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Abstract

Hingeless and bearingless rotor designg are today well
accepted for modern helicopters. Continued develop-
ment, however, revealed some deficiencies in the area
of aeromechanical stability and vibration.

In general there is a good basic understanding how to
avoid these instabilities. But since it becomes more
and more desirable to focus rotor design on aerody-
namic features and flight performance these aerome-
chanical instabilities gain new importance due to the
difficulties to provide the required damping.

Since all rotor concepts suffer from the lack of suf-
ficient natural lead-lag or inplane damping most de-
signs in use show artificial lead-lag dampers to over-
come aeromechanical instabilities. On the other hand,
active control offers the possibility for an artificial sta-
bilization of aeromechanical instabilities. Meanwhile,
many research activities focus on active control to
augment rotor lead-lag damping and many authors
demonstrate the potential inherent in this appreach.

The paper shortly repeats the problem of aeromechan-
ical instabilities of hingeless rotor-systems. A simple
rotor biade model with flap, lag and pitch DOFs is
used to derive the coupled set of differential equa-
tions. The emphasis of this paper is to demonstrate
the potential of active control and to gain physicat un-
derstanding. The paper demonstrates lead-lag damp-
ing avgmentation of an isolated rotor blade with lead-
lag rate and attitude feedbaclk even in forward flight.
However, some problems are being discussed that may
limit the success of an active control approach.

Notations and Abbreviations

a blade hinge offset

c=2b blade chord

Clow blade lift curve slope

Cao blade profile drag coefficient

Cno blade profile moment coeflicient
Cp thrust coefficient

dg.de,dp  damping constants

D fuselage drag force, damping ratio
f fuselage parasite drag area

F rotor thrust, force

G feedback gain for state variable x;
h offset of rator hub from c.g.

I fap and lag moment of inertia about hinge
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Iy torsional moment of inertia about blade c.g.
I coupling moment of inertia

kg, k¢, kg flap, lag, torston spring constants

ke ky  coefficients of DREES inflow model

mpr, mp blade and fuselage mass

Mg, static blade moment, of inertia

Q state vector weighting matrix

R structural flap-lag coupling parameter

R rotor radius

R weighting matrix of control inputs

u vector of control inputs

Un, Ve velocities normal and tangential to the blade
1 forward speed

5 weight

X state vector

Yo blade c.g. offset from efastic axis

YL blade a.c. offset from elastic axis

ap forward tiit of rotor disk in forward flight
Jéj flap angle

¥ blade Lock number

£ small parameter

¢ lead-lag angle

) blade control pitch angle

# blade torsional angle

o total blade pitch angle @ = 8 + ¢

A inflow ratio A = A; + Af,, eigen value

A induced inflow

Afs free stream inflow

1 advance ratio

o real part of an eigen value

0 blade azimuth angle

1y’ rotor rotational speed

w imaginary part of an eigen value

0, C, 5 collective and cyclic parts of a trim value
non nominal

tr trim value

O =)oy

1 Introduction

Since the introduction of hingeless rotor helicopters
by MBB in the sixties much R&D effort has fo-
cused on these rotor types. As a consequent devel-
opment of hingeless rotors bearingless rotors are en-
tering helicopter service (EC 135, MDX Explorer).
The main advantages of such rotor systems compared
to articulated ones are mechanical simplification, re-
duced drag, weight, parts and maintenance costs,



higher moment capability, determined by the flapping
stiffness and faster moment setup due to cyclic con-
trol inputs and therefore better handling qualities [1].
There are two successfully flown hingeless rotor con-
cepts, The Boetkow-System makes use of elastic cou-
pling effects, the other (WG 13) prevents these cou-
plings (2, 3]. Important parameters in designing hin-
geless/bearingless rotors are blade flapping and lag-
ging frequencies. Both rotor systems can be divided
into two distinct groups depending on the inplane fre-
quency: soft-inplane rotors with we /€ < 1 and stiff-
inplane rojors w; /§ > 1. Low inplane rotor loads can
oniy be achieved by using soft-inplane rotors. As a
consequence of this modern hingeless/bearingless ro-
tors are designed as soft-inplane, but are susceptible
to ground ard air resonance [4, 5, 6, 7]. These phe-
nomenon derives from the lead-lag motion. Because
of the lagging motion the net c.g. of the entire rotor
may shift out of the rotor axis and generates a ro-
tating unbalance at the rotor head. This unbalance
results in self-excited oscillations which may become
unstable at some rotor speeds. The background of
these oscillations is a coupling of the low frequency
regressing lead-lag mode with body pitch or roll. In
contrast to soft-inplane rotors stiff-inplane rotors may
show a flap-lag or flap-lag-torsion instability of the
rotor blade itself [8, 9, 10, 11]. To prevent these insta-
bilities sufficient lead-lag damping has to be provided.
This can be done either by adding dampers or by us-
ing structural damping and damping from aerocelas-
tic couplings or by Active Control Technology (ACT)
[12]. The introduction of Fly-by-Wire technology and
digital control systems of future helicopter generations
offers a broad range of different ACT concepts.

The enormous control power icherent in hinge-
less/bearingiess rotor concepts makes feedback con-
trol an effective means of augmenting system stabil-
ity. With this in mind several authors examined the
possibilities of suppressing ground and air resonance
by ACT using a conventional swash plate. Early work
was done by Youne et al. [13]. Feedback of roll
attitude and roll rate was effective in suppressing a
ground and air resonance instability. A more detailed
study was carvied out by STrRAUB and WARMBRODT
[14]. Two mechanisms were mentioned to stabilize
ground resonance: first, controlling body pitch and
roll through flapping moments, sccondly, augment-
ing lead-lag damping through CoRIOLIS coupling with
blade Happing. Scheduling feedback parameters was
found out to maximize damping angmentation,

In a sceond paper, STRAUB [15] studied linear optimal
comtrol of a four bladed articulated rotor helicopter.
The gaing were obtained from the solving Ricat s
eruation. Choosing appropriate feedback signals from
this full state compensators resulted in sufficient lead-
lag damping of the closed loop system throughout the
considered rotor speed range.

