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SUMMARY 

A method is presented which allows much of the tedious algebraic 
manipulation required when formulating aeroelastic equations of motion 
to be effectively performed instead by the computer. The basic approach 
is outlined, and some results for a simple rotor model are presented 
which allow the numerical accuracy to be assessed. 

1. INTRODUCTION 

In order to generate reasonably comprehensive aeroelastic equations 
of motion for a helicopter rotor, several axes of reference are usually 
required in the analysis. Thus, a material point on a rotor blade can 
most conveniently have its position co-ordinates defined by means of 
successive axis transformations. For example, transformations between 
fixed and blade root rotating axes would be required, with further sets 
of axes with reference to the blade root to help account for the effects 
of twist and flapping and lagging bending flexibility along the blade. 
None of the transformations that change the co-ordinates of a point from 
one axis system to another may be particularly complicated, but when 
equations of motion to study blade dynamics are derived through use of, 
for example, Lagrange's equations the exercise can prove quite arduous 
for the aeroelastician. 

It is common practice for the generalised co-ordinates in which 
the equations are expressed to be associated with specially chosen 
polynomial or other modes, or with previously calculated rotating or 
non-rotating normal modes. The derivation of the equations in these 
co-ordinates involves a certain amount of differentiation which when 
combined with the successive transformations leads to an enormous amount 
of work on paper for the analyst, if more than a few modes are involved. 
Furthermore, the possibility of an error creeping into the analysis is 
increased considerably for a multi-mode problem. 

The approach adopted in the present paper is to generate the 
equations of motion automatically on the digital computer, as far as is 
possible. It relies on the fact that the above-mentioned series of 
transformations may be expressed as: 

R=Ar+B 

where i is the position vector of a point on the blade in fixed 
co-ordinates, E is the position vector of the point in blade co-ordinates 
and ~and ~ are matrices that are functions of the modal co-ordinates, 
time and spanwise position. Thus, for a particular material point on 
a rotating blade, the co-ordinates relative to fixed axes can be computed 
for any given configuration and instant. Each of the matrices in the 
equations of motion has a contribution deriv'ing from blade mass, and 
it can be shown, via Lagrange, that an element in one of these matrix 
contributions is the integral over the blade volume of a multiple 
involving blade density and certain differentials of the matrices A and 
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~. The differentials are with respect to q., q. and/or t and the 
particular ones involved depend on the equatton ~oefficient matrix 
being formed. 

The above transformation may be used in order to generate air 
speeds and incidence angles relative to a local blade section, and 
through application of strip theory the aerodynamic generalised force 
contribution to the matrices can similarly be expressed as the 
integral over blade surface of multiples of certain differentials, 

This knowledge permits the organisation of a systematic program 
to compute the coefficient matrices of the equations of motion auto­
matically. The position vector transformation is programmed as a 
function which generates one position vector from the other, and the 
various differentiations of it are done numerically. The operations 
necessary are repeated for a set of points on the blade and the results 
integrated over all points concerned. The input data for mass and 
aerodynamics are arranged such that a simple spanwise integration is 
all that is needed. The contribution from blade stiffness is 
relatively straightforward and is dealt with separately. 

The set of linearised equations in the desired generalised 
co-ordinates are therefore obtained at a given instant of time, and 
for the appropriate equilibrium values of the co-o,rdinates. The 
latter are found by solving the corresponding non-linear equations 
in which g and g are set to zero. 

The method is in the early stages of development and parallels 
that described by Lytwyn (1). In order to investigate the degree of 
accuracy required in the numeLical differentiations and integLations, 
the approach has been tried out on a simple rotating rigid blade having 
flap, lag and pitch freedoms. Translation of the blade rotation axis 
is excluded in this model. 

The paper outlines the basis of the method used and the invest­
igations carried out regarding numerical accuracy. One set of results 
for the simple model is presented, and this includes and illustrates 
the variation of stability boundaries with important blade dynamic 
parameters. The results are seen to agree well with those obtained 
by more conventional means. In the light of continuing progress of 
the method, the future potential is outlined and discussed. 

