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ABSTRACT In this article, we revisit the sta­
bility criteria for the well-known helicopter 
ground resonance problem. The exact Routh's 
criterion is derived in symbolic form for a sim­
ple three- DO F model. It is demonstrated how 
Routh's criterion can be reduced to Deutsch's 
stability criterion with a number of approxi­
mations. The latter is also evaluated numeri­
cally against Routh's criterion for several con­
figurations. By calculating a correction fac­
tor to be applied to Deutsch's criterion in or­
der to satisfy Routh's criterion, it is demon­
strated that Deutsch's criterion is conservative 
for some helicopter configurations while defi­
cient for others. Finally, Routh's criterion is 
applied to a four-DOF ground resonance model 
where the helicopter has two translational de­
grees of freedom. Again, results are compared 
against Deutsch's criterion for one of the two 
instability regions and for a range of body fre­
quenCies. 

1. INTRODUCTION 

The phenomenon of helicopter ground reso­
nance has been studied extensively by many 
researchers over the last five decades. The 
original work by Coleman and Feingold, sum­
marized in [1], attributed ground resonance to 
mechanical coupling between horizontal hub 
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displacements and lead-lag blade oscillations; 
it laid the basis for analyzing this instability 
for articulated rotors. Subsequently, the re· 
search on the topic shifted from articulated ro­
tor configurations to hingeless rotors [2, 3] and 
later to bearingless rotor systems [4]. Much of 
this work has focused on the effects of rotor 
configuration, aerodynamics modelling [5] and 
various rotor /blade design parameters on the 
instability. A number of investigations con­
ducted in the last two decades provided ex­
perimental data to support theoretical anal­
ysis of the ground resonance phenomenon [6, 
7]. More recently, researchers have incorpo­
rated nonlinear dampers (in landing gear and 
rotor) in the ground resonance model [8, 9]. 
In [10], the full nonlinear motion equations are 
simulated in time to determine the response of 
the hub and the blades in ground resonance. 
Comprehensive reviews of the literature on the 
subject can be found in several articles dealing 
with helicopter aeromechanical stability [11, 
12, 13] as well as a recent review in [14] specif­
ically on ground resonance. 

The advent of computers, numerical analy­
sis and symbolic manipulation software have 
enabled helicopter designers to use more pow­
erful techniques to analyze helicopter be­
haviour in ground resonance. As evidenced 
by the articles cited, much effort has been 
made towards improving the aerodynamic and 
blade modelling and to study how they af­
fect the predictions of the ground resonance 
models. By contrast, one central aspect of 



this problem-explicit stability criteria-has 
received relatively little attention in the re­
cent investigations of the ground resonance 
phenomenon. A well-known stability criterion 
proposed by Deutsch over 50 years ago [15] 
has remained essentially unchanged since its 
invention. Because of its simplicity, it is still 
widely used to check for ground resonance in­
stability of helicopters. 

In the present paper, the authors investi­
gate the application of Routh's criterion for 
studying the stability of linear dynamics sys­
tems to the ground resonance problem. Our 
motivation is to develop a more general and 
possibly a more accurate criterion for the 
ground resonance instability. In the process, 
we bring to light the approximate nature of 
Deutsch's criterion. A numerical validation of 
Deutsch's criterion against Routh's criterion 
is conducted which reveals that the former 
is conservative for some helicopter configura­
tions, while not sufficient for others. Finally, 
the applicability of Deutsch's criterion to the 
case of multiple regions of instability is inves­
tigated. 

Towards these objectives, the paper is orga­
nized as follows. We begin with a concise sum­
mary of Deutsch's criterion and its variations 
and extensions in the literature. Subsequently, 
Routh's criterion is defined and employed to 
determine a stability criterion for a three-DOF 
helicopter /rotor model where the helicopter 
has a single translational degree of freedom 
(DoF). Section 4 establishes the relationship 
between the two criteria, both from the ana­
lytical perspective and by numerically testing 
Deutsch's criterion against Routh's criterion. 
Both criteria are then applied and compared 
for a four-DOF model of the helicopter which 
exhibits two regions of ground resonance in­
stability. 