Takanasul and FRIEDMANN [16] studied active con-

trol of air resonance. Feedback of body states only
resulted in poor lead-lag damping and in a destabi-
lization of the progressing lead-lag mode.

On the other hand, today’s helicopters reach more
and more limits of their efficiency. To overcome
these limits modern control technologies like Higher
Harmonic Control (HHC) and Individual Blade Con-
trol (IBC} are being discussed. Initially, the in-
tension of HHC was to reduce vibration levels and
to reach a jet smooth ride with vibration levels of
about 0.02g. Recent studies show that HHC can
also lower rotor noise and required power {17, 18}
A more general extension of HHC is IBC. Each ro-
tor blade is controlled independently of the others.
This requires actuators and sensors for each blade
in the rotating system. Since IBC includes HHC,
IBC seems to be a promising control concept to solve
most of the problems of future helicopters. Impor-
tant work was done by N.D. Ham and R.M. McKiL-
Lip [19, 20, 21, 22, 23, 24]. The applications of IBC
were investigated analytically as well as experimen-
tally with a single bladed wind tunnel model. At
present, the companies FUROCOPTER DEUTSCHLAND
and ZF-LUFTFAHRTTECHNIK are working on an in-
corporation of IBC in helicopters, Flight and wind
tunnel testing at NASA-Ames Research Center was
done with a Bo 105 helicopter (23, 26]. The different
purposes of IBC are:

e gust alleviation,

blade stall suppression,

vibration and noise reduction,

blade bending stress limitations,

flapping stabitization at high advance ratios and

e ¢ & »

¢ lead-lag damping augmentation.

Regarding this, REICHERT and ARNOLD [27] picked
up the idea of controlling ground resonance through a
conventional swash plate and compared these results
with an [BC approach. The four bladed hingeless ro-
tor was modelled similar to [14]. The IBC principle
resulted in poor aeromechanical stability for the in-
stable pitch mode compared to body pitch feedback
results.

The aim of this paper is to discuss the use of IBC to
augment rotor lead-lag damping in hover and forward
flight. Therefore, an isolated rotor blade is considered
and rotor body couplings are neglected. This consider-
ably reduces model complexity and improves physical
inside. Body dynamics will be included in further re-
search activities,

2 Mathematical Model

The 3DOTF flag-lag-torsion model of the hingeless rotor
blade can be seen in fig. 1. The blade is assumed rigid
rotating against linear springs and dampers about a
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common hinge located a distance o out of the rotor
axis. The hinge sequence is lead-lag inboard, flap and
torsion outboard. The flap deflection 3 is positive up,
lead-lag ¢ positive forward (in direction of rotation)
and torsion 8 is positive nose up. The nonrotating
rotor coordinate system (index Ro) is located in the
rotor hub a distance h about the helicopter’s centre
of gravity. The z-axis along the rotor shaft is posi-
tive up and the x-axis opposite to the forward speed
V. All other coordinate systems are located in the
equivalent hinge with their z-axis pointing along the
elastic axis and the z-axis upwards. The blade profile
aerodynamic centre L and centre of gravity have an
offset 35, and yo respectively to the elastic axis E.

The differential equations are being derived by apply-
ing D’ ALEMBERT's principle. To reduce the com-
plexity of the final equations and to retain only the
lmportant terms an ordering scheme is used [16, 28].
The ordering scheme is based on the assumption that

O(1) + 0(e?) = O(1) (1)

which states that terms of order 2 are negligible com-
pared to terms of order unity. The quantity ¢ is a non-
dimensional parameter which quantifies the meaning
of a smali parameter. A guantity is meant to be small,
if it reaches values between 0.1 < ¢ < 0.2. The as-
signed orders of magnitude of the important guantities
used in this study are:

o) siny, cosy, cosd, My, I, Or,
O(E‘%) sind, 9, 9,
Ofe) B, 8, 8,066,806, 6 ¢ b A a, ag,
oeh - gt g
0"+ we, yi, Ise, 9,
o2y ¢ 1.

The systematic application of this ordering scheme in
the derivation procedure yields a consistent set of non-
linear equations of motion. The equations are:

flap equation:

IgB + (ks + (ke — kg)sin®(R-9) + Ip + aMp))B
-+ dﬁﬂ -+ 2I,r}g,3é + ng,r_;;{é cos @ +sin @)
+ [(ke =~ ka)sin(R - 9) cos{R - )¢
+ Mpgeosag + Mg = 0, (2)

lead-lag equation:

[~ke + (ke — kg) sin® (R 9) ~ aMp]¢
deC + 21 B8 + yo MO sin ©

— [k — kg)sin(R - J) cos(R - 98

+ Mpgsinapsing + M, = 0, {(3)

— Il +

{

torsion equation:

- Io((:) 4+ cos@sin®) — ko dodl

+ yoMp{~Bcos® — Fcos© + Csin )
~ Yegleosap cos© + sinapsin © sine)
+ Mo = 0, (4)

where © = 4 4+ ¥ is the total pitch angle of the blade
and K the structural coupling parameter. Two cases
can be considered. H = 0 represents a rotor-hub con-
figuration in which the blade is rigid and all the flex-
ibility is concentrated in the hub. No structural cou-
pling appears between flapping and lagging motion
(WG 13). R = | idealizes a flexible blade with a rigid
hub. Flap and lead-lag DOF are coupled (Bo 105).
No intermedia values arve valid. Thus, this represen-
tation is a simplified form of the well known rotor
blade model given in {8, 9, 28]. The My, M., Mg are
the acrodynamic pitch, flap and iag moments, respec-
tively. They are derived from using a quasi-steady ap-
proximation of GREENBERG’s unsteady theory for low
reduced frequencies in which the lift deficiency func-
tion is taken to be unity. This agrees with [10, 30].
These aercdynamic moments are:

l—a

/ (dl\'f@ -} dﬁtlr(_)o), (5)
0

{a

/ —zpdFy, (6)
0

l—a

f wpdFy {7

¢

PI{[(;) -

My =

AJQ =

where dMe, dFa, dF; are the differential pitching mo-
ment and forces acting at the blade section. GREEN-
BERG’s theory is dervived for a symmetric airfoill. As
a crude adjustment, dMgg is added to equation (5),
which accounts for a moment due to any camber in
the airfoil cross-section. These differential moments
and forces are given by

