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Abstract

In this paper, we consider the problem of parameter estimation from flight test data for rotorcraft vehicle
models.

We describe two alternative parameter estimation classes of methods in the time domain, namely the recur-
sive filtering and the batch optimization methods. Both classes of methods are formulated so as to be applicable
to complex first-principle models of rotorcraft vehicles. In the recursive approach, we formulate a novel version
of the Extended Kalman Filter which specifically accounts for the presence of unobservable states in the model.
An important highlight of the proposed approach is that it does not require a reduced-order model of the system.
In the case of the batch optimization methods, we present a formulation based on a new single-multiple shooting
approach specifically designed for vehicle models with slow and fast solution components.

The paper is concluded by a preliminary assessment of the performance of the proposed procedures with
the help of applications regarding manned rotorcraft vehicles.

1 INTRODUCTION

In this work, we consider the problem of parameter
estimation from flight test data for rotorcraft vehicles.
The objective of parameter estimation is to find values
of the parameters in a given mathematical model such
that the model-computed response best matches (in
a statistical sense) the experimentally observed one.

In the literature, it is common practice to speak of
system identification when in reality referring to the
problem of parameter estimation. When performing
system identification, one has the freedom to define
both the structure of the model and its parameters,
whereas when performing parameter estimation the
model is prescribed and its parameters are the only
free variables which can be used to minimize differ-
ences between the model-computed response and
experimental data.

Much of the published works on rotorcraft system
identification deals primarily with frequency domain
approaches and linear models, an excellent review
on the state-of-the-art being given in the recent Ref-
erence [1]. Typically, for each given problem, ad hoc
linear models are postulated and expressed in terms
of a limited number of states and unknown model pa-
rameters, which often represent stability and control
derivatives synthetically accounting for global aero-
dynamic effects created by the various aerodynamic
components of the vehicle (rotor(s), fuselage, lifting
surfaces, etc.). Suitable methods are then formulated

for extracting estimates of the unknown parameters
from experimental observations.

On the other hand, multidisciplinary aeromechani-
cal analysis tools are being developed at a fast pace
from first principles. Modern analyses are based
on comprehensive approaches, which aim at cover-
ing the widest possible range of vehicle geometries
and configurations, analysis types (including perfor-
mance, handling qualities, vibrations, loads, etc.) and
flight conditions (maneuvers, trimmed flight, hover,
taxing, etc.) [5, 23, 16, 2]. Hence, rotorcraft aerome-
chanical analyses are typically based on complex,
highly non-linear, multi-field models. Reference [11]
provides a review on the current aeromechanical
modeling capabilities, and describes possible future
needs and areas of required technological improve-
ments.

From this discussion, it appears that there is a clear
need to use modern parameter estimation techniques
for supporting the current capabilities in the aerome-
chanical modeling of rotorcraft vehicles. In doing so,
the estimation methods must be carefully chosen. In
fact, models are now non-linear, formulated in the
time domain and often implemented in highly com-
plex simulation codes; this last aspect calls for a high
level interaction with the estimation procedures in or-
der to minimize code modifications. Furthermore,
since in a comprehensive code most effects are mod-
eled from first principles by the various coupled disci-
plinary sub-components, the to-be-estimated param-
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eters must be chosen with attention. One possibility is
to use unknown parameters to account for the defects
of the analytical models, i.e. for the un-modeled or un-
resolved physics. This way, the white box model im-
plemented in a comprehensive analysis code is aug-
mented with carefully chosen black box components
which, if properly estimated, lead to an improved grey
box model of the aircraft.

In the present work we focus on the time domain
approach to parameter estimation and on non-linear
vehicle models. Excellent reviews of time domain
methodologies for parameter estimation are already
available, most notably in Reference [15]. Refer-
ence [25] describes, among many different flight me-
chanics applications, the use of time domain parame-
ter estimation for rotorcraft problems.

Here, we specifically consider methods which are
applicable to unstable systems, since rotorcraft vehi-
cles are typically unstable at least in certain flight con-
ditions. Unstable vehicles must be operated in closed-
loop, and this must be explicitly accounted for when
formulating parameter estimation methods. Hence,
after having more precisely defined the problem of
parameter estimation for a generic comprehensive ro-
torcraft model in Section 2, we analyze the problem
of parameter estimation for unstable vehicles in Sec-
tion 3.

In Section 4 and 5 we describe the mathematical
formulation of two alternative parameter estimation
classes of methods in the time domain, namely the re-
cursive filtering and the batch optimization methods.
Both classes of methods are formulated so as to be
applicable to complex first-principle models of rotor-
craft vehicles.

In the recursive filtering case, we consider the Ex-
tended Kalman Filter (EKF) formulation. Here, the
EKF algorithm is formulated in a novel way so as
to account for the presence of unobservable states
in the model. This way, the method can be applied
to complex models which include both slow and fast
scales, although measures are typically available only
for the slow solution components. An important high-
light of the proposed approach is that it does not re-
quire a reduced-order model of the system.

In the case of batch optimization methods, we con-
sider the output error method and present a formu-
lation based on a new single-multiple shooting ap-
proach specifically formulated for vehicle models with
slow and fast solution components [8]. In this case,
the basic idea is to use multiple shooting on the
flight mechanics scales, and single shooting on the
faster ones; this avoids the enforcement of the mul-
tiple shooting gluing constraints for the faster scales,
which greatly enhances convergence and in turn re-
duces the computational cost.

