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Abstract

We present a numerical unsteady method used for

computing 3-D incompressible flows around helicepter-rotors.

t is an extension of Rehbach's particles method to flow
around surfaces with arbitrary motions. These surfaces are
modelized by a surface doublet distribution and the vortex
sheet by a set of vortex carrying particles. Some examples of
applications to rotors are presented with a look at both
kinematic and dynamic aspects of the flow.

1. Introduction

Numerical prediction of rotor performance seems to be
one of the hardest attainable challenge for the aerodynamic
engineer. Isclating the rotor from other solid boundaries
constituting the helicopter or the ground, still leads to a
configuration involving a lot of very complex problems. Each
one of this problem appears to be at the frontier of actual
numerical possibilities. If we have a look for example at the
flow around a rotor in forward flight at a speed of about
40 m/s, different regions containing different difficulties
can be reviewed.

From an aerodynamic point of view, the flow behaviour
can be described as indicated on figure 1. ‘

In a central region near the rotor axis, the flow is
fully three-dimensional with frequently very important
dissipative effects. Moreover, the wake of the blades
interact strongly with the rotor axis, the real shape of
which is far from simple.

In a second region, the flow can be more easily
modelized and, due to the large aspect ratio of the blade,
linear theory works quite well. Good results may also be
expected from theories such as unsteady lifting lines, as
developed by James, Van Holiten, or Guiraud-Slama...
Nevetheless, these theories have to be extended in order to
account for the wake and blade interaction. An additional
difficulty arise from the boundary conditions, especially
between the different region.

Near the blade tip, we can find a third region (III)
where the flow, on the advancing blade, can be transonic. In
this subdomain, the fluid compressibility is determinent and
we nave to modelize its effect when computing the unsteady



flow in this region, A first approximation may be obtained
from two dimensional calculations as those by Lerat-Sidas for
example, cr small perturbation transonic three-dimensional
methods as developed by Chattot-Philippe. The account for the
wake of the different blades remains very important.

Containing the blade tip, a last zone (IV} is found,
where vortex phenomena must dominate, with the formation of a
rolling up vortex sheet, There can be found supersonic
conditions, with vortex/shock intesraction.

Moreover, for such a rotor in forward flight, the
cyelic piteh variation has to be added. This introduces one
more difficulty due to variation of the grid path.

In this paragraphe, we do not account for the
compressibility effect in transonic region. Recents studies
particularly by Murman-Stremel show that it is possible to
ineclude within the classical incompressible vortex method a
coupling with a transonic potential calculation. Most part of
the existing methods are devoted to rotors in hover. Some of
them have hbeen developed within the background of propeller
theories as the actuator disec of Rankine and Froude. In this
early model, no account has been taken for the blade number,
shapes are incidence. The first advanced theories are those
developed by Betz, Goldstein. In these works, the authors
study a class of propeller whose wake is an helicold with
constant path. The load of each blade iz obtained through
analytical calculations,

The development of modern computers enables engineers
to considerably improve these first methods. The more
significant improvement was to account for the spanwise
loading of the blade as an unknown of the problem. The wakes
still remain described with a simplified geometrical shape in
order to limit the number of freedom degrees. The Neuman
problem on solid boundaries is then reduced to a linear
system which is numerically solved. A lot of codes using
those bagic ideas are available and some recent versions are
very sophisticated - Miller, Costes...

The last generation of computer codes can be
illustrated by the work of Suma. In this method, the wake 1s
entirely discretized in quadrangular panels and its position
is computad so as to satisfy the classical kinematic
condition, the circulation value of such element constituting
the wake is evaluated through Kelvin theorem, The blade
loading is obtained as a Neuman problem on the surface of the
blades, or a Dirichlet formulation if thickness effect are
retained. The resulting set of algebraic equations is solved
by means of an iterative procedure. Some empirical parameters



are still introduced in the model, particularly for
determining a correct position for the vertex line issuing
from the blade tips. Moreover, the extension of the method to
forward flight cases is not clear. A larger number of
approximative treatments will probably have to be introduced
if some attempt is made for such cases.

