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ABSTRACT 

In this paper some approaches are presented for improving the 

accuracy of dynamic internal force calculation of nonuniform &:~,~~ 

blade with discontinuous stiffness and mass distribution. They a:h '1) the 

method using high-order finite elements, for which a family of nonuni­

form rotating beam conforming elements is developed, 2) the dynamic 

stiffness method, in which the internal forces of blade are determined 

directly from the nodal displacements by means of the dynamrc stiffness 

matrixes of the finite elements, and 3) mixed-finite-element method, in 

which the method of weighted residuals is used. As an example, the 

blade flapwise bending vibration has been analyzed. Bending moments 

and some other numerical results are presented for a blade which has 

discontinuous bending stiffness and mass distribution along the spanwise 

direction. The results show that the approaches presented in this paper 

are effective 

NOTATION. 

e- distance from center of rotation to blade root 

EJ-bending stiffness 

F- nodal force for the mixed-element-method 

H-- coefficient matrix of the Hermitian polynomial 

K-- stiffness matrix 

K,-- elastic stiffness matrix 

K,--centrifugal stiffness matrix 

I-- length of finite element 
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m-- mass per unit length 

M-- bending moment 

M-- mass matrix 

N-- displacement shape function 

NF-- force shape function 

P-- applied load per unit length 

P-- exteqtal noda\ force 

q-- amplitude of nodal displacement 

r-- blade radial coordinate 

R-- rotor radius 

s- nodal force for the displacement method ' 

S,-- amplitude of .nodal force 

T-- centrifugal force 

u- no~al displacement 

w-- lateral displacement normal to the plane of rotation 

x-- element coordinate 

X-- row matrix [1. x x2······x2·~ 1 ] 

a,~-see Eq.{4-6), (ll-7), (4-B) 

Q-- angular velocity of rotation 

ro-- freguency of vibration 

(')- :t 
( )'- :r 
( )'--element matrix 

Matrices and column vectors are denoted by bold symbols. 

1. Introduction 

Accurate prediction of rotor blade stresses or internal forces, bending 

moments, torsion moments, is one of the 'most difficult analytical 

problems of helicopter technology. This is due to the importance of 

nonlinear, unsteady, three-di~ensional, compressible aerodynamics, and 

the complexity of the structural dynamic characteristics of nonuniform 

rotor blades. In order to improve the accuracy of the prediction, of 

course, it is the most important to improve the methods of aerodynamic 

and blade motion response calculations. However, the significance of. the 

accuracy of calculating blade internal forces or stresses must not be· 

underestimated for a certain accuracy of blade motion response 

calculation. There were some examples- of dynamic component redesign 

during the helicopter development as a result of inaccurate blade ·elastic 



moment calculation And this proulem have been presented and 

discussed, l1ll2l During developing a composite main rotor blade for the 

y-2 helicopter, the elastic moment calculation problem was also presented, 

Therefore, some approaches were explored to improve the accuracy of 

nonuniform rotor blade dynamic internal force calculation. 

A rotor bla:le is generally a nonuniform rotating beam v1ita 

discontinuities in stiffness and mass distribution, For such a structure, 

the conventional Rayleigh-Ritz method is not suitable, but the finite 

element method is a very good approach to calculate dynamic internal 

forces. The iinite element method has been used widely for rotor 

dynamics anJ..lysis, including aeroelastic anal~rsis,D::Il In those analysis, 

however, con VL.:l. ti onal-Jeam-elemen ts are generally used. Generally 

speaking, acceptable mo.Jal frequencies, modeshapes and displacement 

response for a variety of rotor dynamics problems can be obtained by using 

this element, The derivative which determines th<.! dynamic stress,however, 

is almost always unacceptable, And th'e internal forces which are 

determined by the derivatives, as a rule, do not ?atisfy,the equilibrium 

conditions at the nodes and the boundary conditions, With the purpose to 

overcome these disadvantages, we presented the following approaches in 

this paper. 

Firstly, using the high-order finite elements is suggested, For that, a 

family of nonunifor:n rotating beam conforming elements is developed. 

Secondly, the dynamic stiffness method is used. In this method the 

internal forces of blades can be calculated directly from the nodal 

displacements by means of the dynamic stiffness matrices, The above two 

approaches are based on the displacement method. The third approach is 

using a mixed-finite-element method, in· which the basic unknown 

parameters are not only the displacments but also the forces of nodal 

points. The formulae of the mixed-finite-element method for the rotor 

dynamics analysis are derived by using the method of weighted residuals, 

and a solving process is presented. 