The two classes of approaches described herein
have characteristics which make them suitable can-

didates for the difficult problem of parameter estima-
tion for complex first-principles models. On the other
hand, the two methods have also important differ-
ences, so that one or the other might be favored de-
pending on the application; a synergistic use of the
two can also be foreseen.

In Section 6 we describe an application of the pre-
sented methods to rotorcraft vehicles, whereas con-
clusions and an outline of future activities are given in
Section 7.

2 THE PROBLEM OF PARAMETER ESTIMATION

Given a system S (the plant) and a suitable model
of it M(p), parameterized in terms of free quantities
p, the problem of parameter estimation is concerned
with finding values of the parameters p such that the
model outputs y best match in some given sense the
measured quantities z, when both plant and model
are excited by the same inputs δ̃ = δ1. The problem
is of a stochastic nature, since the plant is usually ex-
cited by a process noise w̃, while the observations are
corrupted by a measurement noise ṽ. This situation
is illustrated in Fig. 1.

Figure 1: The problem of parameter estimation.

More precisely, consider a parametric flight me-
chanics vehicle model M(p), which includes struc-
tural and aerodynamic models of the vehicle compo-
nents, using a multibody approach [5]. The dynamics
of model M can in general be described in terms of a
set of non-linear index 1-3 differential algebraic equa-
tions written as

fsd(ẋsd,xsd, λ,xaero, δ, p) = 0,(1a)
c(xsd) = 0,(1b)

Mẋaero + Lxaero − τ (xsd, δ, p) = 0,(1c)

where xsd ∈ R
nxsd are the structural dynamics states

(including states describing rigid and possibly flex-
ible rotor(s), fuselage, engine, etc.), λ ∈ R

nc are

1Here and in the following, quantities related to the plant (the
true system, as opposed to a model of it) are indicated using the
notation f(·).
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constraint-enforcing Lagrange multipliers in a multi-
body vehicle model, xaero ∈ R

nxaero are aerodynamic
states (e.g. dynamic inflow variables), δ ∈ R

nδ is the
control input vector, and p ∈ R

np are the model pa-
rameters. Equations (1a) group together kinematic
and dynamic equilibrium equations. Equations (1b)
represent mechanical joint constraint equations in a
multibody vehicle model, whereas Eqs. (1c) are the
aerodynamic state equations (here written in a linear
form resembling the one obtained using, for example,
the classical Peters-He [22] dynamic inflow model,
but which could have a more general non-linear form
without affecting the subsequent discussion). Finally,
the notation ˙(·) = d(·)/dt indicates a derivative with
respect to time t.

While the presence of differential algebraic govern-
ing equations does not pose any additional difficulty
as far as the parameter estimation problem discussed
here is concerned, for the sake of notational simplic-
ity but with no loss of generality, in the following we
will consider that Lagrange multipliers λ and redun-
dant structural dynamics states can always be for-
mally eliminated in favor of a minimal set of coordi-
nates [13]. Therefore, the governing equations will be
assumed to be of the ordinary differential type and will
be simply expressed as

fsd(ẋsd, xsd,xaero, δ,p) = 0,(2a)
Mẋaero + Lxaero − τ (xsd, δ,p) = 0.(2b)

It will be sometimes convenient to use a more syn-
thetical form of the above equations, when we do not
need to distinguish between structural dynamics and
aerodynamic components; in those cases we will use
the compact form

(3) f(ẋ, x, δ, p) = 0,

where x = (xT
sd,xT

aero)
T , x ∈ R

nx , nx = nxsd + nxaero ,
and f stacks together Eqs. (2a) and (2b).

For application to parameter estimation problems,
we rewrite Eq. (3) as

(4) f(ẋ,x, δ, p) − Fw = 0,

where w ∈ R
nx is the process noise, a stochastic

variable which represents the disturbances acting on
the system (e.g., air turbulence) and any other model-
ing uncertainty. They are assumed to be zero-mean,
Gaussian, white processes with power spectral den-
sity Q. F denotes the (typically unknown) process
noise distribution matrix, which is generally assumed
to be an nx–by–nx diagonal matrix or a nx–by–1 col-
umn vector.

The definition of output and measurement equa-
tions completes the formulation of the parameter es-
timation problem. In general, such equations take the

following form:

y(tk) = h
(
x(tk)

)
,(5a)

z(tk) = y(tk) + v(tk),(5b)

with k = 1, 2, . . . , N . Equation (5a) defines the model
outputs y ∈ R

ny as a function of states, inputs, and
parameters, whereas the measurements z ∈ R

ny , af-
fected by measurement noise v ∈ R

ny with covari-
ance Rk = E[vkvT

k ], E[·] being the expected value
operator, are provided at N discrete sampling points
tk.

For the purpose of defining the model outputs, let
us consider the following partitioning of the state vec-
tor x:

(6) x =
(
xT

fm, xT
oth

)T
,

where xfm are the flight mechanics states, while xoth

are all other remaining states in the model. The flight
mechanics states are here defined as those describ-
ing the gross rigid body motion of the vehicle, i.e. they
represent the position, orientation, linear and angular
velocities of a body-attached (or floating, in the case
of a flexible fuselage) reference frame.