2. THE EQUATIONS OF MOTION IN DIFFERENTIAL FORM 

2.1. General expressions 

The system under consideration is taken to be a mathematical 
model of a rotor blade, complete rotor or the whole helicopter as 
desired. It is allowed to have n degrees of freedom, each associated 
with a generalised co-ordinate q. and a corresponding mode shape. 
The mode shapes may be arbitrary; previously calculated or obtained 
by experiment, but they must all be definable mathematically or 
numerically. The equations of motion are obtained using Lagrange's 
equations, but instead of evolving them by writing down the energy 
expressions in full and carrying through the various differentiations 
involved within the algebra, we first of all express the equations 
in terms of the necessary differentiations. To do this, we must 
note that a modal approach implies that modal displacements are 
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necessarily assoc1ated with axes which are non-inertial. As in 
the usual fully algebraic development, we need to express displace­
ments at some stage in the proceedin~with reference to inertial axes. 

Thus, let the position vector~=~ <r.s.t) express the 
position of a point in the system with reference to fixed axes. The 
position vector of the point with reference to axes suitable for 
describing the arbitrary or other given modes is r, and the generalised 
co-ordinates corresponding to the modes are denoted by the vector S· 
Time is denoted by t. The external instantaneous force per unit area 
(i.e. aerodynamic pressure in the present case) is given Dy E : 
rr4,~.~,t) and is again with reference to fixed axes. Lagrange's 
equations provide: 

i = 1,2 .. n (2.1) 

where 

(2.2) 

is the kinetic energy and the integral is over all elemental masses 
dm comprising the system, 

aR 
Q. = fl. "i- dS i = 1,2 .• n (2.3) 
~ qi 

is the aerodynamic generalised force and is given by the integral over 
the surface S of the system, and U is the potential energy. Structural 
damping is neglected. We are primarily interested in aeroelastic 
stability in the small, so the solution of eqn.(l.l) may be conveniently 
separated into a steady-state solution and small perturbations about 
the steady-state, i.e. we let g = g + eg where € is small. 

0 1 

The steady-state solution is 
equations in g as indicated below. 
perturbed co-o~dinates g

1 
will also 

to be: 

ggt. + Qg1 + ~g1 0 

in which 
p - ·p 

-m 

g - 9m+ 9a 

R - R + R + R 
-m -a -e 

obtained from a set of non-linear 
The equations of motion in the 

be developed below, and is seen 

(2.4) 

(2 .5) 

where the suffices 'm', 'a' and 'e' indicate contributions deriving 
from the system mass, the aerodynamic forces and the elastic forces 
respectively. Gravitational and other potential termB are assumed 
absent. 

2.2. Respective contributions 

2.2.1. Mass Terms 

The kinetic energy contribution can be shown to be: 

aT =/{ 
aqi 
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The expression may be fully expanded on substituting: 
. 
R = dR 

dt 

all: + 
at (2.7) 

then, ~oting that~ is not a function of qi and setting qi ~ qio + Eqil' 
q. = £q.

1
, etc., the various terms may be separated out, and terms 

iavolviag E 2 and higher orders ignored. The contributions to the 
matrices premultiplying g1 , ~land g1 in eqn.(2.4) are found to be: 

p 
-m 

aR aR 
J(a~.> .<a~.> dm 

~ 0 J 0 
aR a2R 

2! (~) .(~ ~-) dm 
oqi 0 oqiot 0 

oR o'R a2R a2R 

J{(a~ > .c -zl +<aq.aq.l -<-Tl } 
i o aqjat o 1 J o at o 

(2.8) 

(2.9) 

dm (2 .10) 

where the suffix 'o' indicates 
at the steady-state condition. 
equations is found at the same 

that the differentials take their values 
The contribution to the steady-state 

time to be 

aR a2R 
J _::_ · -- dm 

aqi at 2 

2.2.2. Aerodynamic Terms 

Using Taylor's series to expand [and 3Jl:/<lq. about the steady­
state condition and substituting into the expressi5n for generalised 
. f~r~-~-, eqn. (2.3), the aerodynamic c~ntrfb~tions to the ·matrices are 
readily determined as: 

oR aF 
ga -! <-i-> .ca: l dS (2 .11) 

qi 0 qj 0 

aR aF 
c a2R ) R -Jf c-=-l • c-=-l + .F }dS (2.12) 

-a aq. aq. aq.aq. -o 
~ 0 J .o 1 J 0 

where, as before, the suffix 'o• implies values taken at the steady­
state condition. 