2. DEUTSCH'S STABILITY CRITERION AND 

VARIATIONS 

2.1 Deutsch [1946] 

In 1946, Deutsch [15] proposed a simple sta­
bility criterion for the ground resonance prob­
lem. His derivation was based on a helicopter 
model which included the effective mass and 
the natural frequency of the hub, the basic 
inertia and geometric properties of the ro­
tor blades, as well as body and blade damp­
ing. Deutsch considered two cases: (I) where 
the hub frequencies are the same in all di­
rections and (II) where the hub has one de­
gree of freedom in the plane of rotation. For 
a given configuration and mechanical proper­
ties, Deutsch's criterion determines the min­
imum amount of body damping and blade 
damping required to overcome the ground res­
onance instability. Using Deutsch's original 
notation, the criteria for case I and II configu­
rations are stated, respectively, in the follow­
ing forms: 

ApAf > 
A3 
--
p-1 

(1) 

>-r>-¢ > 
1 A3 
---
2p -1 

(2) 

where 

>.P 
c ). - c, (3) 

(M + Nm)w ' ¢-I , 
(W 

1 Nm m/2 
(4) A3 = 

2(M+Nm) Ic 

and p = § is the rotor speed at the center of 
instability nondimensionalized by the hub fre­
quency w (using conventional notation.) The 
other symbols used in the above are: C and 
Cc denote the hub and blade damping respec­
tively, N is the number of rotor blades, M is 
the effective mass of the hub, m and lc are 
the blade mass and moment of inertia about 
the drag (lead-lag) hinge and lis the distance 
from the drag hinge to the center of mass of 
the blade. Substituting the above definitions 
and introducing Sc = ml as the blade first mo­
ment of inertia about the drag hinge, gives the 
commonly cited dimensional form of Deutsch's 
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criterion. It is written for case II configuration 
as: 

NS2 w3 cc, > __ ( __ 
4 ll- w 

(5) 

2.2 Done [1969] 

Over 20 years later, Done [16] studied the 
ground resonance problem by using a simpli­
fied model similar to Deutsch's second config­
uration where the hub is constrained to have 
one translational (x-) degree of freedom. In 
particular, Done's model consists of a chas­
sis of mass J1J concentrated at the hub, and 
blades, each of mass m concentrated at a dis­
tance b from the drag hinge. After trans­
forming the tluee-DOF model to the two-DOF 
model for bi-normal coordinates, Done derives 
a stability criterion in the form (using notation 
adopted in this paper): 

- - >.w3 
CxC( > 2(!1-xwx) (6) 

where >. is the ratio of total blade mass to twice 
the overall mass: 

>. = 1 Nm 
2(i'd+Nm)' 

(7) 

Cx and C( are the damping coefficients defined 
as follows: 

(8) 

By substituting the above definitions and the 
first moment of inertia. of the blade about the 
drag hinge, s,, for the product mb, Done's 
criterion can be rewritten in the form identical 
to Deutsch's criterion of Eq. (5) for the one­
DOF hub motion, with the correspondence w = 

Wx, C = Cx· 

2.3 Johnson [1980] 

In his book, Johnson [17] considers the sta­
bility criterion for a chassis model with two 
hub degrees of freedom-the longitudinal and 
lateral displacements of the hub, x andy. This 

model results in the 8th-order characteristic 
equation of the system which cannot be solved 
analytically for the exact stability boundary. 
Johnson obtains an approximate stability cri­
terion by making the following assumptions in 
his derivation: 

1. Terms of order higher than 0 ( ( ~ )2
) are 

neglected. 