With reference to Eq. (5a), we define the output
vector as

(7) y =
(
xT

fm,aT
fm

)T
,

i.e. we take as model outputs the flight mechanics
states xfm and the flight mechanics accelerations afm,
where

(8) afm = ẋfm = gfm(xfm, δ, p).

With this choice, function h in Eq. (5a) is defined as

(9) h =
(
(Hfmx)T , gT

fm

)T
.

3 PARAMETER ESTIMATION TECHNIQUES FOR
UNSTABLE SYSTEMS

Any technique developed for parameter estimation of
rotorcraft models from experimental data must ac-
count for the fact that these vehicles are typically un-
stable, at least in certain flight conditions. For this rea-
son, rotorcraft vehicles usually operate in closed-loop,
under the action of an output feedback mechanism
implemented through a flight control system (FCS).
Hence, in the case of rotorcraft vehicles, experimen-
tal data used for parameter estimation is gathered in
closed-loop. This fact has important consequences
on the process of parameter estimation.

This situation is illustrated in Fig. 2. Plant S is
driven by an input δ̃, output by the vehicle FCS, and
by a stochastic disturbance w̃. In turn, the output δ̃
of the FCS is driven by two inputs: the pilot input δp
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and the system outputs ỹFCS, which are functions of
the plant states x̃, i.e. ỹFCS = hFCS(x̃). During the
experiment, some measured outputs z are gathered,
where z = h(x̃); the measurements are affected by
measurement noise ṽ.

Figure 2: Gathering of flight test data in closed-loop.

Parameter estimation performed from data col-
lected in closed-loop is termed in the literature closed-
loop estimation. Closed-loop parameter estimation is
the only method that can be used in most practical
cases when dealing with unstable aircrafts for obvious
safety reasons. Furthermore, it should be noted that
open-loop flight testing also suffers from its own se-
vere drawbacks, most notably from the fact that data
can only be gathered for short time spans, before the
system excessively drift from the starting trim point.
Hence, in the following we will only consider closed-
loop estimation.

Reference [12] reviews several strategies for
closed-loop parameter estimation, illustrating the the-
oretical conditions under which consistent estimates
are possible. In summary, there are three possible
approaches to unstable system identification:

• Indirect approach. Parameter estimation is per-
formed by using a closed-loop model based on
the explicit knowledge of the feedback controller.
Unfortunately, a detailed model of the FCS might
not always be available, for example because
covered by proprietary rights; furthermore, mod-
eling approximations in the FCS will inevitably af-
fect the estimation results. These are two of the
most important drawbacks of this approach.

• Direct approach. In this case, parameter estima-
tion is performed by ignoring the feedback, and
using the sole measurements of plant inputs and
outputs. This situation is illustrated in Fig. 3.

Observing the figure, we notice that in this case
one feeds the plant model M(p) directly with
measured inputs δ. Hence, at the price of gath-
ering the control inputs down-stream the FCS (as
opposed to the direct case, when one needs only
to measure the up-stream values δp), one has
the advantage that no knowledge of the FCS is
required. Therefore, there is no possible effect of

Figure 3: Parameter estimation using the direct ap-
proach.

regulator modeling approximations on the quality
of the results.

However, even this approach has its own draw-
backs. In fact, it can be shown that it is necessary
to have a sufficient signal to noise ratio δp/w̃ [15].
Since usually δp can not be too large to avoid
non-linear effects, this implies that w̃ has to be
small, so that flight tests have to be conducted in
calm, low turbulence air.

Another potential difficulty, which to the best of
our knowledge has not been previously noticed in
the literature, is due to the fact that the input δ fed
into the model was computed by the plant FCS.
This signal was computed during the flight test so
as to stabilize the plant; however, in general there
is no guarantee that the same signal will also sta-
bilize the model, especially when the parameter
estimates are still far from convergence. This
might in principle lead to instabilities for those
parameter estimation methods which require the
integration of the model equations, for example
through shooting. Therefore, it might be conve-
nient to use stabilized time marching, for example
through filtering or multiple shooting [15].

• Joint input-output approach. Using this method,
one regards the system inputs and outputs as
the combined outputs of an augmented system,
driven by some extra inputs and noise. It can be
shown [12] that joint input-output methods can be
regarded as the combined direct identification of
both the open-loop system and the regulator.

Given the necessity of perfect knowledge of the
FCS for the indirect approach, in the remainder of this
work we adopt the direct one as the method of choice
for the present research effort.

In the next sections, we formulate two alternative
time domain parameter estimation methods, applica-
ble to non-linear models of rotorcraft vehicles. Both
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are based on the direct approach discussed above,
and hence can deal with unstable vehicles and with
experimental data gathered in closed-loop. Further-
more, both methods are based on a stochastic ap-
proach and hence can deal with the presence of pro-
cess and measurement noise.

The main difference between the two methods is
the way gathered data points are processed. In fact,
the first approach is of a recursive nature and trans-
forms the unknown parameters into dynamic vari-
ables, which are integrated to steady state through
a relaxation process by treating one data point at a
time. The second one, on the other hand, is a batch
method, which processes all data points simultane-
ously in order to yield an estimate of the unknown
model parameters.

