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Paper 6 

A NEW APPROACH USING VORTEX POINT METHOD FOR PREDICTION 

OF ROTOR PERFORMANCE L~ HOVER AND FORWARD FLIGHT 

by 8. Cantaloube and S. Huberson 

Abstract 

We present a numerical unsteady method used for 
computing 3-D incompressible flows around helicopter-rotors. 
It is an extension of Rehbach's particles method to flow 
around surfaces with arbitrary motions. These surfaces are 
modelized by a surface doublet distribution and the vortex 
sheet by a set of vortex carrying particles. Some examples of 
applications to rotors are presented with a look at both 
kinematic and dynamic aspects of the flow. 

1. Introduction 

Numerical prediction of rotor performance seems to be 
one of the hardest attainable challenge for the aerodynamic 
engineer. Isolating the rotor from other solid boundaries 
constituting the helicopter or the ground, still leads to a 
configuration involving a lot of very complex problems. Each 
one of this problem appears to be at the frontier of actual 
numerical possibilities. If we have a look for example at the 
flow around a rotor in forward flight at a speed of about 
40 m/s, different regions containing different difficulties 
can be reviewed. 

From an aerodynamic ooint of view, the flow behaviour 
can be described as indicated on figure 1. 

In a central region near the rotor axis, the flow is 
fully three-dimensional with frequently very important 
dissipative effects. Moreover, the wake of the blades 
interact strongly with the rotor axis, the real shape of 
which is far from simple. 

In a second region, the flow can be more easily 
modelized and, due to the large aspect ratio of the blade, 
linear theory works quite well. Good results may also be 
expected from theories such as unsteady lifting lines, as 
developed by James, Van Holten, or Guiraud-Slama •.. 
Nevetheless, these theories have to be extended in order to 
account for the ,;ake and blade interaction. An additional 
difficulty arise from the boundary conditions, especially 
between the different region. 

Near the blade tip, we can find a thi~d region (III) 
where the flow, on the advancing blade, can be transonic. In 
this subdomain, the fluid compressibility is dete~minent and 
we have to modelize its effect when computing the unsteady 
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flow in this ~egion. A first approximation may be obtained 
from two dimensional calculations as those by Lerat-Sides for 
example, or small perturbation transonic three-dimensional 
methods as developed by Chattot-Philippe. The account for the 
wake of the different blades remains very important. 

Containing the blade tip, a last zone (IV) is found, 
where vortex phenomena must dominate, with the formation of a 
rolling up vortex sheet. There can be found supersonic 
conditions, with vortex/shock interaction. 

Moreover, for such a rotor in forward flight, the 
cyclic pitch variation has to be added. This introduces one 
more difficulty due to variation of the grid path. 

In this paragraphs, we do not account for the 
compressibility effect in transonic region. Recents studies 
particularly by Murman-Stremel show that it is possible to 
include within the classical incompressible vortex method a 
coupling with a transonic potential calculation. Most part of 
the existing methods are devoted to rotors in hover. Some of 
them have been developed within the background of propeller 
theories as the actuator disc of Rankine ~~d Froude. In this 
early model, no account has been taken for the blade number, 
shapes are incidence. The first advanced theories are those 
developed by Betz, Goldstein. In these works, the authors 
study a class of propeller whose wake is an helicoid with 
constant path. The load of each blade is obtained through 
analytical calculations. 

The development of modern computers enables engineers 
to considerably improve these fi~st methods. The more 
significant improvement was to account for the spanwise 
loading of the blade as an unknown of the problem. The wakes 
still remain described with a simplified geometrical shape in 
order to limit. the number of freedom degrees. The Neuman 
problem on solid boundaries is then reduced to a linea~ 
system which is numerically solved. A lot of codes using 
those basic ideas are available and some recent versions are 
very sophisticated- Miller, Costes •.. 

The last generation of computer codes can be 
illustrated by the work of Suma. In this method, the wake is 
entirely discretized in quadrangular panels and its position 
is computed so as to satisfy the classical kinematic 
condition, the circulation value of such element constituting 
the wake is evaluated through Kelvin theorem. The blade 
loading is obtained as a Neuman problem on the surface of the 
blades, or a Dirichlet formulation if thickness effect are 
retained. The ~esulting set of algebraic equations is solved 
by means of an iterative procedure. Some empirical parameters 
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are still introduced in the model, particularly for 
determining a correct position for the vortex line issuing 
frcm the blade tips. Moreover, the extension of the method to 
forward flight cases is not clear. A larger number of 
approximative treatments will probably have to be introduced 
if some attempt is made for such cases. 