2. Terms of order higher than two in the 
damping coefficients are neglected. 

3. The stability criteria are derived for the 
centers of the two corresponding instabil­
ity regions. These in turn are defined 
by the frequency coalescence conditions 
which in dimensionless form are: 

1-D,=w;, !=x,y (9) 

With the above assumptions and considering 
the nonisotropic case, that is Wx # wy, John­
son derives two stability criteria for the insta­
bility with each of the two body degrees of 
freedom, that is for the point of coalescence of 
the regressing lead-lag frequency with either 
one of the two chassis frequencies. These are 
written in the dimensional form as [17, p. 683]: 

C;C( N 1- v, 52 --2- > -4 -_-- (' '= x,y 
GJi V( 

(10) 

and can be reduced to Deutsch's criterion for 
case II configuration with the substitution of 
the frequency coalescence conditions (9). Fur­
thermore, by considering the isotropic case 
(wx = wy), Johnson rederives Deutsch's sta­
bility criterion for case I configuration which 
states that this case requires twice the damp­
ing of the anisotropic case. 

From Johnson's development for the two­
DOF model of the chassis one may conclude 
that Deutsch's criterion (5) can be used to sur­
press the instability with any body mode, and 
is valid independently of the number of body 
modes (or degrees offreedom) included in the 
model. This would imply that the coupling be­
tween different degrees of freedom of the craft 
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is either negligible or does not affect the char­
acteristics of the individual instabilities. 

3. APPUCATION OF ROUTH'S CRITERION TO 

GROUND RESONANCE INSTABILITY 

3.1 Routh's Criterion Briefly 

Routh's criterion provides a means for 
determining the stability of a linear time­
invariant system without explicitly calculating 
the eigen-values (poles) of the system. For a 
system represented by the characteristic equa­
tion of the form Q( s ), 

(11) 

the criterion can be summarized in the follow­
ing two statements: 

1. A necessary condition for stable roots is 
that all the coefficients in the character­
istic polynominal be positive. 

2. The number of roots of the character­
isitc equation with positive real parts is 
equal to the number of changes of sign of 
the coefficients in the first column of the 
Routhian array [18]. 

The aforementioned Routhian array is a trian­
gular array defined as: 

s" bn bn-2 bn-4 bn-6 
sn-1 bn-1 bn-3 bn-5 bn-i 

8 n-2 
C! Cz C3 

sn-3 d! dz 

where the constants c;, d;, etc. are calculated 
according to the following pattern, until they 

are equal to zero: 

bn-1 bn-2 -bn bn-3 
bn-1 

bn-1 bn--4 -bn bn 5 

bn-1 

C} bn-3 -bn-1 C2 

C! 
Ctbn s-bn tCJ 

C! 

The labor in evaluating the array can be signif­
icantly reduced by making use of the following 
theorem: 

Theorem The coefficients of any row may be 
multiplied or divided by a positive num­
ber without changing the signs of the first 
column [18]. 

As described in the following subsection, a 
symbolic Routhian array (RA) for th<:o ground 
resonance model was obtained with Maple 
symbolic manipulation program. The calcu­
lation of rows 3 through n + l of the array 
was implemented in Maple with the following 
concise code: 

fori from 3 to (n+l) do 
i1:= i-1; 

od; 

for j from 1 to n/2 do 
j1:= j + 1; 
RA[ij] :=(RA[i1 ,1]*RA[i -2,j1] 
- RA[i-2,1]*RA[i1,j1])/RA[i1,1]; 

od; 

The previously stated theorem was used 
wherever possible to simplify the symbolic 
expressions for the entries in rows of the 
Rou thian array. 

3.2 Three-DOF Ground Resonance Model 

We now derive Routh's criterion in symbolic 
form for the simple three-DOF ground reso­
nance model comprising the x-translation of 
the helicopter center of mass and two cyclic 
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lead-lag motions of the rotor. This model, de­
fined in Eqs. (12-14) below, is adopted from 
the ground resonance model described in [19]: 

Tii+Du+Su=O (12) 

where 

[ 

M Nm 0] 
T= m26' I, 0 ; 

0 0 I( 

S= 

[ I~x J(( + ( m :a- I<)0.2 C~ 0. ] 

0 - q 0. I(( + ( m ba - I<) D. 2 

(v)-(vi) the damping ratios: 

We observe that the parameter P( also appears 
in Johnson's derivation of the dimensionless 
form of the stability criterion and typically, 
P( < < 1. By defining Pv = vl-1 in addition to 
the above, the coefficients of the characteristic 
equation (15) take the following form: 

bo = (p~ + 4 d, 2wl) w;n2 

b1 = 2 ( dx Wx (p~ + 4 d( 2wl) 

+ 2 w; d( w( (Pv + 2)) 0. 