4 A RECURSIVE APPROACH: ADAPTIVE
KALMAN FILTERING

The basic idea behind parameter estimation using re-
cursive filtering is to promote the unknown model pa-
rameters p to the role of states. This leads to a new
augmented state space model, and transforms the
parameter estimation problem into a state estimation
one. The augmented system can be written as

fa(ẋa, xa, δ) − Fawa = 0,(10a)

y(tk) = ha

(
xa(tk)

)
,(10b)

z(tk) = y(tk) + v(tk),(10c)

with k = 1, 2, . . . , N .
Equation (10a) represents the augmented model

dynamics and, more precisely, it is composed of two
coupled differential equations:

f(ẋ,x, δ, p) − Fw = 0,(11a)
ṗ = 0.(11b)

The first, Eq. (11a), describes the coupled structural
dynamics and fluid dynamics components of the ve-
hicle model, both being affected by a process noise
w through the noise distribution matrix F . The sec-
ond, Eq. (11b), is the parameter dynamics evolution
equation. For problems with time varying parame-
ters, one may add a process noise term to the right
hand side which is responsible for exciting the tem-
poral variations of the parameter vector. Given these
dynamic equations, the augmented state vector is de-
fined as xa = (xT , pT )T and stacks together the vehi-
cle state vector together with the model parameters.
Finally, Eqs. (10b) and (10c) define model outputs y
and measurements z, respectively (see Section 2).

The state estimation problem (10) can be solved
with a number of different filtering techniques. The
problem is of a non-linear nature, since model param-
eters often appear non-linearly in first-principle ve-
hicle models. Among the different possible choices

of non-linear filtering techniques, in this work, we
use the extended Kalman filter (EKF), which amounts
to an approximate generalization of the Kalman fil-
ter to non-linear systems obtained by linearizing the
dynamics at each time step. This filter has found
wide applicability to several state estimation problems
for its simplicity and demonstrated effectiveness in
many practical cases. We refer to Reference [14]
for the formulation of the EKF. The implementation of
this method developed in the present work performs
the required linearizations by using perturbations with
centered differences.

Given the recursive nature of the approach, the im-
plementation of the EKF to problem (10) leads to a
time stepping procedure which processes one mea-
surement sample at a time and leads to a time se-
quence of model parameter estimates. In fact, given
control inputs δ, obtained for example by smooth in-
terpolation of the recorded values δ(tk), the aug-
mented equations of motion are integrated on each
sampling interval [tk−1, tk] to yield an augmented
state prediction x̂−

a,k and the corresponding outputs
ŷ−

k . Notice that the integration time step used for
marching the model equations forward in time on
each sampling interval may be smaller than the sam-
pling step tk − tk−1, because of accuracy or stability
requirements during the numerical integration of the
model equations. For example, this might be crucial in
the case of a vehicle model M with fast dynamic com-
ponents which need small time steps to be resolved,
as in the case of vehicle models with flap blade or
gimbal rotor states. Next, at each sampling instant
the augmented state predictions are updated based
on the innovations

(
zk − ŷ−

k

)
as

(12) x̂+
a,k = x̂−

a,k + Ka,k

(
zk − ŷ−

k

)
,

where Ka,k is a time-varying gain matrix, which is
propagated forward in time together with state esti-
mates based on the covariances of the estimation er-
ror, and of the process and measurement noise.

4.1 Filter Design

The filter design developed for this work is based on
multi-time scale arguments. The basic observation
is that complex rotorcraft vehicle models include both
slow flight mechanics scales and faster aero-elastic
ones, although measures are typically available only
for the slow solution components describing the gross
vehicle motion. As a result, all state variables whose
dynamics are characterized by frequencies above the
flight mechanics ones cannot be reconstructed from
the available data. Hence, these states, being unob-
servable, are of no interest for the problem at hand.

We make use of this fact and reconstruct the sole
states associated with the slow scales, for which an
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accurate estimation is possible. This is conceptually
equivalent to reducing the system to its reachable and
observable parts, although a key feature of the pro-
posed approach is that no reduced-order model of the
system is required [24]. We call the resulting estima-
tion algorithm selective Kalman filter.

Let us consider the following partitioning of the aug-
mented state vector:

(13) xa =
(
xT

S ,xT
F

)T
,

where xS and xF are the states associated with slow
and fast scales, respectively. With this partitioning of
the state vector, the linearized output equations write

(14) δy = Haδxa,

where

(15) Ha = [HS HF] .

As previously noticed, in the present application the
outputs y are related to the slow scale solution com-
ponents (cfr. Eq. (7)). The proposed approach is
based on neglecting the effects of the fast scales on
the slow outputs, which, with the current notation, im-
plies setting

(16) HF ≡ 0.

This is reasonable in most flight mechanics appli-
cations of interest here, where the fast scales are
related to rotor degrees of freedom, including rigid
and flexible states, and aerodynamic states, which
can be considered as decoupled from the slow gross
rigid body motion of the vehicle. A possible excep-
tion to this situation is represented by the regres-
sive lag mode (frequency 1 − ωL/Ω) of a hingeless
rotor/proprotor, which for certain rotor speeds might
reach frequencies well below 1 Hz. If the mode is well
damped, it does not however pose any difficulty to the
application of the proposed procedure.