The contribution to the steady-state equation is found to be 
aR 

-J a=- .F dS. 
qi -

2.2.3. Stiffness Terms 

Usually in helicopter dynamic analysis, it is a relatively 
simple matter to form an expression for the potential energy, U, in 
terms of the generalised co-ordinates and the structural stiffness 
distributions. Transformations through several sets of axes are 
not involved and thus, it is not necessary to evolve the same type 
of procedure as in the case of the kinetic energy. The contributions 
to the equations of motion are therefore given directly in terms of 
u. Further explanation is provided in Section 4.3. 
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Substituting, as before, q = ~0 + £~ 1 into 3U/3qi in eqn.(2.1) 
it fo lle~;s that: 

R 
-s 

and the contribution to the steady-state equations is R q. 
~·-

2.3. Steady state equations 

From sections 2.2.1, 2.2.2 and 2.2.3, the set of equations 
describing the steady-state is seen to be: 

a2u F ds + E 
J
• aq.aq. 

l J 

q. = 0 
J 

i = 1,2 ... n 

(2 .13) 

(2. 14) 

This is a set of non-linear equations in the variables q., the solution 
q. of which are independent of time if the helicopter r6tor axis has 
c5gponents in the plane of the rotordisc neither of acceleration nor 
motion relative to the surrounding air. Otherwise, the solutions are 
periodic. 

2.4. Equations of motion in perturbation co-ordinates 

These are the equations (2.4) with 
tions given by eqno.(2.5), (2.8- 2.13). 
component in the plane of the rotor disc 
relative to the local air mass the matrix 
otherwise some or all are periodic. 

3. FORM OF TRANSFORMATION FROM t to E 

the various matrix contribu­
Again, if there is no 

of acceleration or motion 
coefficients are constant, 

A point in the moving system has position co-ordinates r with 
respect to convenient axes, e.g. axes fixed to the blade rootNfor a 
point on a rotor blade, but in the equations of motion the position 
co-ordinates relative to inertial axes, R, are required. The 
transformation from one set to another iS quite standard and straight­
forward; nevertheless, because it has some bearing on subsequent 
computer program organisation, it is useful to examine the form the 
transformation takes. 

In helicopter aeroelasticity, it is the rotor which is of 
primary interest, and Fig.l shows a "semi-rigid" rotor blade in its 
deflected state on which is indicated sets of axes which enable the 
transformation from r to R to be made. The blade is considered 
initially coned and Pretwisted with an offset axis, and applied angle 
of pitch. The elastic deflections are flap and lag of the blade 
axis and pitch or twist about the local blade axis. Deformation 
of a cross-section is excluded. The total flap fR(s) is given by 
the deflection due to coning angle and that from the flap modes, i.e. 

H 0 • (s)q. 
• f.J1 1 
c 

(3 .1) 

where s is distance along the (possibly deformed) blade axis, S
0 

is 
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the coning angle, q. are the blade generalised co-ordinates and 
f 6.(s) are the elasfic flap modes of deformation in those co-ordinates. 
s~~ilarly, the lag deflection f~(s) is: 

Ef~. (S)q. 
i ~ ~ 

and the local blade section pitch 6(s) is: 

(3.2) 

6(s) = 6 (s) + u 6 .Cs)q. (3.3) 
Q i ~ ~ 

where 6 (s) is the applied pitch plus built-in twist. 
0 

The overall transformation from t :{x4 ,y
4

,z4} to ~ :{X,Y,Z} is 
obtained by successive transformations between sets of axes, and it 
can be shown that: 

where 

g. = ~!; + B 

A = T T T T 
- -o-2-3-4 

s 2 
B T 5 - l fS(:s) ds !z -! 