2. Theoretical background

In this chapter, the theoretical basis of Rehbach's
vortex point method is recalled. Extension of this methed to
obstacles in arbitrary motion is then presented. In a last
paragraph, we present an application to inviseid incom=-
presible flow around an helicopter rotor.

2.1. Generalities and kinematic aspects

The problem we deal with c¢an be split in two parts @

- the first one will concern solid boundaries
nodelization. These one are discretized with quadrangular
elements and a piecewise constant doublet distribution.

- the second part will concern the non zero vorticity
region ( ). The free vorticity distribution is discretized
by vortex carrying particles.

These particles are shedded from the boundaries along
given lines and their strengths and locations are determined
through an emission model.

—
The induced velocity Vv at a given peint M is
calculated by using a Green identity. In thiz calculation,
the whole vorticity distribution is taken into account : the
free vorticity, and the attached vorticity via its equivalent
doublet distribution
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411 the vectors in this equation ars given in a
Galilean reference frame, and :

-y
V., is the upstream velocity

- . x >

Xp 13 the integration point -
ﬁ; is the normal vector to the surface (S) at X .

The doublet intensity pa is calculated by solving a
Fredholm equation and taking into account the slip condition
on solid boundaries :
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where the surface integral is a Cauchy mean value integral.
The time evolution of the free vorticity distribution is
governed by Helmholtz equation :

g
PQw = Y] (3)
——=(a,v)Vv,

where D denotes the convective derivative with respect to

hE
time t. We obtain this equation by taking the curl of Euler
equation. It represents a dynamic balance for any fluid
particle.

It mu=t be noted that the use of Helmholitz equation
instead of Euler equation reduce our problem to a purely
kinematic one.

Xelvin's theorem, governing the evolution of vortex
filaments is automatically verified thanks to equation (3).
Therefore, vorticity can be produced only from the boundariss
which presently are supplied from experimental data.

In the particular case of an helicopter rotor blade,
this reduces the vortex production model to the classical
1ifting surfaces model,

Let us consider the wake near the emission line. This
line, in our case, reduces to the trailing edge. We can
modelize this part of the vortex sheet by means of a doublet
distribution P The well-known Kutta Jukovski condition -no
pressure jump accross this surface-~ can be writien

1
2o 2. (4)
Dt
This equation is integrated on the surface, using the
initial value of au given by equation (2). The numerical
discretization of (4) is achieved by transforming the doublet
surface distribution in vortex carrying particles accordig to
Rehbach's model,

At this stage, we can point out the importance of the
emission pattern. This problem will be developed further for
rotary wings in hovering flight.

For inviscid incompressible flows, the vortex carrying
varticles can be divided in two classes. The ones which never



nave c¢ontact with solid boundaries and the others.

- The first class of particles only has a passive
role. They receive infeormation from body surface and from the
second class of particles through relation (2)

- The second class of particles brings information
when leaving the body surface. This information is contained
in the vorticity carried by these particles and gives some
aemory to the fluid.

A fixed wing in forward flight is moving away from the
emitted wake. Therefore, the wake disturbs for a relatively
short time the velocity field on the wing. A rotary wing wake
remains during a longer time close to the wing surface.
Moreover, the presence of the wake is the main cause for the
axial stream which characterizes such a flow. A straight
forward consequence will be necessity of very accurate
emission model.

The four fundamental sets for performing such a
calculation processed independently z2llow :

1} to work out, at each time step, the doublet
distribution .. by solving (2) ‘

2) to create new vortex particles by means of (2) and

(43

3) to remove the particles constituting the wake to

their new position (1)

4) to modify the carried vorticity for each particle

according to (3)

2.2, Dynamical aspect

The progression of such an unsteady calculation,
through the present method is generally split in two stages.

The {irst one, above described, deals only with the
kinematic aspect. It gives the velocity and vorticity field.
The transient period, from rest to a steady or periodic state
is in most practical cases of little interesat. Therefore, it
can be shortened through different calculation techniques,.