?. Theoretical background 

In this chapter, the theoretical basis of Rehbach's 
vortex point method is recalled. Extension of this method to 
obstacles in arbitrary motion is then presented. In a last 
paragraph, we present an application to inviscid incom­
presible flow around an helicopter rotor. 

2.1. Generalities and kinematic asoects 

The problem we deal with can be split in two parts 
- the first one will concern solid boundaries 

modelization. These one are discretized with quadrangular 
elements and a piecewise constant doublet distribution. 

- the second part will concern the non zero vorticity 
region ( ). The free vorticity distribution is discretized 
by vortex carrying particles. 

These particles are shedded from the boundaries along 
given lines and their strengths and locations are determined 
through an emission model. 

..;> 

The induced velocity VM at a given point M is 
calculated by using a Green identity. In this calculation, 
the whole vorticity distribution is taken into account : the 
free vorticity, and the attached vorticity via its equivalent 
doublet distribution 

All the vectors in this equation are giYen in a 
Galilean reference frame, and : 

.... 
V"" is the upstream velocity 
~ 

( 1 ) 

x P is the integration point 
N" P is the normal vector to the surface ( S) at X P • 

The doublet intensity ~ is calculated by solving a 
Fredholm equation and taking into account the slip condition 
on solid boundaries : 
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where the surface integral is a Cauchy mean value integral. 
The time evolution of the free vorticity distribution is 
governed by Helmholtz equation 

-D:....;:.i'L::..;M"- = 
Dt 

- -"> (n_·v)V 
H M 

( 2) 

( 3) 

where 0 denotes the convective derivative with respect to o:r-
time t. ~e obtain this equation by taking the curl of Euler 
equation. It represents a dynamic balance for any fluid 
particle. 

It must be noted that the use of Helmholtz equation 
instead of Euler equation reduce our problem to a purely 
kinematic one. 

Kelvin's theorem, governing the evolution of vortex 
filaments is automatically verified thanks to equation (3). 
Therefore, vorticity can be produced only from the boundaries 
which presently are supplied from experimental data. 

In the particular case of an helicopter rotor blade, 
this reduces the vortex production model to the classical 
lifting surfaces model. 

Let us consider the wake near the emission line. This 
line, in our case, reduces to the trailing edge. We can 
modelize this part of the vortex sheet by means of a doublet 
distribution~· The well-known Kutta Jukovski condition -no 
pressure jump accross this surface- can be ·~itten 

I 

..12.1:::. = 0 . ( 4) 
Di:. 

This equation is integrated on the surface, using the 
initial value of~ given by equation (2). The numerical 
discretization of (4) is achieved by transforming the doublet 
surface distribution in vortex carrying particles accordig to 
Rehbach's model. 

At this stage, we can point out the importance of the 
emission pattern. This problem will be developed further for 
rotary wings in hovering flight. 

For inviscid incompressible flows, the vortex carrying 
particles can be divided in two classes. The ones which never 
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have contact with solid boundaries and the others. 

- The first class of particles only has a passive 
role. They receive information from body surface and from the 
second class of particles through relation (2) 

- The second class of part~cles brings information 
when leaving the body surface. This information is contained 
in the vorticity carried by these particles and gives some 
memory to the fluid. 

A fixed wing in forward flight is moving away from the 
emitted wake. Therefore, the wake disturbs for a relatively 
short time the velocity field on the wing. A rotary wing wake 
remains during a longer time close to the wing surface. 
Moreover, the presence of the wake is the main cause for the 
axial stream which characterizes such a flow. A straight 
forward consequence will be necessity of very accurate 
emission model. 

The four fundamental sets for performing such a 
calculation processed independently allow 

1) to work out, at each time step, the doublet 
distribution tu. by solving ( 2) 

2) to create new vortex particles by means of (2) and 
( 4) 
3) to remove the particles constituting the wake to 
their new position (1) 
4) to modify the carried vorticity for each particle 
according to (3) 

2.2. Dynamical asoect 

The progression of such an unsteady calculation, 
through the present method is generally split in two stages. 