-0 
0 

y + 
0 

z + fa<s> 0 

T ["" - sinl"lt 

:] 
-o 

sinl"lt cosl"lt 

0 0 

!z r··:'·' 0 -·i·:~j 1 

sinS(s) 0 cosR(s) 

T = t""'' -3 
sin~Cs) 

0 

!4 

~ 
scs> = a 

0 
+ E 

~(s) = 

i 
af,..(s) 

E ~~ as i 

-sin~ Cs) 

n cos~(s) 

0 

0 _,:0(.~ cos6 (s) 

sinS (s) cos6 (s) 

(3.4) 

(3.5) 

s 
f~(s) 2ds 
0 

f:1(s) (3.6) 

0 

(3. 7) 

(3. 8) 

(3.9) 

(3 .10) 

(3 .11) 

(3 .12) 

~ is the axis-length of the blade, and Y and Z define the amount of 
offset of the blade axis. Note that A ~nd B a~e functions of S, and 
not of y and z. 

3.3-7 



4. INTEGRATION OF TERMS IN THE EQUATIONS OF MOTION 

The integrations required of the terms comprising the equations 
of motion (2.8) to (2.12) and that describing the steady-state (2.14), 
are either over the volume of the system (mass terms) or the surface 
area (aerodynamic terms). These can normally be much simplified, 
and since our main interest continues to be concentrated on a rotor 
blade, the integrations are now formulated for this part of the system. 

4 .l. Mass Terms 

Inspection of eqns.(2.8) to (2.10) and (2.14) shows that the 
integral is of the elemental mass times the scalar product of two 
(3 x l) vectors, each being a particular differential of ~. e.g. 
oR/oq., o2R/oq.ot, o2 R/ot 2

, etc. If the blade pitch is fixed (no 
appli~d cyclicJpitch)-then Io is the only time varying component 
in A and Band so in eqns. (2.8) to (2.10) oR/ot introduces a scalar 

- .... 2 2. nand a skew-symmetric matrix s1 where ns1 = oT /ot, and a R/at 
introduces a scalar n2 and a Symmetric iatrix-§2 where n2 s2 = 
a•T /at 2

• Then the only differentials required are 3R/3q. and 
32il?aqioq .. C )Let th~ ywo particular differentials under c6nsideration 
be denoted R p and R q • Then: 

R(p).R(q) = (A(p)r + B(p)).(A(q)r + B(q)) 

!?c~ CplT~ Cqll;: 

+ (~(q)T~(p) + ~(p)T~(q))~ 

+ B(p)TB(q) (4.1) 

in which suffix 'T' indicates a transpose, and normal matrix algebra 
applies. 

From the previous section, the last term is seen to be a scalar 
function of s, the spanwise blade co-ordinate, so that: 

(4.2) 

where x is written in place of s, m(x) is the spanwise mass distribution 
and Cpq(x) is the scalar function. The dx integral is over the 
complete span and the fact that Cpq is a function of x only relies on 
~being independent of y and z. Similarly, the middle term of eqn. 
(4.1) leads to: 

~~(q)T~(p) + ~(p)T~(q))~ dm 

=! (D P~(x)y- + D pqm(x)z)dx y 7 
(4.3) 

which is another scalar function of x, and in which y and z are the 
co-ordinates of the centre of mass of the blade section at x and x 
. . ' 4 Ln r lS zero. Finally, 
in the first term of eqn.(4.1) the matrix muLtiple A(p)TA(q) which 
is again independent of y and z can be written Epq;- thiS is comprised 
f 9 l pq pq pq pq - The • o e ements E E , E ,E •.•.• • etc. n J.t can be 

shown that: xx xy xz yx 
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= f(E pq I + E pqi +2E pqi )dx 
y:y zz zz yy yz yz 

(4.4) 

in which I~, I etc. are the usual blade section moments and products 
of inertia~'J Tfilse quantities are usually expressed as "flatwisen and 
"edgewise" ·inertias, so the axes of reference are synonymous with 
x4 ,y4 and z4 in Fig.l. 