The second cone involves the dynamical aspect of the
problem, particularly the pressure estimation within the flow
and the applied forces on the body surfaces. It does not
interfere anyway with the progressicn’ of the first stage.
Thus, it can be performed at the end of the transient period.

The pressure ceefficient Jjump [Cp]’ aceress a lifting



surface 5 is given by ¢
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on 3 and [t?] iz the velocity potential jump. Moreover,
C¢Jis given by the local doublet distribution o . This
yields :
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and Ej*, U; are the veloecity on each side of (S). The
explicit formulation of U, thanks to (1), is given by :

= 51?5 Ujf{’_ﬂ%v :—E.':- )d-ﬁ'—s-fs,up':ﬂiﬁu—ﬂ——(ii 2_’;:?3;)65}*‘:: (7)

The time derivative of AA in the right hand member of (6)
gives a convergence estimate when it goes $o zero. IL must be
pointed out that this is not ftrue for leading edge
separation. In that case, this term does not vanish and
modelize some viscous behaviour of the fluid.

We give here the general outline of a fully unsteady
method., The main preoperties are :

-~ the realistic character of the convergence
development, these calculations representing the transient
pericd,

- the method is a step by step algerithm using only
the four equations (1), (2), (3), (4) without any iterative
process,

- the method does not need any experimental data input
except the knowledge of the emission lines locatioen.

Moreover, the discretization of the vorticity distri-
bution by means of vortex carrying particles is of great
advantage for the computation of very complicated flows. As
an example, one can compare the flow pattern on figure 5-5-7
to the experiment done by Werlé, in the hydrodynamic tunnel



at ONERA. An other importznt point is that we are free of any
eulerian grid, restricting the caleculaticn to the domain
where vorticity is not zero. This will considerably reduce
the computational cost,

A last interesting feature is that, due to the use of
Helmholtz's equation, we do not have fo write any equilibrium
condition on the vortex sheet surfaces. This is a great
advantage since the pattern of vortex sheet is very
complicated for most real flows. We only have to move a
finite number of particles and to adjust the modull and
directions of the attached vorticities,

3. Application to helicooter rotors

Caleculations are performed using the relative frame
moving with one of the rotor blades. It is then easy to
follow the rotor moticn. The three axis of the calculation
(%,y,2) are shown in fig. 2.

Let Vp. be the veloeity at point M in the relative
frame. Then, we have the following relation

-

- -
. Ve = Va = Ve (8)

where ﬁ; i3 the absolute velceity in reference Galilean
frame. It can be calculated using equation {(2).

?; is the driving velocity of the calculation frame :

- - O =

—V:, = Vo +w A(xXM = X0) (9)

where oo 39 the blade instantaneous rotational velocity,
Xy the rotor instantanecus center of rotation
and Vo the forward flight velocity.

In the blade attached frame the relative velceity of
any particle iz tangent tc the body surface. Reporting
equation (8) into equation (2) we can express this condition
and we cobtain a modified rFredholm's integral equation :

' — el _ _— o e - —— - “- d ‘*;1- el
}J?_S/LLPNP.V[%] =1 _.-}.[ﬂ;r}&l,. (RPAV{:[?:‘,__?;.}&-; - -'475(\/@—\..& Yo (10)

The doublet strength is a zero order tensor. So, it
remains invariant in any arbitrary frame end the emission



condit;gn is unchanged. The time evolution of tne vorticicy
fiald 0 is still obtained @rom Helmhcltz's equation (3).
This equation can be rewritten in the moving frame

Ll o (ALV)V- (AR - (11)

The sames coorcinate transform gives for the pressure
coerricient jump :

faced [BeoTovl] o

Whare S = is the time derivative for 2 fixqi peint in the
moving frame. By adding the terms contaiping Ve to equaticn
{7), we get an explicit expression for Vp ¢

Vr =3 Ll ﬂrﬁ%% (ﬁ%ﬁ)df+§JP7P[%]ds + Vo Ve (13)

Tt must be noticed that these modifications do not
affact the four steps of the algorithm already descrived. The
terms added to account for the moving frame are analytically
Lategrated, So the evoiuticn of eacn vortex zarrylng -articies
1s ottained sccurataliy.