(14) 

b2 = p~ + 4 d, 2wz(l + w;) + 2w;(Pv + 2) 

+8 Wx W( dx d((Pv + 2) 

b3 = 4 ( dx wx (2d, 2wz + Pv + 2) 

+d, w,(w; + Pv + 2)) /0. 

b4 = ( 4 d, 2wz + 4 + (2- p<) Pv 

+8 dx Wx d(w( + w;) jD 2 

b- _ 2 ( dx Wx + ( 2 - p<) d( w<) 

and u = [x (, (,f. Following [19], the sym­
bol a denotes the radial offset of the drag hinge 
from the hub. It is noted that the present 
model and accordingly, the corresponding sta­
bility criterion do not require the somewhat 
ambiguous concepts of "hub effective mass" 
used by Deutsch and Johnson (Min the above 
is the total helicopter mass). Furthermore, it 
can be directly extended to include up to six 
degrees of freedom of the helicopter. 

The characteristic equation for the three­
DOF ground resonance model is: 

Q3 = b6s6+bss5+b4s4+b3s3+bzs2+b,s+bo = 0 
(15) 

The coefficients b;, i = 1 ... 6, derived from 
the model (12-14) are simplified by introduc­
ing six positive nondimensional parameters: 

(i) the body frequency Wx = J Kx/ M /0., 

(ii) the nonrotating blade frequency 

w( = JK(/I(/0., 

(iii) the rotating blade frequency 
-2 -2 + ~ 
v( = w( I< , 

(iv) the blade parameter P( = N SZf(2I,M), 

0- f!3 

1- P( 
b6=~ 

It is evident that all b;'s are positive definite 
for P( < 1. 

The first column of the Routhian array con­
tains 7 elements which were derived in Maple 
and are listed below: 

= 
RA[7, 1] = bo 

After expanding in terms of b;'s, it can be 
demonstrated that all entries above are pos­
itive definite with the exception of the sixth 
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element, RA[G, 1]. Hence, Routh's criterion 
(RC) for stability of the three-DOF ground res­
onance model becomes: 

RC := RA[G, 1] > 0 (16) 

With some symbolic manipulation and simpli­
fications, one can express RC as a finite power 
series in d( and dx which, using the order no­
tation, takes the following form: 

3 4 

RC = L O(d~-id~) + L O(d~-id~) 
i=O 

5 5 5 

+ L 0(<-'d~)+ L O(d2-'d~)+ L O(d2 1 -'d~) > o 
i=O i=l i=3 

(17) 

If one retains terms up to fifth order in the 
damping ratios d1 and dx, RC simplifies to: 

RC"' O(dD + O(d~dx) + O(d<c!';,) + O(d~) 
+O(d~) + O(d2dx) + O(d~d;) 
+O(did;) + O(d<d~) > 0 (18) 

The above clearly exposes the approximate na­
ture of Deutsch's criterion, which in terms of 
the non dimensional parameters employed here 
can be stated as: 

O(d(dx)- 0(1) = d(dx- sw,(1- Wx) > 0 

(19) 

3.3 Significance of Blade and Body Damping 

One important conclusion that follows from 
Deutsch's stability criterion is that ground res­
onance cannot be stabilized without the pres­
ence of both rotor and body damping. Al­
though intuitively appealing, this does not im­
mediately follow from Routh's criterion of Eq. 
(17) because of the presence of the "single­
damping" terms (e.g., O(dZJ and O(d~)). This 
conclusion was tested by applying the sym­
bolic Routh criterion to two models: one with 

dx = 0 and the other with d( = 0. In the lat­
ter case, the 6-th entry in the Routhian array 
reduces to: 

RCI = RA[G, 1]1 = 4P~P< 
d(=o d(=o num(RA[5, 1]) 

(20) 
where num(RA[5, 1]) > 0. Accordingly for 
stability, we require 

- - 2 1 0 Pv = V(- > (21) 

which represents the condition that the nondi­
mensional rotating frequency of the rotor be 
larger than unity. This corresponds to the 
well-known fact that the ground resonance in­
stability does not exist for stiff-in plane rotors. 