The first one, above described, deals only with the 
kinematic aspect. It gives the velocity and vorticity field. 
The transient period, from rest to a steady or periodic state 
is in most practical cases of little interest. Therefore, it 
can be shortened through different calculation techniques. 

The second one involves the dynamical aspect of the 
problem, particularly the pressure estimation within the flo•,; 
and the applied forces on the body surfaces. It does not 
interfere anyway with the progression· of the first stage. 
Thus, it can be performed at the end of the transient period. 

The pressure coefficient jump [ C ~] , ace ross a lifting 
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sur:' ace S is given by : 

[cP J = -6-( ~['f]+ iJ.v[i]) Csl 

on s_ ar:d [ 'f J is the velocity potential jump. Moreo•rer, 
[ 'f] is given by the local doublet distribution (--'- . This 

yields : 

-wher-e u is defined by 

-and u~, 

explicit 
-

........... .,. u + u-
u "' 2 

U- are the velocity on each side of ( S) . The 
for-mulation of u, thanks to (1), is given by 

The time derivative of~ in the right hand member of (6) 
gives a convergence estimate when it goes to zero. It must be 
pointed out that this is not true for leading edge 
separation. In that case, this term does not vanish and 
modelize some viscous behaviour of the fluid. 

We give here the general outline of a fully unsteady 
method. The main properties are 

- the realistic character of the convergence 
development, these calculations representing the transient 
period, 

the method is a step by step algorithm using only 
the four equations (1), (2), (3), (4) without any iterative 
process, 

- the method does not need any experimental data input 
except the knowledge of the emission lines location. 

Moreover, the discretization of the vorticity distri­
bution by means of vortex carrying particles is of great 
advantage for the computation·of very complicated flows. As 
~n example, one c~n compare the flow pattern on figure 5-6-7 
to the experiment done by Werle, in the hydrodynamic tur~el 
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at ONERA. An other important point is that we are free of any 
eulerian grid, restricting the calculation to the domain 
where vorticity is not zero. This will considerably reduce 
the computational cost. 

A last interesting feature is that, due to the use of 
Helmholtz's equation, we do not have to write any equilibrium 
condition on the vertex sheet surfaces. This is a great 
advantage since the pattern of vortex sheet is very 
complicated for most real flows. We only have to move a 
finite number of particles and to adjust the moduli and 
directions of the attached vorticities. 

3. Aoplication to helicooter rotors 

Calculations are performed using the relative frame 
moving with one of the rotor blades. It is then easy to 
follow the rotor motion. The three axis of the calculation 
(x,y,z) are shown in fig. 2. 

-Let Vr be the velocity at point M in the relatiYe 
~rame. Then, we have the following relation 

-. where Va ~s the absolute velocity in reference Galilean 
frame. It can be calculated using equation (2) . 

.... 
Ve is the driving velocity of the calculation frame 

.....,. -:;.. ...... ~ ~ 

Ve: V0 +WA(XM- XQ) 

-where ~ is the blade instantaneous rotational velocity, -~ the·rotor instantaneous center of rotation 
and V0 the forward flight velocity. 

(8) 

(9) 

In the blade attached frame the relatiYe velocity of 
any particle is tangent to the body surface. Reporting 
equation (8) into equation (2) we can express this condition 
and we obtain a modified ?redholm's integral equation 

The doublet strength is a zero order tensor. So, it 
remains invariant in any arbitrary frame and the emission 
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condition is unchanged. The time avolution of cne vorcJ.ci.-cy 
field 1t. ;.s still obta.i.ned f~om Helmholtz's equation (3). 
This equation can be r-ewrit:en in the moving frame 

diL. 
dt. 

-- -- -- --= (.n. ·v)V- Cw" n.l · 
"- <l. "' 

( 11 ) 

rhe sa~e coorainate transform gives for the pressure 
coer'ficient ,jump : 

i 12) 

·•here ~ is the ci:ne 
moving frlme. By adding 
(7), we get an explicit 

aerivativ.:= f.'J!' .::, f:!..xed ccir!t ir. th9: -the terms containing Vr to equation 
expression for Vr 

It ~ust be noticed that these ~odifications do not 
affecc the four steps of the algorithm already described. The 
terms added to account for the movi.ng frame are analytically 
integrated. So the evolur.icn of eacG vcr~ex ca:>:"J·i::g ;ar:.1~.:..e 

is obr.ained accurat~lJ. 