[ . Cuo -
dfy = 6 —%Psm O 4 0@ ~ =22 'uf} dep, (8)
b ‘
dF, = & nQ—Pc:os € — v, ) — -g;igvnvt} dzp, (9)
. ) : by ! R
dMo = 6l{yo—=) 2P + | =0 —y,0Q)w
] 2) 2 4
B
e Ny 10
160} drp, (10)
'C’rﬂl . } ‘3 .
dMey = 28— i buy {1 4 (_z_,_) } dr (11)
(’au Un
where the following abbreviations are used:
" 1 ;
6 = 3[;.31",', (12)
. , i N
Po= iy -0 —-0,0+ (E) - '.UL) Q, {i3)
Q = vy ~00 (b~ Y )O. {14)
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The dimensionless velocities normal v,, and tangential
v to the blade section are:

v = —(a—{—m‘pé%—:tp)

- pgeosy — psing + O(e?), (13)
vp = ~(A+xph)

—  pBceosyp + pBCsing + O(%), (16)

where A = Ay, + X; = p tanag + A;. No reverse flow
is considered. To adapt the induced inflow A; to the
forward flight condition a linear variation of the inflow
distribution over rotor disk is considered

Ar = Ao (1 + ko cased + kyrsin ), {17)
where A, is the mean induced inflow given by mo-
mentum theory in forward flight

C"[‘
2/ 12 ¥ (Ape + 2io)2

and k, and k, are constants taken from DREES's
mode} [31]

Aig = {18)

k;n = s (19)

ky = (20)
From equation (19} and {20) it follows that both con-
stants are zero in hover p = 0. £, has a maximum
of about 1.1 at 0 = 0.16 and is approximately 1 ag
1= 0.3,

3 Trim and Stability Selution

For stability analysis, it is convenient to write equa-
tions for small perturbation motions about a periodic
equilibrium motion of the nonlinear system. Propul-
sive trim is used to compute the free flight equilibrium
solution. That requirves the calculation of pilot settings
P, 9,95 as well as the vehicle motion and orienta-
tion for a prescribed flight condition. This study is re-
stricted to level flight, For a specified weight W and a
given forward speed p fifteen unknowns are evaluated:
Vo, Ve, Vs, 00,8¢:,0s, By, Be, Bs, Go, (e, Cs, Ains g and
k.. Thus, fifteen equations are needed. These are nine
rotor equilibrium equations. In simplified form they
are:

Lo _ |
— (Hlap, lag, torsion equation) di = 0,
2n fq i
1 2w
— [ (flap, lag, torsion equation) cosh dip = 0,
 Jo
1 27
- / (flap, lag, torsion equation)sint dis == 0.
T Jo

For the inflow equation {18) and (19) have to be re-
garded. Finally, four overall equations for the heli-
copter are needed to trim the vehicle. These four equa-
tions are vertical and longitudinal force equilibrivm as

well as pitch and roll moment eguilibrium. The forces
acting at the fuselage are the drag

1 I

D==
) 2 C(l(.‘

v f it

and the weight
W =mypg

where g is the dimensionless earth gravity. Since the
fuselage c.g. is located a distance A below the rotor
hub centre and since no bank angle is trimmed both
forces generate a pure pitching moment at the rotor
centre:

Me=Wh sinagr ~Dhcosap.

These fuselage forces and moment have to balance
with the rotor forces and moments summed up over all
rotor blades, For trim to be established, it is only nec-
essary to satisfy the constant components of the four
fuselage equilibrium equations. The harmonic compo-
nents are associated with the vibratory loads and are
not part of trimming the vehicle.

Linearizing about the equilibrinm solution and trass-
forming the three rotor blade differential equations
into state space representation yields the well known
equation:

x = Al)x -+ B{)u. (21)

The state vector x includes the six states 8, /3, C,
8, 8, ¢ and the control vector 1 the control & only.
A (b} is the 2r-periodic system matrix and B{sf) is the
2un-periodic control matrix. The periodicity vanishes
in hover 2 = (0. Since both matrices are periodic in for-
ward flight {B{) is needed for latter control studies)
FLoguieT theory has to be applied to examine system
stability [31]. For this the FLOQUET transition matrix
is computed munerically uzing a fourth order RUNGE-
Kurrta procedure. The eigen values of the transition
matrix are the characteristic multipliers. With these
characteristic multipliers the characteristic exponents
A= o+ jw, 7 =+/=1 can be calculated. The sys-
tem is stable, if for all eigen values o < 0 holds. Two
problems arise from this theory:

1) Usually, the imaginary part w of an eigen value can
be worked out except an integer multiple of 1. In hover
the system matrices show constant coefficients and the
eigen values can be computed directly from the sys-
tem matrix A {open or closed loop case). Since the
lmaginary part must change smoothly with increasing
o the right eigen frequency can be figured out from
the hover vahie.

2} Constant coefficient systems show eigen values that
are real or compiex conjugated. For a helicopter in for-
ward fiight this is not necessarily true. For large ad-
vance ratios poor large gains of the closed loop system
a former complex conjugated elgen value pair breaks
up into two different complex eigen values [31). I the
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R | 49m 1] 44.5/s
Ny 4 Can 5.9
I | 0.333 Cao 0.01
Mgy 0.5 Cmo -0.02
mp | 23.4kg ] 5.0
Iy | 0.0002 wg 1.15
a| 015 we | 067
¢ | 0.055 wy 3.2
yo | 00 YL 0.0
dg 0.0 d¢ 0.0
g 0.0 p | L0kg/m®
h 0.3 mpr | 2006.4kg
f 0.8 § 1 9.81m/s?

Table 1: Data of Nominal Configuration

advance ratio is limited to typical values of conven-
tional helicopters and if the feedback gains are limited
to moderate magnitudes in forward flight this problem
does not arise.