3.1 Rotor Geometrv

Most of applications presented here are relative to a
three bladed-rotor. Such a rotor is currently used for wind-
tunnell testing. So, its aerodynamic characteristics zre well
determined. The main geometrical parameters are given in fig.
2.

Each blade is represented by a2 zero-thickness surface
twisted according to a2 linear law O (y/R), where © 1is the
twist angle, y the spanwise coordinate and R the rotor-disc
radius., We have the following expression :

QyIr)I=0, -9 (y4/R-07) G

‘where Qagﬁ the collective pitch angle, and @ the linear



twist. Note that the twist axis is zlso for this case the y-
axis of the moving frame.

The blade chord remains censtant zlthough the method
allows more general zZeometrical shapes. The blade surface is
divided into chordwise and spanwise rows of gquadrangular
surfaces., It results from this discretisation that the four
aquations to be solved readily reduce to sets of algsbraie
aquations. From experimental Xnowledge of the flow, we can
expeet very large gradients at the blade tip. So, the grid
Wwill be stretched in this region in order to give a best
account of the physical phenomena. The evolution of the
chordwise diseretisation will be given by a sinusoldal iaw
with respect to the y coordinate.

3.2 Pressure and resulting forges calculation

3.2.1 Pressure inftaegration

The chordwise integration of the pressure jump gives
the spanwise 1ift distribution ©. Thanks to the panelling of
the blades this law will oe & piecewise constant functicn of
y. The resulting total circulstion at sach claas <¢rsoss
section is given by :

5
Fly)=—— (15)
E S\’wg L
where
= el -"7-,
Ve is a local veloelty Vesr = ” VQ-I-c.o,\\j jl
v is the helicopter forward velocity,

-}

3.2.2 Direct calculation :
For lifting surfaces, a body with a sharp trailing

edge, the circulation 7 is dire=ctly related to the velocity
potential jump along the trailiing edge

[w ]= (16
L{; - (16)
The spanwise distributicn eof aireulation can be given ror
notential rlows oy msans of 2quatioa (15}

Mlyl= (17)

Tor & three-bladed robtors, we obbain the same resulis wasn
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using equation (15} or (17), see fig. 10.

3.2.3. Dimensions and normaliized ccefficient
The circulation is usually adimzensionalized using the
blade tip velocity :

o N TY
Fly= ——2 (18)
From this equation we define the Cz coefficiqu :

c =2 (y) SRl

(9 fe)
The thrust coefficient C, which will be classically

normalized using the rotor solidity ¢ :

c
-—E-I— = thrust/ SJI_{-RQCUJR)‘Id .

3.3 Adaptation to helicopter flow problems

3.3.1 Nested Meshes

For a practical use of the method, the most useful
results are essentially those obtained in the last period of
convergence, when a steady, or s periodie state is reached.
Intermediate results which allow a refined analysis of the
unsteady transition period are of less practical interest for
design purpose. In that case, it can be of some interest to
decrease the accuracy of the calculus during the early
iteration steps. So, we have introduced in our algoritim a
sequence of nested grids on the blade, these grids going more
and more refined. The calculations are performed on each grid
until a converged solution is obtained, then we construct an
interpolate for the blade loading. All the geometrical
parameters representing the blade are set Lo the new correct
values, and new emission points are defined. The
diseretization of the wake, which has been alrsady formed,
remains unchanged. Thus, we obtain a wake model in which all
the emission lines did not contain the same number of vortex
point.

Numerical experimentation confirms that such a process
did not introduced any instability in the calculations and
that only a few time steps are necessary to recover the
steady state with this new mesh. On figure 3 an sxample of
the beginnning of a cazlculus is shown, exhibiting the change
of blade meshes. The veloqity field projected in a plane
containing the axis of the rotor is given in figure Y.
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Three different meshes nave been used during this
saquence. The tip vortex formation is very well illustrated
in this case.