3.1 Rotor Geometrv 

Most of applications presented here are relative to a 
three bladed-rotor. Such a rotor is currently used for wind­
tunnell testing. So, its aerodynamic characteristics are well 
determined. The main geometrical parameters are given in fig. 
2. 

Each blade is represented by a zero-thickness surface 
twisted according to a linear law 8 (y/~), where 0 is the 
twist angle, y the spanwise coordinate and R the rotor-disc 
!'adius. We haye the following expression : 

0 CuI R) = 8 - 8 ( u, I R- 0.7) 
.J O.'i Y ..; 

( i 4) 

. where eo_.,is the collective pitch angle' and evthe linear 
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twist. Note that the twist axis is also fo!' this case the y­
axis of the moving frame. 

The blade chord remains cocstant altho•1,;;h the Oiethod 
allows more general geometrical shapes. The blade surface is 
divided into chordwise and spanwise rows of quadrangular 
surfaces. It results from this discretisation that the four 
equations to be solved readily reduce to sets of algebraic 
~quations. From experimental ~,owledge of the flow, we can 
expect •rery large gradients at the blade tip. So, the grid 
will be stretched in this region in order to give a best 
acco•mt of the physical phenomena. The evolution of the 
chordwise discretisation will be given by a sinusoidal law 
with respect to the y coordinate. 

3.2 Pressure and resulting forces calculation 

3.2.1 Pressure integration 

The chordwise integration of the pressure jump gives 
the spanwise lift distribution~. Thanks to the panelling of 
the blades ~;his law w::.ll oe a piecewise constant. f'uncc:_cn ::-f 
y. The resulting cotai cnrculac.iot:& ac aach ol8.ce cr:Jss 
section is given by : 

( 15) 

where 

II - .... ..,. 'I y"' t is a local velocity V ooe = V o + w " 'j I 
V

0 
is the helicopter forward velocity, 

3.2.2 Direct calculation : 

For lifting surfaces, a body with a sharp trailing 
edge J the circulation r is dir~ctly related to the velocity 
potential jump along the trailing eage : 

['f,J=(-"-,· (16) 

The spanwise distr1.buc1.cn of Dirculat1.on can be g.1. 1len for 
90'Cer.t.ial r'lcws by 'iles.ns of dquac.1.0n ( 16) 

For a three-bladed rotors, we obta..i..n the same resulcs 't~nen 
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'lsing equation ( 15) or ( 17), see fig. 10. 

3.2.3. Dimensions and normalized coefficient 
The circulation is usually adi:nensionalized using the 

olade tip velocity : 

F~om this equation we define the Cz coefficient 

c C':l)=2FCu) <Riel'" 
2 ~ (~/c) 

The thrust coefficient c, which will be classically 
normalized using the rotor solidity G : 

3.3 Adaotation to helicooter flow problems 

3.3.1 Nested Meshes 

( 18) 

For a practical use of the method, the most useful 
results are essentially those obtained in the last period of 
convergence, when a steady, or a periodic state is ~eached. 
Intermediate results which allow a refined analysis of the 
unsteady transition period are of less practical interest for 
design purpose. In that case, it can be of some interest to 
decrease the accuracy of the calculus during the early 
iteration steps. So, we have introduced in our algoritrun a 
sequence of nested grids on the blade, these grids going more 
and more refined. The calculations are performed on each grid 
until a converged solution is obtained, then we construct an 
interpolate for the blade loading. All the geometrical 
parameters representing the blade are set to the new correct 
values, and new emission points are defined. The 
discretization of the wake, which has been already formed, 
remains unchanged. Thus, we obtain a wake model in which all 
the emission lines did not contain the same number of vortex 
point. 

Numerical experimentation confirms that such a process 
did not introduced any instability in the calculations and 
that only a few time steps are necessary to recover the 
steady state with this new mesh. On figure 3 an example of 
the beginnning of a calculus is shown, exhibiting the change 
of bl;~de meshes. The velocity field projected in a plane 
containing the axis of the rotor is given in figure 4. 
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Three different meshes have been used during this 
sequence. The tip vortex formation is very well illustrated 
in this case. 