The data used in this study correspond to a four
bladed soft-inplane helicopter somewhat similar to the
ECD Bo 105, The data of the nominal configuration
are listed in Table 1.  Non-dimensionless parameters
can be distinguished from dimensionless ones by the

bar ().

Fig. 2 shows the trim solution of all trim values in-
cluding k,. The trim solution is calculated iteratively
from nonlinear equilibrium equations using a NEw-
TON method. No small angle assumptions are intro-
duced. Since all angles are plotted in degrec units, the
left, ordinate is valid for the trim angles, whereas the
right ordinate shows the dimensionless values for the
inflow parameters A, kg, and k,. According to the
power required curve of a helicopter in forward flight,
the collective control angle ¥ starts at a relative high
value in hover of about 11° and drops to its mini-
mum at p = 0.14 before increasing again. For large
advance ratios p the shaft has to tilt more to com-
pensate for the increase in parasite drag. Thus, the
free stream inflow Ay, = ptano also increases with
increasing . Compared to this, the mean induced in-
flow Asg decreases with increasing g For high advance
ratios Ao decreases almost inversely proportional with
i Adding both curves yield the total inflow A which
shows the same characteristic nature as d5. The lon-
gitudinal inflow constant k; shows the characteristics
mentioned above. ky decreases with a slope of 7 —2".
To tit the rotor shaft more with increasing advance
ratio rotor pitching moments are needed. They are
primarily generated by 8¢ which can be thought as a
longitudinal tilt of the rotor tip path plane [31]. Thus,
e slightly increases with forward speed, but the val-
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Eigen E =90 R =1
Mode o2 w a w
) -0.27440 | 3.13233 | -0.27442 | 3.13216
8 -0.20354 | 1.13639 | -0.20254 | 1.13858
¢ -0.00266 | 0.67014 | -0.00366 | 0.66617

Table 2: Eigen Values in Hover

ues remain small. This forward tilt of the tip path
plane or rotor shaft axis is established by negative
longitudinal cyclic feathering ¥5. Since no side force
equilibrium is considered no side-ward tilt of the rotor
disk is needed to compensate the tail rotor thrust, for
example. Therefore, 8¢ and ¥¢ are small. The col-
lective flapping angle 3y is almost constant versus pu,
but o shows an inverse characteristic of the ¥y curve.
This is a direct consequence of the drag at the rotor
blade which varies with varying collective pitch.
These trim sclutions agree well with theory and are
gualitatively in close correlation with those from ref.
[9] or {30]. The other values cannot be checked with
literature, since both mentioned references do not
show results for those variables.

Fig. 3 shows the real part g; of the lead-lag mode
with (R = 1) and without (R 0) structural flap-
lag coupling. The lead-lag motion is weakly damped,
whereas the other two motions are well damped and
do not need to be considered further. To give an idea
of the magnitudes, table 2 shows the hover values for
the three eigen modes.

As can be seen from fig. 3 and table 2 the system
is stable within the whole flight regime. Usually,
flap-lag-torsion instabilities become a probiem to stiff-
inplane rotor helicopters [9]. The structural coupling
parameter 12 has a stabilizing influence on lead-lag
damping. For R 1 the lead-lag mode is slightly
more damped compared to K 0 and the fapping
mode is tess damped. The structural coupling between
flap and lag motion shifts damping from Hap towards
lead-lag. But the differences are small for the soft-
inplane roteor. This behaviour of soft-inplane hingeless
rotor configurations is known from many studies, e.g.
18,9, 10]. The curve’s characteristic again corresponds
to the power required curve. The lead-lag damping
starts at a moderate value in hover. Since stability
was determined in the rotating reference frame the
curve starts with a horizontal tangent in hover, com-
pare [8, 32]. From that hover result o, decreases to a
minimum value at p = 0.16 before increasing for ad-
vance ratios beyond this value. Since the case without
structural coupling shows less damping compared to
R = 1, structural flap-lag coupling is not considered
for the active control studies,



3 Active Control to Augment Rotor Lead-Lag
Damping

In the following paragraph possibilities and mecha-
nisms of controlling the lead-lag motion will be dis-
cussed. A better understanding of the internal struc-
ture of rotor dynamics may help to interpret the in-
fluence of certain design parameters and to assess the
effectiveness of feasible control loops.

Although this study considers an isolated rotor first,
the aim of this research activity is to guarantee ground
and air resonance stability by an IBC device. Several
companies are engaged in developing actuators located
above the swash plate to control blade pitch. Primary
objective of the R&D effort is the realization of HHC
to reduce vibration and noise levels. As soon as such
actuators become reliable and available the extension
to further control tasks seems to be practicable. The
implementation of an air and ground suppression de-
vice would net be a problem as the required actuator
bandwidth is well below those needed for HHC [27].

The feasible concepts to overcome ground or air res-
onance are summarized in fig. 4. Furthermore, the
figure shows a general schematic of rotor body in-
teraction. All active control approaches are chang-
ing blade pitch to control the degrees of freedom in-
volved in ground and air resonance. As mentioned
by STRAUB and WARMBRODT [14] two control paths
exist: First, the fuselage pitch and roll motion can
be controlled through rotor pitching and rolling mo-
ments arising from flapping. The magnitude of each
is directly related to the equivalent blade root hinge
offset and flap spring stiffness. This approach affords
cyclic control inputs to generate cyelic flapping. Sec-
ondly, lead-lag damping augmentation can be achieved
through CORIOLIS coupling with blade flapping. Ac-
cording to [14] this requires either steady blade con-
ing deflection or built-in precone. Another mecha-
nism to control lageing motion arises from the differ-
ential equations of motion. The rotor inplane asrody-
namic forces contribute to blade lead-lag control. Rel.
[27] clearly states that the lead-lag control eHficiency
through aerodynamic forces is of the same magnitude
as the efficiency through Coriovis forces. Bosh ef-
fects have to be considered in an IBC study. Thus,
both mechanisms are included in fig. 4. The kernel
of this figure are the rotor dynamics. Torsion is not
considered in this figure. From blade pitch input lift,
drag and CORIOLIS forces generating Hlapping and lag-
ging motion arise. Transformed into the non-rotating
frame both motions result in collective and cycelic Hap
or lead-lag. These multiblade degrees of freedom cause
body motions which have a divect impact on the rotor
blade motion, and vice versa.