3.3.2 Periodicity conditions for hovering cases

This paragrapn deals with the problem of a rotor
impulsively started in a fluid initially at rest. This kind
of calculation is an essential test case for validation and
further development of any new method since, as it has been
pointed out in the introduction, existing codes are mainly
concerned with this flow. Two main difficulties are desoribed
nere after. First, we try to extensively use the periodicity
of the flow in order to save computing time. The second
difficulty encountered was to accurately calculate the early
stage of the flow with the growing of the starting vortex
ring.

It is well-known that the computation of the
doublicity distribution at the surface of an obstacle leadsto
solve a set of linear equations which can be written :

Avj pj = NeU (21)

Wwhare «u; is the local value of the doublicity distribution,
at X;. Nj is the normal to the beoundary at X5 s and U; the
velocity induced in % by the whole vortex system. For a
multibladed rotor, we can introduce the matrix ™ =
corresponding to the frame change from the frame relative to
the kb0 blade to a reference one which will be noted k=0.
Then, it must pointed out that the velocity field U, depends
on the doublet distribution which is constant from a blade to
another. Furthermore, U; dependance on the vortex wake w %
of 2 blade is linear in the Biot-3Savart law. 3o, it can be
written :

U0 = AdkoxH) A0+ BE e x5) (925) (22)

where A and {Bsar'e matrices, If the flow ig periodic, one
can define some matrices ;Bk using M¥%,

B =B (x,x) =B (X, M"%;) (23)
or

APEY iy (21)



Let us now nave a look at the Biot-3avart integral law.

A single vortex point < located in X | will induce at

point X ; & velocity given by the equation :

V= Oa o IXL—%T)
U= St e

(23)

Let us change in these Fformulae Xj for x;‘, w; for QJ;, we

obtain

: K i
00 = 5 (RLmXE) ¥ty L (=M X )
Lexw) J?,AE§::;?F M le”'!xa—rw*Xﬂa

from (27), (28) we found that
(Xi= M%) = M (M~ Xs)

and
P[P tTSea] = 1[0 n (i) |

30 finally

K=1
o T LS5 A (1 %i=%5)]
U(Xb) - imﬁxb ___x.‘i3

All the process can be repeated when calculating the
deformation term :

U(x) :Z; {31 AL xa) 5+ B 0%, ) $2] }

and, if we separate the (<} and <, contributions :

ZC{NK_‘{:J—’&OS (H“IKXL,X&,)] ]/‘*."r = ZK 34‘-1[82(.. KXL,X_';)QJ'-]

(26)

(27

(28)

(29)

(30}
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The first interest of this form, illustrated on figure Y4,
will be that only one blade and his wake are calculated, and
the velocity field at a given point is calculated by applying
to this point successive rotation, and to the obtained value
of the velocity the inverse rotation. So very few changes
nave to be done to transform a single-bladed rotor code into
a multibladed rotor cne. The use of equation (17) projected
on the normal N, gives a linear system for calculating ¢«
witich is of the same order to the system encountesred for the
one-bladed rotor cases.

3.3.3 Transient period calculaticn

The flow around a rotor in hover is very similar to
that encountered around propellers, at least when the stream
is supposed to be axial. This condition is necessary to have
a periodic flow. However, a fundamental difference is
encountered at the starting of the rotation. In the rotor
case, we start with no axial velocity. This faet lead to the
creation of a very strong vortex ring which will remain near
the rotor disc for a long time. A4 careful computation of this

ransient period is necessary to cobtain an accurate solution.
This is a restraining phenomencn which significatively
affects the computing time for the smaller value of the axial
veloeity. On figure 5 we present a comparison between a
starting vortex ring cbtained in the hydrodynamic tunnel of
ONERA by Werlé, and our calculations with the same three
bladed rotor, A good qualitative agreement is obtained.

On figures 6 and 7, the calculated flow pattern
obgerved during this early stage is shown. We indicate the
vortex ring location, compared to the rotor-disc position. It
can be pointed out that in a first stage, the vortex ring is
going downstream, but is then sloved down by the following
ovlade and thrown upstream. At this time, an axial stream
begin to flow near the axis under the rotor-disc. Heowever,
many rotor turns will be necessary before the starting vortex
ring to be swept downstream.