In the case when dx = 0, stability is gov­
erned by the coefficients of the blade-damping 
terms: O(d~). O(dn and O(d~) in (17). Upon 
their examination, we were able to show that 
for a soft in-plane rotor (D( < 1) and typi­
cal parameter values, these terms are negative 
definite and hence stability is not possible in 
the absence of body damping. 

4. RELATIONSHIP BETWEEN DEUTSCH's 

AND ROUTH'S CRITERIA 

4.1 Analytical Derivation 

The general form of Deutsch's stability cri­
terion can be obtained from Routh's criterion 
( 17) by retaining one of the two candidate sets 
of terms in the series: (i) 0( dZJ and 0( d~dx) 
or (ii) O(d~) and O(d<d~) terms. Interestingly, 
these are not the lowest order terms in ( 17) but 
are the only choice which can yield Deutsch's 
general form in Eq. (19). Starting with the 
simpler case (ii), as it requires no additional 
approximations, the resulting Routh's crite­
rion is: 
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or equivalently, 

(23) 

The above is clearly different from Deutsch's 
criterion, even after the substitution of the fre­
quency coalescence condition. For case (i), if 
we impose the frequency coalescence condition 
and retain terms to first order in the blade pa­
rameter J\ (similarly to Johnson), we obtain: 

(RC), ::e O(d2) + O(dtdx) 

= 16(0x- 1)(0x- 1?d(O(dx0x 

+2(0x- 1)30~J"i( > 0 (24) 

or 
8(1- Ox)O(d(dx- w;fi( > 0 (25) 

which is identical to Deutsch's criterion (19). 
It is worth noting that satisfaction of Eq. 
(25) does not ensure satisfaction of the crite­
rion (23) derived above and the relative sig­
nificance of the two is weighted by d( and 
dx, respectively. Accordingly, the accuracy of 
Deutsch's criterion depends on the particular 
values of the damping ratios, as well as the 
other nondimensional parameters. The nu­
merical evaluation presented in the next sub­
section corroborates this analysis. 

4.2 Numerical Evaluation 

The validity of Deutsch's approximation is 
now evaluated by testing it against the exact 
Routh's criterion (17) for a typical range of 
values for parameters Ox, 0( and P< and one 
of d< or dx. Based on the review of the lit­
erature for different helicopter configurations, 
we found that the normalized body and blade 
frequencies typically lie in the range 0.1 to 
0.8; the blade parameter P( may vary from 
0.001 to 0.05, depending on the inertia prop­
erties of the blades and the craft. Finally, the 
body and blade damping ratios are usually: 
d( E [0.005, 0.05] and dx E [0.01, 0.1]. The 
procedure used to conduct the evaluation can 
be summarized as follows. 

For a given set of parameter values, Wx, ~'(, 
P( and, for example, d(, the damping ratio dx 
is calculated according to Deutsch's criterion, 
in particular: 

with D = 1.01. The resulting value together 
with the other parameters are then tested ac­
cording to Routh's criterion of Eq. (17). This 
procedure is repeated for 100 values of D( in 
the vicinity of the center of instability as de­
fined by Eq. (9) with i = x. Depending on 
whether Deutsch's criterion is found conser­
vative or not sufficient, we adjust the factor 
D on the right-hand side of (26) until stabil­
ity, as per Routh's criterion, is just violated 
or ensured. Following the terminology in [10], 
we refer to the aforementioned factor D as 
Deutsch's number. The results are summa­
rized by plotting D as a function of two param­
eters, typically the other damping ratio ( d( in 
the present case) and one of the body or blade 
frequencies. 