3.3.2 Periodicity conditions for hovering cases 

This paragraph deals with the problem of a rotor 
impulsively started in a fluid initially at rest. This kind 
of calculation is an essential test case for validation and 
f11rther development of any new method since, as it has been 
pointed out in the introduction, existiP~ codes are mainly 
concerned with this flow. Two main difficulties are described 
here after. First, we try to extensively use the periodicity 
of the flow in order to save computing time. The second 
difficulty encountered was to accurately calculate the early 
stage of the flow with the growing of the starting vortex 
ring. 

It is well-known that the computation of the 
doublicity distribution at the surface of an obstacle lead~to 
solve a set of linear equations which can be written : 

.Au)'-j = Nc.u;. ( 21 ) 

where ~j is the local value of the doublicity di~tribution, 
at Xj. N; is the normal to the boundary at Xi , and U; the 
velocity induced in X, by the whole vortex system. For a 
multi bladed rotor, •.;e can introduce the matrix \M k 
corresponding to the frame change from the frame relative to 
the kth blade to a reference one •.;hich will be noted k = 0 . 
Then, it must pointed out that the velocity field U; depends 
on the doublet distribution which is constant from a blade to 
another. Furthermore, U; dependance on the vortex wake ~ k 
of a blade is linear in the Biot-Savart law. So, it can be 
written : 

( 22) 

where A, and IB 
5 

are matrices. If the flow is periodic, one 
can define some matrices lJ3 k using 1Jv1 k, s 

(23) 

or 

n • <-1 
J ~- = iM S?,;. . 

" " 
(24) 
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Let us now have a look at the Biot-Savart integral law. 

A single vortex point w i located in X j will induce at 
point X. i a velocity given by the equation 

U(XL)= S2'- /'. {XL-X:l") 
J )XL- xsl3 ( 25) 

k k 
Let us change in these formulae Xj for Xj , ~j for GUj' we 
obtain 

ucxi.) = .n K" <x;.-x~> = MK·n." <xHM""kr > 
3 !v· x"["' J rx· -l\"--lv·•3 1 .... \o- J 

1 
1,.-11 I hJj 

from (27), (28) we found that 

and 

n.f·"Qj"[IM""(dx.-xi)] = /M"-1[ .l1j" (u·t"'xc-Xj) J 
so finally 

U(Xi.) = 

All the process can be repeated when calculating the 
deformation term : 

and, if we separate the 1'-'-j and w; contributions 

( 26) 

( 27) 

(28) 

(29) 

( 31 ) 
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The first interest of this form, illustrated on figure 4, 
will be that only one blade and his wake are calculated, ar.d 
the velocity field at a given point is calculated by applying 
to this point successive rotation, and to the obtained value 
of the velocity the inverse rotation. So very few changes 
have to be done to transform a single-bladed rotor code into 
a multibladed rotor one. The use of equation (17) projected 
on the normal N i. gives a linear system for calculating !--'­
which is of the same order to the system encountered for the 
one-bladed rotor cases. 

3.3.3 Transient period calculation 

The flow around a rotor in hover is very similar to 
that enco•mtered around propellers, at least when the stream 
is supposed to be axial. This condition is necessary to have 
a periodic flow. However, a fundamental difference is 
encountered at the starting of the rotation. In the rotor 
case, we start with no axial velocity. This fact lead to the 
creation of a very strong vortex ring which will remain near 
the rotor disc for a long time. A careful computation of this 
transient period is necessary to obtain an accurate solution. 
This is a restraining phenomenon which significatively 
affects the computing time for the smaller value of the axial 
velocity. On figure 5 we present a comparison between a 
starting vortex ring obtained in the hydrodynamic tunnel of 
ONERA by Werle, and our calculations with the same three 
bladed rotor. A good qualitative agreement is obtained. 

On figures 6 and 7, the calculated flow pattern 
observed during this early stage is shown. We indicate the 
vortex ring location, compared to the rotor-disc position. It 
can be pointed out that in a first stage, the vortex ring is 
going downstream, but is then slaved down by the following 
blade and thrown upstream. At this time, an axial stream 
begin to flow near the axis under the rotor-disc. However, 
many rotor turns will be necessary before the starting vortex 
ring to be swept downstream. 

