with

dafta acquisition,
neural network
and storage

On Board the Helicopter

Groundstation PC
Data evaiuation

Fig. 9: Example for a system application including the ground station
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Fig. 10: Functional structure of the ground station software

4. Sofety Aspects

The guestion of safety arises with ali HUM systems. What is to do if the system fails? Of course
can be installed double sensors, double processors, double memaories and two independent
soffware’s, but this will be 100 expensive for such a system. The flight state recognition is not a
fiight criticai system, so the fiight task has not to be interrupted when the UMS fails, The system
can recognise e.d. the senser which has faited and the duration of the failure, Afterwards in the
ground station the gap can be filled with help of the trend analysis.

5. Conclusion

Neurdl networks have been used for flight state recognition. In & first period, it was possible 1o
show that not only steady flight states can be recognised but also fransient flights.

Now the network has to be frained to recognise ail flight states which are necessary for the
load classification,

After that, a test pericd will start with on line data from flight test measurement.

Finally the network will be implemented into ¢ "black box" and the ground station system has to
be set up.
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