Given the partitioning of the augmented state vec-
tor, the covariance matrix of the estimation uncer-
tainty, which is computed as

(17) Pa = E[êaê
T
a ],

êa = x̂a − xa being the reconstruction error, can be
partitioned as

(18) Pa =
[

PSS PSF

PFS PFF

]
.

We further assume that the error on fast scales is un-
correlated to the one on slow scales, i.e.

(19) PSF = PFS ≡ 0,

which is coherent with hypothesis (16).

Under these assumptions, the Kalman gain matrix,

(20) Ka = PaH
T
a

(
HaPaH

T
a + R

)−1
,

has the following form:

(21) Ka =
[

KS

0

]
,

where

(22) KS = PSSHT
S

(
HSPSSHT

S + R
)−1

.

This way, the filter effectively ignores the fast scale
variables. In fact, only slow scale states (e.g. xfm,p)
are updated by slow scale innovations, while the
fast scale states remain unaffected. This behavior
is due to the two hypotheses expressed above by
Eqs. (16,19), without which fast scale innovations
would affect slow state estimates. It was verified ex-
perimentally that, in the present application, this has
the effect of corrupting the estimates to the point of
leading to the divergence of the filter, since such fast
scale innovations do not carry enough information
content on the slow scale solution components.

4.2 Implementation Issues

4.2.1 Adaptive Filtering

The implementation of the Kalman filter requires
knowledge of the process and measurement noise
covariances. Proper choices of these matrices is cru-
cial for good filter performance. In fact, the use of poor
statistics can lead to large estimation errors or even to
the divergence of the estimates.

To alleviate the need for careful tuning of these pa-
rameters, which is sometimes problematic, one can
use an adaptive filtering method [18]. The approach
used in this work is based on Reference [19]. The ba-
sic idea is to estimate the unknown time-varying noise
statistics simultaneously with the system state using
a buffer of past data.

4.2.2 Enforcement of Constraints

The enforcement of constraints on the estimated aug-
mented states during filtering was recently described
in Reference [10] and references therein. This may be
important to ensure that the estimated values of the
parameters remain within physically meaningful lim-
its.

In the case of simple bounds on the parameters,
a simpler although heuristic approach is to use clip-
ping: if the current update of a parameter exceeds
the allowed bounds, it is reset to the bound value,
otherwise the update is accepted. This however may
slow down convergence. The present implementation
uses clipping to approximately incorporate the effects
of bounds on the model parameters.
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5 BATCH APPROACHES: THE OUTPUT ERROR
AND FILTER ERROR METHODS

In batch methods, all data points are used simulta-
neously (as opposed to the recursive approach de-
scribed above) so as to estimate the model parame-
ters. The formulation of such methods therefore leads
to an optimization problem defined over the whole du-
ration of the data gathering experiment. There are
two main methods in such category: the output error
method (OEM) and the filter error method (FEM). In
the following, we describe the OEM, which is slightly
simpler but also typically more robust, while we refer
to [15] for the FEM for reasons of space limitations.
Since the two methods share between themselves
most features, the description of the OEM gives the
opportunity to describe some novel features of the im-
plementation that we have developed in this research
to increase the robustness and efficiency of the algo-
rithms, specifically regarding a novel hybrid shooting
designed for dealing effectively with rotorcraft vehicle
models with fast solution components.

5.1 The Output Error Method

In the output error method (OEM), all measures are
used simultaneously (as opposed to the recursive ap-
proach described above) so as to estimate the model
parameters. The formulation of such method there-
fore leads to an optimization problem defined over the
whole duration of the data gathering experiment.

Under the assumption that the system is corrupted
by measurement noise only, the resulting optimization
problem writes

min
p

J id,(23a)

s.t.: f(ẋ,x, δ, p) = 0, ∀t ∈ [tk−1, tk],(23b)

y(tk) = h
(
x(tk)

)
,(23c)

g(p) ≤ 0,(23d)

where J id is a cost function which measures in a sta-
tistical sense the match between model outputs y and
measured quantities z. Depending on the definition of
J id, we have the following methods:

• Maximum Likelihood :

(24) J id = det(R),

where R is the maximum likelihood estimate of
the measurement noise covariance matrix,

(25) R =
1
N

N∑
k=1

(
z(tk)−y(tk)

)(
z(tk)−y(tk)

)T
.

The method seeks to maximize the probability
density of observed variables given the model

parameters. This can be readily transformed
into the equivalent but simpler to handle problem
of minimizing the logarithm of the density func-
tion [15] and leads to the definition of the opti-
mization cost function in Eq. (24).

• Weighted Least Squares:
(26)

J id =
1
2

N∑
k=1

(
z(tk) − y(tk)

)
W

(
z(tk) − y(tk)

)T
,

where W is a weight matrix. This method can be
seen as a particular case of the Maximum Like-
lihood method when the measurement noise co-
variance matrix R is known [15]. In this case,
W = R−1.

In practice, the method can be used as follows.
At first, one guesses a value of the weights;
once a solution has been obtained based on
this choice of W , matrix R is computed using
Eq. (25). Next, the weighting matrix is initial-
ized to the inverse of R, and another solution
is computed. The iterations are continued until
convergence. This way one recovers the maxi-
mum likelihood solution by solving a succession
of weighted least squares problems.