The first possibitity to control a growing acromechan-
ical instability avises, if fuselage states such as roll or

pitch rate are foed back to the cyclic control inputs.
Such means are commmon standard in many modern
helicopters and are designated as Stability Augmenta-
tion Systems (SAS). In general their purpose is to im-
prove stability and handling qualities. Several authors
examined the impact of a SAS on handling qualities
and rotor dynamics with respect to different model
complexities [33, 34]. On extending the bandwidth
up to the frequency range which is relevant for air or
ground resonance, it becomes possible to expand the
tasl of SAS to suppression of aeromechanical instabil-
ities, The advantage of such a device is obvious. Since
the whole control system is located in the non-rotating
frame, many parts of a classical SAS hardware can be
used. Many studies demonstrated successfully an air
and ground resonance suppression with such a control
approach. In addition to the body states rotor states
transferred into the non-rotating frame by introducing
multiblade coordinates can be used to augment system
stability [7, 14, 27]. In these studies the closed foop
system was considerably stabilized although adverse
effects like a destabilization of high frequency lead-lag
modes or a worsening of handling qualities occur with
increasing gains. These disadvantages can be avoided
by inclusion of filters into the feedback loop.

The other control approach mentioned above is IBC.
Lead-lag states or similar signals like blade root bend-
ing moments are measured in the rotating frame and
are feed back individually for each blade to its con-
trol pitch input. Lead-lag augmentation has already
beer: demonstrated theoretically and experimentally
by Hast et al. [24]. ReicHerr and ArnNOLD [27]
picked up the idea of controliing ground resonance
by means of IBC and compared this to a conven-
tional SAS approach. The IBC principle resulted in
poor aeromechanical stability. In contrast to that, the
SAS results were quite satisfying. Moreover, some re-
strictions in optimizing an IBC system were detected
which will be discussed in a later chapter. Before this,
IBC of an isolated rotor in forward flight will be stud-
led in more detail.

If all states of a helicopter model are feed back one
comes to full state feedback. Full state feedback is of-
ten called optimal control theory. Compared to all
other controi approaches, full state feedback vields
theoretically the best results, but the control gains
are limited for practical reasons. The gaing are an-
alytically determined by solving the matrix RiccarTt
equation [15]. The full state feedback formulation re-
quires knowledge of all rotor, body and maybe inflow
states {dynamic inflow}. If all the states are accu-
rately measured and if controllability is assured, the
closed loop system possesses guaranteed stability and
robust properties. However, as the fidelity of plant
models continue to increase, all the states must be
measured reliably. This is impractical. Therefore, ob-
server based designs may be used to estimate any un-
measured states. If an observer is applied to a real,
complex systermn (ag the helicopter is) severe problems
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may arise, since the observer needs a model of the
plant. Such a model is difficult to realize. Further-
more, the closed loop system may be sensitive to cer-
tain inaccuracies of the observer model.

3.1 Lag Damping Augmentation in Hover

First, active control to augment rotor lead-lag damp-
ing shall be considered in hover, siizce all the periodic-
ity vanishes for ¢ = 0. With the linear equations of
motion derived, so-called signal flow diagrams can be
drawn. These diagrams help to illustrate the physical
relations of a system and are widely used in control
theory. Each state is assigned to an integrator and
each state equation is fulfilled at the integrator’s in-
put. Fig. 5 displays the simplified signal flow diagram
for the isolated rotor blade in hover. It is simplified,
since only important couplings between the three ro-
tor blade DOFs are considered. If, at first, the lead-lag
motion is treated independently from flapping and tor-
sional motion, the active control results of a 1DOT sec-
ond order oscillator can be transferred to the lead-lag
motion. From that it is known that feedback of rate
increases damping and feedback of attitude changes
the system stiffness. The three derivatives necessary
to get the right sign of feedback gains to stabilize the
lead-lag motion are

de Cao

No o o820 T Quolf +00), (22

N; it 0Qu0(fo + Jo) (22}
1

NC = —-I—— (kC +aMp + R(ka — kg}sinz 190) (23)
Bl

Ny = “é/\iO(QZG“{‘“GQIO) (24)

where
1—a

Qnozf @y dy {25)

G

If lead-lag rate and angle are feed back to the control
input ¥ the derivatives of the closed loop system are

Nc',ci = N(‘:-—GC'J\V@, (26)
Nea = Ne—GeNy. (27)

rom equation (26) it is immediately clear that G
must be less than zero. Since stiff-inplane rotors are
prone to aeroelastic rotor blade instabilities, the sys-
tem stiffness of the closed loop system should not be
increased. Thus, G¢ must be farger than zero which
means a further softening of the rotor blade.

OF course, the treatment of the isolated lead-lag mo-
tion is a quite rough approximation of the problem.
More detailed investigations have to consider the cou-
pling with the flapping motion via Nj {CORIOLIS
force) and Ny [structural coupling). Since the only
control input is the blade pitch input ¥ and since a
change of blade pitch excites torsion and Hap this has
a direct impact on lead-lag motion. From the active

controd point of view a surface to control lead-lag mo-
tion ouly, like drag control, would be favourable. The
following active control resuits have to show, if these
simple considerations were right.

The root locus for lag rate (left) and lag angle (right)
feedback are shown in fig. 6. The gains were varied
between —oo < G <0 for lag rate and —oo < G¢e €0
and 0 € G¢ < oo for lag attitude feedback, respec-
tively. As known from the root locus theory the open
loop poles x move into the zeros © of the transfer
function for increasing gain. All remaining poles move
towards infinity. From the left hand side of the figure
it can be seen that small lead-lag rate gains G, ac-
tually increase lead-lag damping whereas the change
of lead-lag frequency is small. Since a zere occurs
right beside the torsion eigen value, this motion is not
affected for the given range of G;. But, as an ad-
verse affect flap frequency decreases. This has to he
avoided. A change of flapping frequency has a direct
consequence for the handling gualities. For increasing
gain the tead-lag eigen value moves in a circular arc
towards the real axis. The corresponding eigen value
of the upper and lower complex plain match at the real
axis. Whereas the one eigen value moves into the zero
in the origin of the complex plain the other moves on
the real axis towards minus infinity. Because a zero
occurs in the right hand plane, the fiapping motion
becomes unstable for G; = —16.9. Of course this gain
is much too high and will not be reached for practical
PUrPOSes.