Two representative plots are included in 
Figure 1 for W( = 0.2 and two values of P(· 
These results were generated for 10 values 
of blade damping ratio, d( = 0.005 ... 0.0.5 
and 13 values of the nond.imensional body fre­
quency, Ox = 0.1, 0.15 ... 0.7. The plane 
at D = 1 corresponds to Deutsch's crite­
rion satisfied exactly. These graphs demon­
strate that Deutsch's criterion is conservative 
(D = 0.2) for some parameter values and is 
inadequate (D = 2) for others. Similar results 
for other values of the nonrotating blade fre­
quency W( lead to the following conclusions. 
Deutsch's criterion provides good estimates 
(0.8 < D < 1) for the damping required to 
overcome the instability for low values of the 
nondimensional body frequency (Ox ::e 0.1-0.3) 
and low blade parameter (:P( ::e 0.001). In­
deed, it is conservative for these values and 
when the blade damping is also low. The ac­
curacy of Deutsch's criterion deteriorates as 
the body frequency and the blade parameter 
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values increase. For high values of these pa­
rameters, the criterion predicts damping ratios 
( d( or dx) larger than one and hence, is not 
practical. We also observed that the perfor­
mance of Deutsch's criterion is more sensitive 
to the variations in the body frequency than 
the nonrotating blade frequency. 

Figure 1: D for W( = 0.2 and 
(a) P( = 0.001 (top), 
(b) P( = 0.03 (bottom) 

It is worth noting that in [10], a comparison 
was made between Deutsch's predictions and 

results obtained with the nonlinear simulation 
of the ground resonance instability. Based on 
our findings, we suggest that the discrepancy 
between the two is not necessarily due to the 
nonlinear terms in the simulation, but may 
be as well due to the approximate nature of 
Deutsch's criterion for the linear ground res­
onance model. In his textbook, Bielawa [20[ 
observes that Deutsch's criterion is good when 
the body and blade damping levels are of com­
parable order of magnitude. We were unable 
to confirm tllis conclusion nor to make any 
other generalizations along these lines . 

.5. EXTENSION TO FOUR·DOF GROUND 

RESONANCE MODEL 

The above analysis is extended to a four­
DOF helicopter/rotor model which includes the 
x- and y- translations of the body center of 
mass. The characteristic equation for this 
model is of 8th order and its coefficients b; 
can be expressed in terms of the previously de­
fined non dimensional parameters and two new 
parameters-the body frequency wy and the 
corresponding damping ratio dy. 

As for the three-DOF model, Maple was em­
ployed to determine the symbolic form of the 
Routhian array. However, the additional de­
gree of freedom made further symbolic analy­
sis intractable and hence, we proceed directly 
to the numerical evaluation of Deutsch's cri­
terion. The main goal here is to assess how 
the coupling between the two body motions af­
fects the validity of Deutsch's criterion at the 
two instability regions. Indeed, the fact that 
characteristics of the instability with one body 
mode are affected at least by the frequency of 
the other mode is implicit in Deutsch's orig­
inal criterion. This is evident from the fact 
that the two criteria-one for configuration II 
and the other for the isotropic configuration 
]-are different by a factor of two . 

.5.1 Numerical Results for Four-DOF Model 

To illustrate our findings on this issue, we 
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present a series of numerical results similar to 
those obtained for the three-DOF model. For 
purposes of conciseness as well as for compar­
ison with the previous results, \\'8 concentrate 
here on the instability resulting from the fre­
quency coalescence with the x-mode of the 
craft. Thus, as for the results in the preceed­
ing section, the evaluation is conducted in the 
vicinity of D( = 1- Wz. 

The plots in Figures 2 and 3 are analogues of 
Figures 1( a) and 1(b) and are obtained for the 
same values of W( and f.i(, respectively. Each 
of the two figures contains six plots calculated 
for three values of the y-DOF body frequency 
(wy = 0.2, 0.5, 0.8) combined with one of 
the two values of the y-mode damping: (1) 
dy = 0.001 to represent the minimal damping 
case and (2) dy = 0.1 to represent a practi­
cal maximum damping value. As in Figure 1, 
the value of D is evaluated over the grid of 
parameter values created by d( E [0.005, 0.05] 
and Wx E [0.1, 0.7]. In each plot, we have also 
indicated the location of the isotropic man­
ifold, Wx = wy (dashed lines). Also shown 
is the curve at the particular blade damping 
value (d( = 0.005) and, where appropriate, the 
isotropic case projection (wx = wy, solid line). 
It is noted that the isotropic case for wy = 0.8 
is outside of the Wx values considered. 