If the applied blade pitch is time-invariant, then the 
differentiations of A and B involving time can be avoided by making 
use of the (3 x 3) matrices ~l and ~2 mentioned below eqn.(4.1). 

4.2. Aerodynamic Terms 

4,2,l.General expressions 

As for the mass terms in Section 4.1, inspection of eqns.(2,11) 
and (2.12) indicates that integrals over the lifting surface of the 
scalar product of two (3 x 1) vectors, one being a certain differential 
of R, and the other being either F or a differential of F. Again 
we aenote the differentiations reqU~red by superfixes 'p' and 'q' so 
that: 

(A(p)r + B(p)).F(q) 

- CA(p)r + B(p)).(A(q)P + AP(q)) (4.5) 
~ ~ ~ ~ - --

in which f are pressures with reference to the local blade axes and 
the transformation between F and P is made through A. See Fig.2. 
Thus integrations of terms tike: -

need to be made, in which either 'p', 'q' or 'r' could-symbolise zero 
differentiation and normal matrix representation is used. The first 
of these can be shown to be: 

!P(p)TA(q)TA(r)r dS - - -
fE qrx!P pdydx + !E qrx!P Pdydx 

yx y zx z 

+ !E qr!P Pydydx 
zy z (4,6) 

and the second 

fp(p)TA(q)TB(r)dS - - -
(4. 7) 

where the integrals are over the lifting surface and Eyx' Dy, etc. are 
as in Section 4.1. 
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These eXpressions have certain terms absent due to simplifying 
assumptions. The spanwise pre·ssure component P is assumed zero. 
A term involving P Py can be shown to be associafed tvith the movement 
of points on the a~rofoil surface towards and away from the axis (i.e. 
in the y-direction) when the aerofoil is rotated. As rotations are 
of small order, the movements occurring are second order "shortening" 
effects, and they and the associated term P Py may be neglected. The 

same applies" for a term pzPz in which the shgrtening effect is in the 
z-direction. A term involving P pz can be identified with the 
contribution to the aerodynamic mo~ent of the edgewise forces on top 
and bottom surfaces of the aerofoil section. For thin aerofoils, 
these forces are drag-like and the overall contribution can reasonably 
be neglected. These simplifications are necessary because the 
aerodynamic forces would normally be provided as a lift, drag and 
moment on a (non-deformable) section, a detailed pressure distribution 
not being available. 

The dy integrals (over the chord) are readily identified as: 

!Pzdy Lcos!l + Dsina 

Jp dy 
y Lsina - Dcosa. 

!Pzydy M (4.8) 

in which a is the section angle of incidence, and L, D and M are the 
section instantaneous aerodynamic lift, drag and moment about the axis 
of reference as in Fig.3. 

4.2.2. Use of Strip Theory 

Although more complicated formulations can be used, it is 
convenient to apply strip theory in obtaining L, D and M at a blade 
section. The evaluation of these forces requires, amongst other things, 
knowledge of the section aerodynamic coefficients CL' CD and ~' the 
instantaneous incidence angle a. and the instantaneous local (relative) 
airspeed V. The latter are given in terms of components of air 
velocity with respect to local blade section axes, i.e.: 

a. 

v 

-1 
tan (-V /V ) z y 

(V 2 + V 2)j 
y z (4 0 9) 

as indicated in Fig.3. These components are elements of the relative 
air velocity vector y, where: 

T • • 
V=A(Ar+B+u) (4.10) 

in which u is a vector providing velocity components due to motion of 
the helicOpter as a whole through the surrounding air mass plus induced 
velocity through the rotor disc. It has to be remembered in eqn.(4.l0) 
that the differentiations of A and B are "full" so that: 

A dA 
- dt 

. 
and similarly for ~· 
required in order to 
M. 