H lag attitude is feed back with G = 0 the lead-lag
eigen value moves almost parallel to the imaginary
axis towards the real axis. There it breaks up into
two real eigen values where the one crosses the imag-
inary axis for G¢ = 14.4, since no more zero lies in
the origin. While the lagging frequency is changed
by lead-lag feedback flapping frequency remains al-
most unchanged for G¢ > 0. The flap cigen value is
shifted parallel to the real axis into the right complex
plane and becomes unstable for Ge = 30.1. Again,
the torsion eigen value dees not change muck. For
G¢ < 0 the relations are different. Already for small
feedback gains the lead-lag eigen value becomes un-
stable, G = —0.21, The flapping eigen value moves
into the zero close to the torsion eigen value and the
torsion eigen frequency increases to infinity.

The explanations demonstrate that she conclusions
drawn from the signal fow diagram were right with
respect to the sign of the feedback gains. If lag rate
and lag attitude are both feed back towards the blade
pitch control & with ¢p <0 and G¢ = 0, lag damping
can be increased without changing the lagging eigen
frequency. The stiffening effect of the one feedback
loop is canceled by the softening effect of the other.
But, the decrease of flapping frequency may limit the
feedback gains.

To optimize both feedback gains parallel output vec-
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Eigen Values

Open
Loop

Qutput Vector
Feedback

Full State
Feedback

~0.2744 + 53.132
~0.2035 & §1.136
~0.0027 £ j0.670

—0.2770 & 3.131
~0.1913 = 51.100
—0.0472 % j0.667

—0.2783 £ 73.130
~0.3041 & 51.133
~0.0579 & §0.672

Feedback Gains

Output Vector Full State

Gain Feedback Feedback
G; - 0.027
G'ﬁ - 0.492
GC -2.068 -3.159
Glo . 0.015
Gy - 0.464
Ge 1.037 1.526

Fable 3: Eigen Values and Feedback Gains

tor theory was applied [35]. Optimization of feedback
gains was done with a computer program described in
[36] applying optimal output vector theory [37]. A
linear integral quadratic performance index is used
which penalizes the entire state vector and control
time history.  Thus, every state may be penalized
although only output variables are feed back

o3
J = / (" Qu+uRu)ds . (28)
o ==
In the output feedback problem, the performance in-
dex is dependent on the initial conditions of the state
vector and the weighting matrices ¢ and £. In or-
der to eliminate the dependence on the initial states
the performance criterion is averaged for a linearly in-
depencent set of initial states. The control vector is
defined as

3

u= -Gy = -Gl

(29)

i
IR

where G is the gain matrix and C the cutput matrix.
Hence, the clesed loop plant matrix becomes

(30)

Optimization was performed such that two boundary
conditions were not violated:

1. wg not below 1.1 and
2. A ey below 2° for AC( =0) = 1°.

Paralie: to the output vector optimization a full state
feedback compensator was designed for the same
boundary conditions. The comparison between the
two control approaches and the open loop case is
shown in fig. 7. The figure shows the BoDE diagram
for the transfer function from ¥ to ¢ with the maxi-
mum of amplitude at the eigen frequency of the lead-
fag motion. Output vector feedback results already

in an enormous reduction of 2448 in lead-lag ampli-
tude and full state feedback of about 284 8. The phase
does not vary much between the three cases. Table 3
shows open and closed loop eigen values and the feed-
back gains.

Again, the signs of G; and G¢ agree with the princi-
ple thoughts mentioned above. All feedback gains are
simall. The real part o¢ of both closed loop cases dif-
fers from the apen loop values by a factor of about 17
for output vector feedback and 21 for full state feed-
back. This difference in both active control results
is quite small, but can be explained with the bound-
ary conditions. Whercas the first boundary condition
is the limiting problem for the output vector concept
the second condition is important for full state feed-
back. The flapping frequency is exactly 1.1 for lead-lag
rate and attitude feedback and 1.133 for optimal con-
trol. This value is pretty close to the open loop value.
The maximumn control amplitude is 1.68° for output
vector feedback and 2.0° for the full state controller.
Of course, if weaker boundary conditions were chosen,
more damping could be added to the lead-lag motion.