So, reinforcing the algorithm efficiency will 
necessitate the introducion of a few technique whose aim will 
be to help the natural flow to make the influence of this 
vortex ring rapidly decaying. 

A first method consists in supressing the impulsive 
start, using instead an empirical solution similar to that 
which is used by Suma. The essential difference will be that 
·•e use this law, only to have a realistic first approximation 
of the •.;ake. Then the flow is supposed to go on and new 
particles are created. The particles constituting the portion 
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of the wake empirically constructed are moved according to 
~elmholtz equation. In this algori~hm, it can be pointed out 
that even this last part of the wake satisfies, partially, 
the fluid dynamics equations. This is an easy way to 
eliminate the starting vortex ring. Unfortunately, spurious 
instabilities are introduced when matching the empirical wake 
-given by Landgrebe law- and the newly created wake. This is 
coming from the path of the helicoid corresponding to 
Landgrebe Law. This one is constant and the path 
corresponding to the new wake is not constant and somewhat 
different. So, we use a smoothing function in this part of 
the wake. Applying this algorithm with a coarse mesh of only 
eight elements on the blade, we obtain after ten time steps 
the results given in figure 8 for the spanwise loading of the 
blade. These results compare quite well to those calculated 
by Suma. 

The triangular element which can be observed at the 
blade tip was degenerated to avoid a too large number of 
emission points in this region. All the other elements being 
very long, we can supposed that the calculation, except near 
the tip, look like a lifting line calculation and so large 
time steps can be chosen. But in the tip region, the mesh is 
refined, and special process, such as this triangular 
element, have to be introduced if one want to use these large 
time steps. 

Another way to eliminate the starting vortex ring can 
be implemented. It consists in using an axial velocity which 
will be progressively set to zero. The flow near the rotor 
disc is then rapidly regularized. One of the most interesting 
aspects of such a method is that we can observe strong 
unsteady effect during the velocity decreasing period. 

A last method to start the calculation has been 
tested. It consists in reproducing a numerical analogous to 
the starting of a real helicopter rotor. 

We start the rotation with an incidence angle which 
minimize the thrust. The angle of attack is then 
progressively set to the desired value. This way is a very 
reducing one since it is a good numerical representation of 
the real physical phenomenon. On figure 9 we indicate the 
convergence history for each one of these two last methods. 

3.4 Numerical results 

3.4.1 Rotor in Hover, Velocity field and spanwise 
loading. 
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The results presented here have been obtained using 
the technique of decaying axial wind. On figure 10a we gi'Te 
the wake pattern projected in the x,y plane. Each represented 
point corresponds to a vortex carrying particle. The velocity 
value at each "vortex point" is also represented here. Figure 
10b is the same wake projected in a plane normal to the rotor 
disc. This plane is periodically encountered by each blade. 
So, the •rortex ring initiated at the blade tips is cleaJ:"ly 
illustrated theJ:"e. These results aJ:"e obtained after only 
three !"evolutions of the rotor. At this stage, theJ:"e still 
remains a small axial wind which ratio to the blade tip 
velocity is~ =0.07. 

One can identify very clearly on this figure some of 
the different regions described on figure 1. The blade shank 
vortex ring is carried array slowly compared with the blade 
tip vortex. It J:"esults in a reciJ:"culating zone near the blade 
shank. More details about its incidence on the spanwise 
loading will be given late!". The slipstJ:"eam contraction 
appears very clearly on this figuJ:"e as well as J:"egions II and 
III of figure 1 . 

The calculated spanwise loading is given in figuJ:"e 11. 
A satisfying agreement with Suma results can be obseJ:"ved. 
However, the J:"ecirculating zone near the blade shank 
increases the local circulation. 

On figure 12, we give the results obtained for a t•o­
bladed rotors of which geometrical characteristics are : 

blade aspect ratio : 13.7 
Linear twist -11° 

Collective pitch =-9.8° 

A good agreement is also observed for this case with 
numerical results obtained by Crespin. The recirculating 
phenomena observed in the preceding case did not appear so 
clearly here. This must be related to the blade shank which 
is very closed to the rotor axis. 