The problem of determining free vibration, response_ and stability 

characteristics of rotor is complex, especiaily when flapwise and 

chordwise bending and torsion are considered, Therefore, only the blade 

flapwise bending vibration is analyzed in this paper, thus, the main 

idea of these approaches can be expounded simply and clearly, And, for 

the same reason, only the numerical results of the natural frequencies, 

and the modeshapes for the displacement and the :Oending moment of blade 

flap wise bending vibration are presented in this paper. These approaches, 
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however, can be applided to some more complex problems. 

2. A Family of Nonuniform Rotating Beam Conforming Elem.~ 

In order to improve the accuracy of the analysis using the finite 

element method based on assuming shape functions of the elements, 

it is an effective approach to increase the order of the shape functions. 

For example, we may use the Sth, 7th or still higher order polynomial 

instead of the 3rd order. For that, there are various combination of 

nodes and/or nodal parameters. For a beam element, for instance, we 

may increase the number of degrees of freedom at two extreme nodes[5l, 

or increb.se no~es within the element[61. The former is not suitable for 

rotor blade ·-dth discontinuously varying properties, but a very good 

result can be o0tained if the latter is used[6J. The analysis in Ref.6 is 

only for nonrotating beams. In the present work, the analysis is developed 

for rotating beams, and a family of nonuniform rotating beam conforming 

elements is presented. 

A beam element rotating at constant angular speed Q about an axis 

o-o is considered. The bending motion is described by W (Fig.l). The 

beam is assumed to be inextensional and the bending motion is purely 

out of plane (flapping). 

rK 

l~~ -l " ·-x- ' J 
! 

l 
.. 
.J jO 

TOP VIEW END VIEW 

Fig.l Geometry of the kth beam element 

It is assumed that n ( :>2) is the number of the nodes on the 

element. There is one node at each end of the element, and other n-2 

nodes (if n>2) are within the element. The displacement W and slope 

dW "'d'X at every node are used as nodal paramenters. The displacement 

function can be expressed as 

W(x)="" [H,,(x)W(x,)+H"(x) dWd(~l_J (2-1) 
1-1 X 

where W(x,) and d~~x,) are the displacement and slope at the node i, 
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respectively, H;,(x)is Hermitian polynomial ( j=Q,Li=L2, .. ·n). 

Obviously, W(x) is an arbitrary odd power, 2n-1, polynomial. 

Equation (2-1) can be written in matrix form as 

W(x)=XHU• (2-2) 

where 

U•=[w, dW, ...... w 
dx ' 

dW, Jr 
dx 

H=coefficient matrix of the Hermitian polynomial 

n is a variaLle number, so W (x) is a power series of a variable number 

of terms. Using these shape functions, we can develop a family of 

conforming elements. 

In order to improve the accuracy, the rotating beam element in 

which the cross-sectional dimensions or mechanical properties may vary 

along its length is considered. It is assumed that the variations of mass 

m(x) and bending stiffness EJ(x) of the element can be expressed by 

(2-3) 

(2-4) 

where m, and EJ, refer to the values at the left end of the element, i.e. 

node k, I is the length of the element, x is the local co-ordinate runing 

from 0 to I in the element, and a, (i=l, 2), /3; (j=L2,3,4) are the 

coefficients depending on the structural properties. 

The mass rna trix M•, the elastic stiff ness matrix K:, and the 

centrifugal stiffness matrix K; of the nonuniform rotating beam 

conforming element can be obtained 

(2-5) 

where Q' • '1'. represents the centrifugal force acting on the section x 

within the element 

'1'.='1', +m,r,x+tm, (a•--7"--l)x' 

(2-6) 
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in which r, is the distance from the left end of the element to the 

center of rotation, and 

'l\=T,/.Q2 

T, is the centrifugal force acting on the left end section of the element. 

The matrices Me, K! and K; of the elements with displacement functions 

based on the 3rd, Sth and 7th order polynomial respectively are presented 

in Ref .6 and 7, and are not given in the present paper due to lack of 

space. 

3. The Dy_namic Stiffness Method for Internal Force Calculation 

For a undamped vibration, the equations of motion for each 

element are 

M'U•+K•U•=S•(t) 

And for harmonic vibration, the equations can be written as 

(3-1) 

(3-2) 

where the vectors q and S; are the amplitudes of the nodal displacement 

U• and the nodal forces S• respectively, (j) is the circular frequency of 

vibration. Obviously, after the q (or also co) is obtained, the nodal 

forces S; (and S') can be easily got from (3- 2). 

It is interesting and important to note that the nodal forces of the 

two extreme nodes are just equal to internal forces on the end sections of 

the element for beam and bar types of elements, and that Eq. (3-2) is 

similar to the force-displacement relationship in static analysis, so 

matrix D=( -co'M'+K') is defined as dynamic stiffness matrix. Therefore 

the internal forces of the blade (and the beam, bar types of structures) 

can be calculated directly by Eq. (3-2) from the nodal displacement q 

and the dynamic stiffness matrix D. This approach is called the dynamic 

stiffness method. This approach is only suitable for harmonic vibration 

because of using Eq. (3-2). 