= r_L + Eq _a_ J A 
at i i aqi -

;hus, various differentials A(p) and B(p) 
obtain V and the instantaneous-section t, D 
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4.3. Stiffness Terms 

It is assumed that the blade stiffness properties are provided as 
s~anwise distributions of bending and torsional rigidities (i.e. Elyy(x), 
EI (x), GJ(x)) and orientation of section principal axes; fhen the 
be~aing and twisting strain energy can be easilyformulated in terms of 
the arbitrary modes of eqns.(3.1) to (3.3). The contribution from 
track rod stiffness, if any, must also be included here. For a 
symmetric blade section the principal axes are aligned with the flat 
and edgewise blades axes (i.e. the local blade section axes), but the 
flap and lagwise directions are not normally coincident, so it is 
necessary to resolve the modal contributions through the local blade 
pitch angle in order to build up the bending energy terms. 

The differentiations necessary (eqn.(2.13)) are of the mode 
shapes themselves and the integrations involved are over the span. 
A detailed description of the procedure is not given here, as it 
follows common practice. 

5. COMPUTER PROGRAM 

All the work done so far has been concerned with single rotor 
blade aeroelasticity ~nd situations in which the variables in the 
steady-state case are independent of time, the coefficients in the 
aeroelastic stability equations also being constant. These equations 
are built up by summing the individual contributions, and a good guide 
to the overall program organisation is given by listing the sequential 
operations necessary to provide a mass term contribution, eqns. (2.8) 
to (2.10). 

(i) 
(ii) 

CHi) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 
(ix) 
(x) 

(xi) 

Select matrix 
Select coefficient 
Select differentiation required 
Select base values of t and q. 
Select blade station, and reaa in mass and modal data 
Form A and B 
Compute required differentiation 
Form the C, D and E coefficients 
Perform required multiplications (eqns.4.2 to 4.4) 
Integrate over all blade stations 
Repeat for all coefficients and matrices. 

In order to form A and B in operation (vi) a routine is written 
involving the transformation matrices (3.6) to (3.10). The different­
iation is done numerically using central difference formulae found in 
standard text books on numerical analysis, e.g. (2). In the program 
a choice can be made between 2-point (i.e. using one point on each 
side of the point of interest, and equivalent to obtaining the slope 
from a fitted parabola), 4-, 6- and 8-point formulae. The integration 
is performed using Simpson's rule although higher order Newton-Cotes 
procedures have been used also. The input data, i.e. the mass and 
inertia distribution and the mode shape data is calculated or inter­
polated at the chosen spanwise (integration point) stations. 

The aerodynamic terms in eqns.(2.11) and (2.12) are obtained 
in a similar manner, with the additional complication of the need to 
form E• the vector of aerodynamic forces. From sections (4.2.1) and 
(4.2.2) it is seen that data on CL' C and ~ at blade stations must 
be provided, a~d the, full differentia~ions ~th respect to time of A 
~nd ~. namely ~ and ~ have to be formed in order to provide the 
~ncidence angle ~ and local relative air speed V. 
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The stiffness terms are relatively easily obtained and follow 
from integration of stiffness and modal input data. 

The steady-state equations (2.14) are formed from the separate 
mass, aerodynamic and stiffness contributions for starting values of 
q. (normally zero), The left hand sides will generally be non-zero 
ifiitially and an iteration process obtains q. for satisfaction of the 
equations. A standard NAG routine based on~the Gauss-Newton method 
is used for the iteration which minimises the sum of the squares of 
the residuals,. (3). The solutions or steady-state values q. are 
then used as base values in estimating the matrix coefficienfg for 
the aeroelastic equations of motion. 

6. NUMERICAL TESTS 

Numerical tests have been 
in order to establish confidence 
accuracy that can be expected. 

carried out on a simple rotor model 
in the method and to assess the 
These tests are as follows: 

(a) Comparison of matrix coefficients determined by the 
present method with those found analytically. 

(b) Time independence check. 

(c) Variation of accuracy with the number of points used 
in the central difference formulae for differentiation. 

(d) Comparison of staoility bound• with those obtained 
elsewhere. 

These tests are described in some detail by Gibbons (4), but it is 
not necessary to do the same here; the main conclusions should be 
sufficient, and these are outlined in Section 6.2. 