3o, reinforeing the algorithm efficiency will
necessitate the introducion of a few technique whose aim will
be to help the natural flow to make the influence of this
vortex ring rapidly decaying.

A4 first method consists in supressing the impulsive
start, using instead an empirical solution similar to that
which 1s used by Suma. The essential difference will be that
we use thils law, only to have a realistic first approximation
of the wake. Then the flow is supposed to zo on and new
particles are created. The particles constituting the portion
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of the wake empirically constructed are moved accerding to
Helmholtz equation. In this algerithm, It can be pointad out
that even this last part ¢f the wake satisfies, partially,
the fluld dynamics equations. This is an easy way to
eliminate the starting vortex ring. Unfortunately, spurious
instapilities are introduced when matching the empirical wake
-given by Landgrebe law- and the newly created wake. This is
coming from the path of the helicold corresponding to
Landgrebe Law. This cone is constant and the path
corresponding to the new wake is not constant and somewhat
different, So, we use a smoothing function in this part of
the wake. Applying this algorithm with a ccarse mesh of only
eight elements on the blade, we obtain after ten time steps
the results glven in figure 8 for the spanwise loading of the
blade. These results compare quite well to those caleculated
by Suma.

The triangular element which can be observed at the
blade tip was degenerated to avoid a teo large anumber of
emission points in this regicn. All the other elements being
very long, we can suppesed that the caleulation, except near
the tip, look like a lifting line calculation and so large
time steps can be chosen. But in the tip region, the mesh is
refined, and special process, such as this triangular
element, have to be introduced if one want to use these large
time steps.

Another way to eliminate the starting vortex ring can
be implemented. It consists in using an axial velocity which
will be preogressively set to zero. The flow near the rotor
disc is then rapidly regularized. One of the most interesting
aspects of such a method 1s that we can observe strong
unsteady effect during the veloeity decreasing period.

A last method to start the calculation has been
tested. It consists in reproducing 2 numerical analogous to
the starting of a real helicopter rotor.

We start the rotation with an incidence angle which
minimize the thrust. The angle of attack is then
progressively set to the desired value, This way i3 a very
reducing one sines it is a good numerical representation of
the real physical phenomencn, On figure 9 we indicate the
convergence nistory for each one of these two last methods.

3.4 Numerical results

3.4.1 Rotor in Hover, Velceity field and spanwise’
loading.
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The results presented here have been obtained using
the technique of decaying axial wind. On figure 10a we give
the wake pattern projected in the x,y plane. Each representad
point corresponds to a2 vortex carrying particle. The velocity
value at each "vortex point™ is also represented here. Figure
10b is the same wake projected in a plane normal to the rotor
dise, This plane iz periodically encountered by each blade,
So, the vortex ring initiated at the blade tips is clearly
illustrated there. These results are obtained after only
thres revolutions of the rotor. At this stage, there still
remains a small axial wind which ratio to the blade tip
velocity is (3 =0.07.

One can identify very clearly on this figure some of
the different regions described on figure 1. The blade shank
vortex ring is carried array slowly compared with the hiade
tip vortex. It results ia a recirculating zone near the blade
shank. More details about its incidence on the spanwise
loading will be given later., The slipstream contraction
appears very clearly on this figure as well as regions I1I and
ITT of figure 1.

The ¢zalculated spanwise loading is given in figure 17.
A satisfying agreement with Suma results can be observed.
However, the recirculating zone near the blade shank
increases the loeal circulation.

On figure 12, we give the results obtained for a two-
bladed rotors of which geometrical characteristics are :

blade aspect ratio : 13.7
Linear twist : -11°
Collective pitch : ==9,8°

A good agreement is alsc observed for this case with
numerical results obtained by Crespin. The recirculating
phenomena observed in the preceding case did not appear so
clearly here, This must be related to the blade shank which
is very closed to the rotor axis,

3.4.2 Forward flight application

Since the wake 1z built in our method through a real
paysical process of evolution, no major modification is
needed to calculate forward flight cases., Here, we restrict
ourselves to the case of a rotor plunged in a uniform stream
wnose direction does not coincide with the rotor axis. This
i3 not a common property with current other methods which
need the "a priori" introduction of an empirical wake which
is iteratively set to an equilibrium positioen.