The optimization problem (23) is subjected to a
number of constraints. The first set of constraints
is represented by the model equations (23b). Given
the control inputs δ, obtained by smooth interpolation
(for example using cubic splines) of the values δ(tk)
recorded during the flight test, and the current esti-
mates of the parameters p, these equations can be
integrated on each sampling interval [tk−1, tk] to yield
the state predictions x(tk); Eqs. (23c) define the cor-
responding outputs. Finally, inequality (23d) enforces
possible constraints on the model parameters. Such
constraints ensure that the estimated parameters lie
within acceptable bounds and do not take at conver-
gence values which are non-physical.

Problem (23) is a constrained non-linear optimiza-
tion problem, whose unknowns are the free parame-
ters p, together with the states x, and the outputs y.
One simple way to solve this problem is to eliminate
x (and in turn y) by shooting. In other words, we use
the fact that, given a set of initial conditions, it is pos-
sible to integrate Eqs. (23b) on each sampling step,
which in turn enables one to compute the correspond-
ing outputs. Since there are no terminal or internal
constraints on these quantities (as opposed to, for ex-
ample, optimal control problems), the integration of
these equations has the effect of completely eliminat-
ing them from the problem, which therefore becomes
a standard non-linear programming problem (NLP) in
the sole discrete unknown parameters p. The re-
sulting NLP problem can be efficiently solved using
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the sequential quadratic programming (SQP) method,
with Jacobians computed through centered finite dif-
ferencing by perturbation of the unknowns [4].

Such methods are designed to deal effectively
with equality and inequality constraints, so that there
is no difficulty in handling parameter constraints
(Eq. (23d)). We remark that the ability to include
such constraints in a straightforward manner and at
no additional complexity is an important highlight of
the present approach, since this helps to guarantee
that the solution for the unknown parameters stays
within admissible limits.

We further remark the fact that such an optimiza-
tion based approach to parameter estimation is for-
mally extremely similar to the problem of trajectory
optimization, an optimal control approach to the so-
lution of maneuvering problems which finds applica-
bility in rotorcraft flight mechanics, see Reference [9].
In fact, in a parameter estimation problem the inputs
are known, while parameters should be computed so
as to best match given measures; on the other hand,
in trajectory optimization problems the model param-
eters are assumed to be known, while the control in-
puts should be computed so as to minimize or max-
imize an index of performance. In both cases, one
is lead to the solution of a constrained optimization
problem.

We have exploited this fact for developing a gen-
eral purpose software program named STOP (System
Identification and Trajectory Optimization Program).
The code is capable of solving both classes of prob-
lems using a suite of numerical methods and algo-
rithms that cover a broad range of vehicle models
of varying complexity; the code has an internal ve-
hicle model and is also coupled with several external
rotorcraft simulators, including the commercial code
FLIGHTLAB [2].

In STOP, the optimization problem (parameter esti-
mation or trajectory optimization) is transformed into
a NLP problem by discretization in the temporal do-
main; this can be done either by transcription or by
shooting [7, 6]. In this work we use a multiple shoot-
ing approach, which is briefly described next.

5.2 The Multiple Shooting Method

Multiple shooting is often advocated as a better,
although somewhat empirical, solution than single
shooting, especially when dealing with unstable sys-
tems as in the present case [15]. In fact, in optimal
control problems, multiple shooting is often the only
way to avoid solution blow up caused by the dramatic
amplification of small perturbations [6].

We consider a partition of the time domain I =
[t0, tN ] given by t0 = τ0 < τ1 < . . . < τM = tN with
Im = [τm, τm+1], m = (0,M − 1), where each Im is
a shooting segment (see Fig. 4). The resulting NLP

Figure 4: Basic principle of the multiple shooting
method.

problem is defined as follows. First, the set of NLP
variables are chosen as:

(27) p̄ = (xT
m=(0,M), p

T )T ,

where xT
m=(0,M) are the discrete values of the states

at the interfaces between shooting segments. Next,
the governing equations (23b) are marched in time
within each shooting segment Im, starting from the
initial conditions provided by the values of the states
xm at the left boundary of the segment. The effect of
the forward integration is to generate a discrete time
history of states and corresponding outputs within Im,
which we label, respectively, xm

i and ym
i , i = (1, Nm),

where Nm is the number of sampling time instants
in that segment. Here again, the integration time
step used for marching the model equations forward
in time on each sampling interval [tk−1, tk] may be
smaller than the sampling step tk − tk−1, to account
for fast dynamic components in the model. The last
value of the states sequence is named x̄m+1 = xm

Nm ,
and represents the prediction of the state variables
at the right boundary of the shooting segment. Seg-
ments are then glued together by imposing the follow-
ing equality constraints

(28) xm − x̄m = 0, m = (2,M).

The cost J id of Eq. (23a) is evaluated using the
segment time histories ym

i . Next, the gluing condi-
tions (28) are used to express the set of equality con-
straints generated by the discretization of the equa-
tions of motion (23b).

5.3 The Single-Multiple Shooting Approach

In this section we describe some novel features of
the implementation of the OEM that we have devel-
oped in this research to increase the robustness and
efficiency of the algorithms, specifically regarding a
novel hybrid shooting designed for dealing effectively
with rotorcraft vehicle models with fast solution com-
ponents. In fact, such models are seldom used in
the solution of optimization problems because it is
often hard to provide the required accuracy within a
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reasonable computation time, while avoiding numer-
ical instabilities due to the complex nonlinear rotor
model [17].