3.4.2 Forward flight application 

Since the wake is built in our method through a real 
physical process of evolution, no major modification is 
needed to calculate forward flight cases. Here, we J:"estrict 
ouJ:"selves to the case of a rotoJ:" plunged in a unifoJ:"m stream 
whose direction does not coincide with the rotot" axis. This 
is not a common pl:"operty with current other methods which 
need the "a priori" intt"oduction of an empirical '<lake which 
is iterati·;ely set to an equilibrium position. 
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The only problem encountered will be caused by the 
cyclic pitch variation which affect each blade independently. 
The result of this will be that the rotor is no more a single 
solid. So the matrix representing it is no longer constant. 
The linear system to be solved when calculating the blades 
loading introduced a different computation at each time step 
and this requires a very large computing time. The matrix 
cannot be preconditioned at the beginning of the calculations, 
for example in a triangular form. In order to preserve the 
algorithm efficiency, we introduce a non-centered scheme for 
the time integration. The loading of a blade depend on the 
others blade loading only at the previous time steps. So, for 
solid blades which correspond to the same matrix ~~ , the 
problem reduce to the appropriate use of several transforms. 
Introducing the following notation for the time dependence of 
a given function f : 

(32) 

\ . {o) . tnl (nl .{nl · ("1J 
+ L\Mc,K·< [IB: (JM"~(Xi.)1 X~ )J'l-S lJ.N·c 

K 

where 1M ',k is a matrix representing the transform of the 
blade k in the blade i. Each blade remains rotating but has 
no common axis with the others, the ~: matrices are all the 
same and represent the same obstacle geometry thanks to an 
isometric tranform. This is not true for the Bio-Savart Law 
which must be applied to wakes with entirely differing shape. 
However, it appears that a good solution is to use for each 
wake the moving frame corresponding to its emitting blade. 

Finally let us notice that the process can be extended 
to all elements of the mesh of a blade. This allows to treat 
cases such as moving boundaries, and flexible blades. Due to 
the proximity of the surface elements, some fixed point 
iterations could be necessary tc obtain a good solution. 

On figure 13 we present results obtained with a 
single-bladed rotor in forward flight. This is an exploratory 
results. We indicate the blade position on the rotor disc in 
the small circle above the Cz curve. An inflexion point, not 
existing for the first period, can be remarked. It must 
correspond to the passage of the blade above its own wake. 
The emission line deformation on the two sides of the wake 
compare very well with the two vortex cores observed by \ver:!.e 
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in hydrodynamic 'lisualization. Since the non-centered time 
integration scheme allows to reduce a multi-bladed rotor to 
several single-bladed rotors, we can expect very good results 
for the present method for such cases. 

CONCLUSION 

We have just presented here a numerical method applied 
to prediction of multi-bladed rotor performances in hover. 
Moreover, in its actual form, the code allows to compute a 
one-bladed rotor in forward flight case. Two main features 
are to be noted : 

- the Lagrangian variables allow to have no grid in 
the ••ake 

- the fundamental steps, described in paragraph 2 are 
performed independently. 

This gives a great versatility to our method. 
Therefore, we can hope an easy extension to real flight 
configurations, including multi-bladed rotors in forward 
flight, flexible blades and cyclic pitch variations. The wake 
discretization by means of vortex carrying particles, unlike 
doublet panels, allows an easier account for the shearing 
effect observed when the wake encounters other solid 
boundaries such as the helicopter body, grounct .•.. The 
periodicity condition and the results obtained with the 
decreasing axial wind will allow the adaptation of our code 
to many other rotary wing problems such as propellers, with 
any number of blades. 

A next important step would be to include thickness 
effects. To this purpose, we plan to use the Dirichlet 
interior formulation presently developed at ONERA by Rehbach. 
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Fig. 2 - Rotor geometry. 
a) Characteristic dimensions 

Fig. 1 - Schematic of hovering 
rotor wake structure. 

b) Inertial and blade attached frames. 
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Fig. 3- Division of the emission lines In a calculation 
with nested pane/lings. 
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Fig. 4- Nested panelling technique. 
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Water tunel result [5] 

Emission lines {first time steps) Vortex particles and velocity field 

Fig. 5- Three·bladed rotor in hovering flight. 
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Fig. 6 - Rotor starting in hovering flight. 
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F;g. 7- Starting vortex at different time-step. 
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Fig. 8 - Sectional-loading for a one-bladed rotor in hovering flight. 
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a) Vortex particles structure 
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Fig. 10- Initial axial starting wind technique. 
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