18

The only problem encountered will be caused by the
cyelic pitch variation which affecet each blade independantly,
Tae result of this will be that the rotor is no more a single
3o0lid. 3o the matrix representing it is no longer constant.
The linear system to be solved when calculating the blades
loading introduced a different computation at each time step
and this requires a very large computing time. The matrix
cannot be preconditioned at the beginning of the calculations,
for example in a triangular form. In order to preserve the
algerithm efficiency, we introduce a non-centered scheme for
the time integration. The loading of a blade depend on the
others blade loading only at the previous time steps. So, for
30lid blades which correspond to the same matrix ﬁ#:, the
problem reduce fo the appropriate use of several transforms,
Introducing the fellowing notation for the time dependence of
a given function f :

F(to +n£'_\..i'.): F[m

we get :
tnen M.’IM) () my {n)

. m
[ A2k ) ] - Ne ={—;jm SR, x§ ] (32)

. A (N A} ol
—i—Zﬁ‘l‘”“ [[B: (Mu"(xg_;? xs ) J% nﬂ.NL
3

where M'%X  is a matrix representing the transform of the
blade k in the blade i, Each hlade remains rotating hut has
no common axis with the others, the /A" matrices are all the
same and represent the same obstacle geometry thanks to an
isometric tranform. This is not true for the Bio-Savart Law
which must be applled to wakes with entirely differing shape.
However, it appears that a good solution is to use for ezch
wake the moving frame corresponding to its emitting blade.

Finally let us notice that the process can be extended
Lo all elements of the mesh of a blade. This allows to treat
¢ases such zs moving boundaries, and flexible hlades. Due to
the proximity of the surface elements, scme fixed point
iterations c¢ould be negessary to obtain a2 good solution,

On figure 13 we present results ohtained wita a
single-bladed rotor in forward flight. This is an exploratory
results, We indicate the blade position on the rotor disc in
the small circle above the Cy curve. An inflexicn point, not
existing for the first period, can be remarked. It must
correspond toc the passage of the blade above its own wake.
The emissicn line deformation on the two sides of the wake
compare very well with the two vortex cores observed by Werlé



in nydrodynamic visualization, Since the non-centered time
integraticon scheme allows to reduce a multi-bladed rotor to
several single-bladed rotors, we can expect very good results
for the present method for such cases.

CONCLUSION

de have just presented here a numerical methed applied
to prediction of multi-bladed rotor performances in hover.
Moreover, in its actual form, the code allows to compute a
one-bladed roter in forward flight case. Two main features
are to be noted :

- the Lagrangian variables allow to have no grid in
the wake

- the fundamental steps, described in paragraph 2 are
performed independently.

This gives a great versatility to our method.
Therefore, we can hope an easy extension to real flight
configurations, including multi-bladed rotors in forward
flight, flexible blades and cyeliic pitch variations. The wake
discretization by means of veortex carrying particlas, unlike
dotiblet panels, allows an easier account for the shearing
effect observed when the wake encounters other solid
boundaries such as the helicopter body, ground.... The
periodicity condition and the results obtained with the
decreasing axial wind will allow the adaptation of our code
to many other rotary wing problems such as propellers, with
any number of blades.

A next important step would be to include thickness
effects. To this purpose, we plan to use the Dirichlet
interior formulaticn presently developed at ONERA by Rehbach.
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Fig. 1 — Schematic of hovering
rotor wake structure.
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Fig. 2 — Rotor geometry.
a} Characteristic dimensions
b} Inertial and blade attached frames.
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Tip vortex
Cross section

Starting vortex —s

Rotor cross section

Fig. 6 — Rotor starting in hovering flight.
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Fig. 7 — Starting vortex at different time-step.
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a) Vortex particies structure
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