The reason for this is twofold: on one hand, one
needs to use a small integration time step length to
correctly resolve the high frequency components of
the solution within a given accuracy. For rotorcraft
models of the form (3), this implies a computational
cost associated with the time-marching of the vehi-
cle equations of motion (which represents the main
contribution to the total cost of one iteration of the so-
lution process), since, at every time step, a Newton-
like method should be used to correctly evaluate the
mutually influencing dynamics of the model. To ob-
tain the total cost of one evaluation of the gluing con-
straints (28), this time must be multiplied by the num-
ber of perturbations of the unknown states needed
for the evaluation of the Jacobian matrix of the con-
straints. Clearly, as the number of model states in-
creases, the computational cost grows accordingly.

On the other hand, one has to guarantee the conti-
nuity of the rotor states by imposing the proper gluing
constraints. We have observed that the satisfaction of
such constraints can be particularly difficult and usu-
ally ends up dominating the problem. This is not sur-
prising, since the rotor generates most of the aero-
dynamic forces acting on the vehicle and even small
variations in its states may imply large variations in
the resulting forces, which hinders the satisfaction of
the gluing constraints.

We have found that these problems can be allevi-
ated by using multi-time scale arguments [8]. In fact,
the rotor states (both structural and aerodynamic) are
significantly faster than the flight mechanics ones.
Thus, since the multiple shooting treatment of these
fast states is the main cause of the two aforemen-
tioned issues, i.e. raise in computational cost and dif-
ficulty in satisfying gluing constraints, one can think of
treating slow and fast scales using different methods.

More specifically, STOP uses a multiple shooting
approach for the slow states. This is crucial, since
with single shooting small changes early in the tra-
jectory can produce dramatic effects at the end of
it [3]; clearly, the problem is exacerbated when ana-
lyzing unstable systems, which is often the case when
considering rotorcraft vehicles. Hence, the multiple
shooting treatment of slow scales avoids the blow up
of the solution.

On the contrary, the code treats the fast scales us-
ing a single shooting approach, as depicted in Fig. 5.
This does not compromise the robustness of the pro-
cedure, since fast scales will not diverge if slow ones
do not; hence, the stabilizing effect produced by the
multiple shooting treatment of slow scales is felt also
at the level of the fast ones.

With such a hybrid single-multiple shooting ap-
proach, the size of the resulting NLP problem is sub-

Figure 5: Hybrid single-multiple shooting approach.

stantially reduced and so is the total computational
cost. Furthermore, there are no gluing constraints to
be enforced for the fast rotor states, since only the
slow states need to be glued together at the shoot-
ing interfaces. This has the effect of greatly increas-
ing the robustness of the procedure, and the conver-
gence speed.

The detailed mathematical formulation of the
single-multiple shooting method is given in Refer-
ence [8].

6 NUMERICAL APPLICATIONS

We consider a Level 2 fidelity model [21] of a medium
size helicopter implemented in the general purpose
rotorcraft flight simulator FLIGHTLAB [2].

In modern comprehensive models, much of the
physics is based on first-principle modeling (e.g. ge-
ometrically exact non-linear beam models, dynamic
wake models, etc.) and/or experimental data (e.g. lift-
ing lines using experimental airfoil data). This raises
the issue of the choice of the to-be-estimated model
parameters. There is evidence in the literature that
the correct prediction of the aerodynamics associated
with real flow features, such as interference effects, is
an important contributing factor to the overall fidelity
of rotorcraft flight dynamic simulations (see, e.g., Ref-
erence [20]).

In this work, model parameters are considered
to be the coefficients of a rotor-fuselage, rotor-
aerodynamic surface empirical interference model.
Such empirical corrective models represent whatever
aerodynamic loads are acting on the vehicle which
are not fully captured or adequately resolved by the
implemented analytical models.

6.1 An empirical Rotor-Fuselage, Rotor-
Aerodynamic Surface Interference Model

Airloads produced by aerodynamic surfaces are com-
puted using the lifting line theory with experimental
airfoil data tables. Lift, drag, and pitch moment coef-
ficients are obtained using a 2-D linear interpolation
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as a function of angle of attack, α, and control sur-
face deflection δ. Similarly, look-up tables are used to
compute the aerodynamic forces and moment coeffi-
cients of the fuselage as a function of angle of attack,
α, and angle of sideslip, β.

Consider a generic aerodynamic coefficient C
whose values are given in tabular form as a func-
tion of two variables, i.e. C = Ctable(x1, x2), where
x1 = α, x2 = δ, β. The rotor interference is modeled
using corrective factors K to modify the table entries
as:
(29)
Ctable = Ctable+Kx1Ctable(x1, 0)+Kx2Ctable(0, x2)+K0.

Force and moment coefficients are then computed by
interpolation of the modified data.

6.2 Results

Figure 6: Longitudinal stick command input

We present results for a longitudinal stick doublet
maneuver in forward flight (see Fig. 6). With refer-
ence to the interference model of Eq. (29), estimation
is performed for the corrective factors Kα of the hori-
zontal stabilizer lift coefficient and K0 for the fuselage
lift coefficient, i.e.

(30) p = (Kα H−Stab, K0 Fus)T .