3.2 Lag Damping Augmentation in
Forward Flight

To consider stability and active conirol of a helicopter
in forward flight becomes more difficult than in hover
for the systemn periodicity. This periodicity derives
from the changing acrodynamic relations with rotor
azimuth 1 that causes varying rotor loads. The pe-
riedicity’s influence increases with increasing forward
speed.  As shown in fig. 3 the lead-lag damping has
its minimum value at ¢ = 0.16. This advance ratio
was chogen for the root locus plot fig. 8. Feedback
signals were once more both lead-lag states. Dut, this
time the feedback gains were limited to certain val-
ues. Increasing the feedback gains beyond this causes
a pair of complex conjugated eigen values to break up
into two complex poles with the same magnitude of
imaginary part but with different real parts. This be-
haviour is well known for periodic system equations
131] and can be easily seen from MATHIEYS equation.
If lag rate (left hand side) is feed back the gain is
limited to —33. For small gains the eigen values be-
have similar to fg. 6. With increasing gain this time
the lead-lag mode becomes unstable for G; = —21.2.
The torsional mode does not, change much within the
given range of (7. If lag attitude (right hand side) is
feed back the relations are close to the hover results.
Again, the lead-lag motion becomes unstable for neg-
ative gains at (o = —0.18. Comparing fig. 8 with
fig. 6 this points out the possibility to augment lead-
lag damping with one set of feedback gains within the
whole flight regime. As long as the chosen feedback
gaing are small the actively controlled isolated rotor
blade hehaves similar in hover and in forward flight,
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Finalty, fig. 9 presents open and closed loop lead-
lag damping in forward flight for different controller
gains. Coming back to the conclusion drawn from
both root locus plots the hover gains optimized with
output vector theory {G; = ~2.068, G¢ = 1.037) were
applied. Already this first crude approach results in
sufficient lead-lag damping for all advance ratios, but
the enormous stabilization in hover cannot be main-
tained within the speed range. The real part o de-
creases from —0.0472 in hover to —0.0206 at p = 0.17
which is still 15 times the minimum open loop value at
it == 0.16. The control effort stays well betow 2°. How-
ever, wg becomes smaller than 1.1 for p > 0.34. Opti-
mizing the gains with forward speed considering only
the first boundary condition achieves better damping
levels than before. The obtained gains are shown on
the left hand side of the figure. Both gains show the
inverted nature of the lead-lag damping curve. That
was to be expected. The real part o¢ does not drop as
much as before, but the curve still has a minimum. For
i > 0,32 the damping level is below that of the closed
loop system using hover gains. If the control effort
was plotted versus advance ratio, one could see the
almost constant control amplitude A0, = 1.7° for
keeping the gains constant to the hover values. In con-
trast to that a maximum amplitude of Adpe, = 3.3°
at p = 0.16 for the variable gain case arises. Since
the magnitudes of &G and G¢ for p > 0.32 are smaller
than the hover gains, the control amplitude drops be-
low 1.7°. With this the damping levels become worse
than for the hover gain case.

If both boundary conditions are taken into account,
the gains have to be limited within a certain speed
range. These limits are marked by a dashed line in the
left hand side of the figure. Due to the gain limitation
for 0.05 < pu < 0.305 the iag damping diverges within
this range from the variable gain curve to lower val-
ues. Both curves are identical for the remaining range
of advance ratio.

These simple explanations demonstrate the simplicity
to provide an isolated rotor with considerable lead-lag
damping even in forward flight with lag rate and at-
titude feed back only. In the following section some
facts shall be discussed shat may limit the success of
IBC to suppress ground or air resonance.

4 IBC to Suppress Ground Resonance

The spatial helicopter model for this part of the study
is shown in fig. 10 and includes all six body DOFs.
The rotor hub is located directly above the fuselage
c.g. The blades are assumed to be rigid undergo-
ing flapping and lagging motion rotating against lin-
ear spring and damper restraints. Lead-lag and flap
motion have the same virtual hinge in common with
a distinct offset a from the rotor centre. Structural
flap-lag coupling, precone and linear twist can be in-

1G9

cluded. Aerodynamic rotor biade forces and moments
are based on a linear two-dimensional biade element
theory. Fuselage aerodynamics are included in the
form of a linear derivative approach. Tail rotor dy-
namics are not modelled. A dynamic inflow model
was not included although this is an important mod-
elling aspect {16, 33]. The landing gear is represented
by a system of linear springs and viscoelastic dampers
at each of the four landing gear levers.

All differential equations were derived in 2 dimensional
form by using the symbolic manipulation programs
DERIVE and REDUCE, considering all geometric non-
linearities. These equations were included in a time
integration routine to compute the time history re-
sults used later on. The system equations of motion
were linearized to pefform stability calculations. No
ordering scheme was used this time, so all terms are
retained in the analysis. A multiblade transformation
was performed [31]. Assuming all blades to be iden-
tical and restricting the analysis to hover condition
this results in 14 second order differential equations
for body and rotor with constant coefficients. After
a state space transformation one geis 28 first order
differential equations. The data of the nominal con-
figuration and further notations can be found in ref.
[27].

Fig. 11 shows real and imaginary parts of the eigen
values for the helicopter on ground. Thrust to weight
ratio was set to F/mg = 50% and rotor speed was var-
ied from 80% to 140%,4n. The eigen modes were
identified at nominal rotor speed. The 28 states re-
sult in 14 complex conjugated values where fig. 10 in-
cludes only important eigen values. The figure clearly
shows the curve for the regressing lead-lag motion of
a soft inplane hingeless rotor helicopter whereas the
frequency curve for the progressing lead-lag mode is
not visible. The collective lead-lag mode couples with
bhody yawing motion. Furthermore, the figure shows
low frequency cigen modes for regressing flap. The
sigen frequencies of body ©/a and ¢/y modes result
in a coalescence of the regressing lead-lag eigen fre-
quency at 118% and 133%Q .00, respectively. At these
two points the regressing lead-lag mode couples with
the body modes and new modes arise, two for each
point of frequency coalescence. Whereas the one is
stabilized the other is destabilized. In both cases an
instability exists characterizing the ground resonance
case. For clearness: it cannot be said whether the
body mode or regressing lead-lag becomes unstable as
can be read by several authors investigating ground
and air resonance. The instability is caused by a cou-
pling of cigen modes and one of the new coupled eigen
modes becomes unstable,

Coming back to the results presented in [27] fig, 12
shows time history results with and without consider-
ation of fusclage and both cases once open and once
closed loop. Thrust to weight ratio was set to 50%,



Table 4: Damping Ratio and Eigen Frequency of the
Isolated Rotor Blade

rotor speed to 118%Q,om. This leads to a lag body
pitch coupling. The lead-lag angle is given in the ro-
tating frame. Optimization of feedback parameters
was done with the fully nonlinear, coupled set of dif-
ferential equations of motion by changing the feedback
gains systematically and analyzing time history re-
sults. No numerical optimization algorithm was used.
In addition to the studies presented in section 3 lag
acceleration was fed back.