5.2 Discussion 

From the plots in Figures 2 and 3, we can 
draw the following conclusions. Qualitatively, 
our results are in agreement with Deutsch's 
predictions, in particular, that more damping 
is required in the isotropic case. As one ap­
proaches the isotropic condition, the value of 
D increases sharply. This trend is particularly 
pronounced for low value of y-mode damping 
(see left columns of Figures 2 and 3). Our 
results indicate, however, that Deutsch's fac­
tor of two predicted to stabilize the isotropic 
configuration is by far insufficient. In fact, for 
all cases considered here, Routh's stability cri­
terion required values of D higher than six. 
(These correspond to the truncated ridges or 

ridges exceeding the scale of the plots). The 
four-DOF model results also indicate that once 
sufficiently a\vay from the "isotropic region," 
the results approach those calculated for the 
three-DOF model. This is clearly visible in Fig­
ures 2(c) and 3(c) where the isotropic condi­
tion lies outside of the range of Wx frequen­
cies considered (compare (c) plots with Figure 
1(a)). 

Interesting conclusions follow from the re­
sults calculated with a high value of damping 
dy (right columns in Figures 2 and 3). For ex­
ample, in the case of Figure 2( d), the isotropic 
condition does not require more damping and 
the results in this plot again look very sim­
ilar to Figure 1( a). This is likely because 
the high damping of the y-mode reduces its 
contribution to the dynamics response of the 
craft and hence, the instability characteristics 
in this case are very similar to those predicted 
with the three-DOF model. The same was not 
observed for the high value of f.i( (see right col­
umn of Figure 3) where it appears that high 
damping of the y-motion may actually worsen 
the instability with the x-mode (compare Fig­
ures 3(b) and 3(e)). This demonstrates that 
the damping of the "other" mode has com­
plex and subtle effects on the ground reso­
nance instability characteristics with a given 
body mode. 

Finally, upon comparison of Figures 2 and 
3, we can observe that the effect of increas­
ing the blade parameter f.i( is to widen the 
isotropic band. Johnson gives a definition of 
an isotropic support as one where the frequen­
cies Wx and wy are of O(p<) apart. He pro­
ceeds to note that this being an extremely 
small difference, "the isotropic case is not im­
portant except when the rotor support struc­
ture is truly axisymmetric" [17, p. 684]. The 
results presented here are in partial concur­
rence with Johnson's statements since the 
isotropic region increases with f.i(. Quantita­
tively, however, our findings indicate a signif­
icant isotropic band which may exist for any 
helicopter configuration. 
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6. CONCLUSIONS 

In this paper we have investigated the sta­
bility criteria for the ground resonance phe­
nomenon. Routh's criterion was applied to 
this problem and its damping requirements 
were compared against those predicted by 
Deutsch. Starting with the simple three-DOF 
model, where the craft has only one transla­
tional degree of freedom, Routh's criterion was 
derived in symbolic form as a function of six 
non dimensional parameters. This analytsis re­
vealed the approximate nature of Deutsch's 
criterion. A numerical investigation showed 
that for some configurations, characterized by 
low body frequency, low blade parameter and 
low blade damping, Deutsch's predictions for 
body damping required for stability were con­
servative. On the other hand, for other con­
figurations, they were insufficient and up to 
twice the amount of damping was required to 
ensure stability of the system. 

For the ground resonance model with two 
body degrees of freedom, the qualitative pre­
dictions of Deutsch's criterion were confirmed. 
In particular, Routh's criterion also requires 
significantly more damping for the isotropic 
helicopter configuration. However, the in­
crease in damping by a factor of two, as sug­
gested by Deutsch, is completely inadequate in 
the isotropic cases. We also observed that the 
damping requirements for the instability with 
one body mode are affected by the frequency 
and damping of the other mode. Our investi­
gation also revealed that the isotropic region, 
where significantly higher damping values are 
necessary, is not small, contrary to earlier find­
ings. 
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Figure 2: D for W( = 0.2 and P< = 0.001 
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