We apply both the EKF and the OEM method to the
solution of the estimation problem. For the design of
the EKF, we consider only the states pertaining to the
longitudinal motion of the vehicle, i.e.

(31) xS = (θ, u, w, q)T ,

where θ is the pitch attitude, u, v are the linear ve-
locity components along the x- and z-axis in a body-
attached frame, and q is the pitch rate. The OEM is
run using the merit function J id of Eq. (26) with a diag-
onal weight matrix W , whose entries are chosen so

that during the optimization process non-dimensional
variables of order O(1) are used, i.e.

(32) W = diag(Wi), i = 1, . . . , ny,

where W−1
i = maxk {|zi(tk)|}, and | · | is the absolute

value operator. For both methods, we define the out-
put vector y as:

(33) y = (θ, u, w, q, ax, az, q̇)T ,

where ax, az are the linear accelerations along the x-
and z-axis in a body-attached frame, and q̇ is the pitch
acceleration.

Figure 7 and 8 compare, respectively, the plant and
the model-predicted pitch rate and acceleration time
histories using the interference model with the es-
timated parameters (solid line) and prior to estima-
tion (dash-dotted line). Both methods yield parameter
estimates which improve the matching between sys-
tem and model-predicted responses, although there
is much room for improvement.

7 CONCLUSIONS AND FUTURE WORK

In this work we have formulated two alternative
classes of methods for the time domain parameter es-
timation of first-principle rotorcraft models from flight
test data, namely the batch optimization and adap-
tive recursive filtering methods. The batch OEM and
FEM algorithms have been implemented in the gen-
eral purpose software program STOP, which is a uni-
fied platform for optimization problems in rotorcraft
flight mechanics capable of also supporting trajectory
optimization problems.

The parameter estimation methods considered in
this research effort have notable differences but many
common features. Batch methods are one-shot ap-
proaches that process all available data simultane-
ously to arrive at an estimate of the parameters. They
are typically associated with a higher computational
cost and are very strongly non-linear problems which
may experience difficult convergence; however when
they converge they typically provide rather reliable es-
timates. Recursive methods, on the other hand, pro-
cess one sample data point at a time, and hence
sweep rather swiftly through the data sets, to the point
of often being applicable to real-time estimation prob-
lems for systems with time-varying parameters. The
unknown parameters are however transformed into
dynamic variables, and the relaxation towards steady
state values is not always easy to achieve.

In the formulation of the two approaches, we have
paid particular attention at ensuring common crucial
features to both, which in fact:

• Use data gathered in closed-loop, which is cru-
cial for the analysis of unstable vehicles as he-
licopters and tilt-rotors, at least in certain flight
conditions.
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Figure 7: System and model predicted pitch rate time
history for a longitudinal stick doublet maneuver for
a medium size helicopter in forward flight: with inter-
ference model (solid line), without interference model
(dash-dotted line). Up: EKF; bottom: OEM.

• Require no knowledge of the FCS, which might
not be available altogether or which might affect
the quality of the results when only partial knowl-
edge is available or when modeling approxima-
tions are made (for example, neglecting satura-
tion, free-play or other sources of non-linearities
in the regulator).

• Are statistically based, and can deal with both
process (e.g. in the case of flight testing in tur-
bulent air) and unavoidable measurement noise.

• Can deal with unmeasurable model states, which
is for example the case whenever the model in-
cludes aerodynamic states.

• Can be used in conjunction with first-principle
flight mechanics models of the vehicle, including
solution components characterized by fast time
scales.

Figure 8: System and model predicted pitch acceler-
ation time history for a longitudinal stick doublet ma-
neuver for a medium size helicopter in forward flight:
with interference model (solid line), without interfer-
ence model (dash-dotted line). Up: EKF; bottom:
OEM.

• Minimize potential problems due to fact that the
FCS command was generated in flight to stabi-
lize the plant, and hence might not be a stabi-
lizing command for the model, using filtering to
keep the model integration in close proximity of
the datum.

• Provide estimates of all necessary statistics as
part of the solution, without relying on prior
knowledge of the noise, since this is typically un-
available or difficult to obtain and may require ex-
tensive manual tuning.

Given their common features and differences, we
speculate that the two classes of methods can be
profitably used in a synergistic way. Since the recur-
sive approach is fast, it can be used for creating at low
computational cost reasonable values of the model
parameters. Next, these values can be used as ini-
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tial guesses for the more computationally demanding
batch approach.

The work program for our future activities in param-
eter estimation of rotorcraft vehicles calls for:

• Further validation and extensive testing of the
procedures with the help of representative rotor-
craft parameter estimation problems. With regard
to this aspect, we will begin shortly a parame-
ter estimation campaign using small hobby heli-
copters, following the guidelines provided by the
feasibility study described in Reference [26].

• Leveraging on the fact that STOP code imple-
ments both trajectory optimization and parame-
ter estimation solution procedures, we intend to
work on the definition of optimal maneuvers for
parameter estimation. The idea would be in this
case to formulate trajectory optimization prob-
lems which maximize the identifiability of a given
set of parameters, while operating within the flight
envelope constraints of the vehicle. This might
help in the definition of advanced flight testing
procedures which go beyond the classical se-
quences of doublets and 3-2-1-1 (or 1-1-2-3) se-
quences.
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