6 .1. The Model 

The mathematical model is that which applies to a single rotor 
blade rotating at constant speed about a fixed axis. The blade is 
itself rigid, and has a uniform mass distribution concentra~ed in its 
own plane. It can flap, lag and pitch about axes which coincide with 
or pass through the rotation axis against linear stiffnesses. The 
aerodynamic forces are governed by a constant drag coefficient CD and 
constant lift-curve slope (providing c1), and axi~symmetry preva~ls 
(i.e. no periodic terms). See Fig.4. 

6.2. The Tests 

To check the numerical approach against analysis as in (a) above, 
the degrees of freedom were restricted to flap and lag, for a given 
fixed amount of pitch. The matrix coefficients were derived by 
straightforward algebraic analysis and compared with those obtained 
numerically. There was exact agreement. 

Because the test problem does not involve periodicity, the base 
value of time t necessary to start the computer proces·s should make 
no difference to the final results. This .formed the basis of the time 
independence check (b) and was tested on both the flap-lag model and 
the full three degree of freedom model, by obtaining coefficient matrices 
for various values of t. The results were unaffected by the base 
value of t chosen. 

3. 3-12 



The accuracy dependence on the differentiation formula used 
(test c) was investigated using the flap-lag model, and it was found 
that at least five significant figures were correctly obtained in the 
matrix coefficients of the equations of motion for the 2-point formula, 
and much better than that for the 4- and 8-point formulae. 

·rn all of these cases, the integration was carried out spanwise 
across only 5 spanwise stations only using the 5-point Newton-Cotes 
quadratur.e tormula. More stations would be needed in more realistic 
problems. Also, because at the time of the numerical tests the 
chordwise integration was not effectively exprensed through the 
overall mass and aerodynamic properties (e.g. section moments of 
inertia, section drag and moment, etc.), it too required treatment; 
in this case, three points chOrdwise were used. 

Finally, a check was made on stability bounds with those which 
appear in Bramwell (5), The stability of a particular configuration 
in which the flag, lag and pitch stiffnesses vary was found by computing 
the eigenvalues provided by the equations of motion, and the boundaries 
were obtained by interpolation. Although the case of three degrees 
of freedom was investigated, the stability diagram for flap and lag 
shown in Fig.5 compares directly with Fig.l1.3 in Bramwell's book, 
In this case the induced velocity parameter is A. = 0.04. The point 
at which the amount of fixed pitch just eliminafes instability can 
also be found (8

0
C = 0.318) which agrees with that given by eqn.(ll.lO) 

in Bramwell. 

7. DISCUSSION 

The automatic generation of helicopter aeroelastic equations 
of motion relies on the existence of a computer program in which 
confidence has been established. This confidence can only come from 
continued use of the program in practical circumstances, and so far, 
experience is limited. The numerical exercises described in Section 
6 at least demonstrate that the method works, and provide an indication 
of the accuracy to be expected, The results have been sufficiently 
encouraging for the technique to be applied to much more realistic 
problems in helicopter dynamics, and it is hoped that the results 
will be available in the not too distant future. 

In a sense, the method can quite easily be applied to complicated 
models, because all that is needed Basically is the ability to formulate 
the successive transformation matrices in eqns.(3.5) to (3.10), This 
follows from the modal definition of the deformed state, The complication 
arises in the input of long strings of data, which comes hand-in-hand 
with a practical system description. 

At present, the evaluation of each matrix coefficient on a 
practical rotor blade example of this type requires about 10 seconds 
of CPU time on a Honeywell Twin 66/60 computer. This is using 25 
integration points spanwise and a 4-point differentiation formula. 
There is much scope for reducing the computer usage, Out the accuracy 
desired in the final results needs first to be defined. So far, no 
real attempt has been made to improve the efficiency of the program. 
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Computing time increases when translational flight is considered, 
because periodic coefficients appear in the equations of motion. The 
present method produces coefficient matrices at the instant of time taken 
and thus for stability to be as-sessed, using "Floquet" for example, the 
matrices would need to be computed at several time instants. 

Provided that unforeseen problems do not prove insuperable, 
the technique described in this paper represents a means of avoiding 
some of the more laborious algebraic manipulations necessary in forming 
aeroelastic equations of motion, thereby allowing the saving of a 
considerable amount of time and mental energy. 
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