Since it was meant {0 be favourable to increase lead-
lag damping of an isolated rotor blade, the impact of
blade moticns on the fuselage was neglected first. This
was done by switching off the body degrees of freedom.
The idea was that mechanical lead-lag dampers add
damping to an isolated blade, too. To optimize such
a damper the fuselage does not need to be considered.
The both time history results at the top of the figure
show that lead-lag damping can be casily increased
with these three feedback loops. The feedback gains
are given in the figure, too. They were chosen such
that lead-lag damping was maximized, but an excita-
tion of the flapping motion was avoided. The signs of
lead-lag rate and attitude feedback agree with those
of the previous section. Table 4 includes eigen fre-
quency wy and damping ratio D of the open and closed
loop system for various thrust to weight ratios F/mg.
Damping ratios and eigen frequencies were camputed
from thme history results. The damping ratio of 2.91%
at 50% airhorne for the isolated blade without feed-
back is not sufficient to avoid ground resonance. One
closing the feedback loops with the given gains, the
damping ratio increases to 8.03%. This value achieved
by mechanical lead-lag dampers would be sufficient
to avoid ground resonance. Table 4 also shows that
with increasing thrust the damping results get better.
But at zero thrust the optimized gains slightly reduce
closed loop lag damnping. Since aerodynamic forces
aiid moments at the rotor blade inerease with thrust,
Le. collective pitch, aerodynamics should not be ne-
glected L the controller design process as done in {24].
Including foselage motion, however, the feedback
gains determined for the isolated blade even increase
instability (Rg. 12 lower top). This result is quite as-
tonishing, since it disproves the idea of optimizing an
IBC system for the isolated blade. This becomes clear,
if one considers that the fusclage motions are Inputs
for the rotor calculation and vise versa.

open loop closed loop open oop ciosed loop
Flmg | wo [rad/s] | D [%] | wo [rad/s] | D [%] Mode | wo [rad/s] | D (%] | wo [vad/s] | D (%]
0 32.7 2.85 32.7 2.12 ¢ 32.4 -1.07 32.1 0.57
10 32.7 2.85 32.2 4.00 Q/x 20.3 -1.71 20.8 1.38
50 32.7 2.91 31.4 8.03 . . . .
_ Table 5: Damping Ratio and Eigen Frequency of Lead-
100 327 3.02 30.6 12.03 Lag (Rotating System) and Body Piich {Fixed Sys-

tem)

Finally, 2 controller was designed for ground resonance
damping. During the design process several restric-
tions were found out. First, none of the feedback loops
could stabilize the system without the others. Sec-
ondly, lag rate and lag attitude feedback gains were
limited, because of an excitation of the flapping mo-
tion. This flap excitation reduces closed loop system
damping. The time history results and feedback gains
are shown in fig, 12 (bottom). This time the rotor
body system can be stabilized, whereas the isolated
blade is destabilized. As can be seen G and G differ
in sign from that of the previous controller. Table §
shows open and closed loop damping for the rotor
body syster. At least, fig. 13 compares the open
toop time history results of the isolated rotor blade
to that of the rotor body system for 50%F/mg and
118% 8 om. An initial lead-lag disturbance of 0.5° was
applied to excite the system. Whereas the lead-lag
motion of the isolated rotor blade is a damped har-
monic oscillation, the lead-lag angel of the rotor-body
system shows a more irregular character. After the
transient response vanished, the oscillations slightly
increase and depict a self-excited oscillation. A certain
time step is marked with arrows. While the lagging
motion of the isolated blade shows a local minimum at
this time step the lead-lag angle of the coupled rotor
body system shows a local maximum. This means a
phase shift of 180° at this point. From this it becomes
clear that body dynamics must not be neglected for
an IBC design to suppress ground resonance.

The control results indicate that ground resonance
stability can be improved through the use of IBC, but
the consideration of an isolated blade is not feasible.
Compared to an SAS approach the results are poor
(7, 15, 27).

5 Outlook and Conclusion

The intent of the presented investigation was to
demonstrate the possibilities of active control to aug-
ment rotor lead-lag damping in hover and forward
flight and to provide an insight into the behaviour of
the actively controlled rotor.

First, the study dealt with the consideration of an iso-
lated rotor blade in forward fight. A three degree of
freedom flap-lag-torsion model was derived. The equa-
tions of motion were lineavized. FLOQUET theory was
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used to compute characteristic muisipliers and from
that the eigen values. The isolated rotor blade showed
a minimum damping 2% p = 0.16. From that simple
model the following conclusions can be drawn:

* augmentation of lead-lag damping is possible with
simple {- and (-feedback without a significant
manipulation of rotor dynamics and high control
effort,

¢ root locus plots show almost the same trends in
hover and forward fiight for low G- and G¢-gains,

s simple controller design for the whole range of ad-
vance ratio seems to be possible without schedul-
ing of feedback gains.

Secondly, a fully spatial helicopter model for ground
resonance studies was used to examine active controi
and to gnarantee acromechanical stability with an IBC
approach. The model included flap and lead-lag for
each rotor blade and all six body DOFs. From that
model it became clear that fuselage DOFs have to be
taken into account for the design of an active control
device.

Regarding this it becomes obvious that further sys-
tematic studies have to be carried out in order to ex-
plore the full potential of active control of aeromechan-
ical instabilities and to investigate the impact of ac-
tive control on the dynamic behaviour of a helicopter.
Further work should:

» consider more sophisticated models with elastic
blade deflections and fuselage DOFs to avoid ad-
verse effects on helicopter dynamics,

¢ include actuator and sensor dynamics to the feed-
back loop for realistic controller designs and

s compare [BC to other controller designs that use
multiblade or fuselage states as feedback signals.
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Figure 7: Bode Diagram for Transfer from Control
Input to Lead-Lag Angle p=0, R=0
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Figure 6: Root Locus for Lead-Lag-State Feedback, p=0, R=0
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Figure 9: Feedback Gains and Lag Damping vs. Advance Ratio, R=0
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Figure 10: Mathematical Helicopter Model Used by
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Figure 11: Eigen Values of the Coupled
Rotor-Body-Systern on Ground, F/mg=50%
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Figure 12: Lag Damping Augmentation through IBC,
Isolated Blade Compared with Helicopter on Ground,
118% Quom, F/mg=30%
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Figure 13: Open Loop Lead-Lag Response of
Isolated Blade Compared with Helicopter on
Ground, 118% Q.om, F/meg=50%
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