If co and q are natural frequency and mode shape respectively, the 

mode internal forces can be obtained by means of the dynamic stiffness 

method 

It is necessary to remember that K• for rotating beam consists of the 

elastic stiffness matrix K; and the centrifugal stiffness matrix K;, 
that is 

It also should be noted that only the internal forces on the end 

sections of the element can be obtained by using the dynamic stiffness 
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method (i.e.Eq,(3-2)), and the nodal forces within high-order element 

are not equal to internal forces. 

There are some points which should be emphasized. The internal 

forces which are determined by the dynamic stiffness method do satisfy 

the equilibrium conditions at the nodes between neighburing elements 

and the boundary conditions, and they will converge to the exact 

solution if the global solution U (or also ro for free vibration) converge 

to the exact solution, The accuracy of the internal forces only depends 

on the accuracy of the solution U (or also ro), ancl it is not related to 

the derivatives of the solution U,. such as d;~. 

4. The Mixed-Finite-Element Method for the Rotor Dynamic Analysis 

In this section, the formulae of the mixed-finite-element method for 

the rotor dynamic analysis are derived by using the method of weighted 

residuals, !81 and a solving process is presented. In the mixed-finite­

element method, the basic unknown parameters of the problem are not 

only the displacements but also.the forces of nodal points. The 

advantage of the approach is that both the displacements and the 

forces with a certain accuracy can be obtained simultaneously. As an 

example, the blade flapwise bending vibration is still considered. 

The differential equation of the blade flapwise bending vibration 

can be appropriately written as 

M"- (TW')•+mW=!' 

W"- rfJ M=O 

The boundary conditions are given by 

M=O 
} 

M'=O 
at r=R 

and 
W=O 

1 M=O 
at r=e (articulated blade) 

or 

W=O 

W'=O 1 at r=e (cantilevered blade) 

(4-'-1) 

(4-2) 

(4-3) 

According to the method of weighted residuals, lsl the formulae of 

the mixed-finite-element method are derived as follows. 

The blade (global domain) is divided into a number of elements 

(subdomains). In the interior of each element the displacements and the 



bending moments are assumed, respectively, to be of the forn:s 

W=N'U' 

M=Nj,F' 
(4-4) 

where U• and F' are the nodal displacements and forces respectively. 

They are independent. N" and N; are corresponding shape functions. 

Imposing compa ti bili ty conditions and eq uili bri um conditions, the nodal 

parameters U" and F" can be combined into a matrix of displacements 

U and a matrix of forces F on the assembled structure respectively. 

The local approximation, Eq.(4-4), can be extended over the whole 

domain by defining them as zero outside the particular element with 

which they are associated. Then, the global approximation can be 

expressed as 

W=NU 
(4-5) 

M=NFF 
where U and F are undetermined independent nodal displacements and 

forces respectively, and N, NF are corresponding shape functions. 

The approximate global solution Eq.(4-5) is substituted into the 

Eq.(4-1) and (4-2). The shape functions N are used as weighing for 

Eq. (4-1), and NF for Eq.(4-2) (i. e. the Galerkin method). The 

weighted residual, obtained through appropriate combination of the 

weig'hted differential equation and boundary condition residuals, is 

integrated by parts. Then, the following equations are obtained 

-aF+K,U+MU=P 

aTU+~F=O 

(4-6) 
(4-7) 

where matrixes a, ~. K,, M, P can be formed from the corresponding 

element matrices a", ~c, K;, M", pc. The assembly of the element 

matrices into the complete system matrices is similar to the conventional 

finite element method, when utilizing the direct stiffness approach. 

And these element matrices are, 

a' --f' d(N')T d Np d 
o dx -crx- x 

~' = J~(NJ,)T i1 NJ, dx 

f' d(N')T dN• 
K;= d T-d-dx 

0 X X 

M'= J:(N')T m N' dx 

P'= J~ (W)T p dx 
(4-8) 
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It is clear that K;, Me and pc are the same element matrices as in 

the displacement approach. K; is the centrifugal stiffness matrix, Me is 

the mass matrix, and pe is the external loading column matrix 

Solving the equations Eq,(4-6) and Eq,(4-7), all of the unknowns 

U and F are obtained. A solving method is presented as follows 

Let 

From Eq,(4-7), F can be expressed as 

F= -~-laTU 

Substituting Eq,(4-9) into Eq(4-6) 

K,=a~-IaT 

Rewriting Eq,(4-l0) as 

(4-9) 

(4-10) 

(4-11) 

(K,+K,)U+MU=P (4-12) 

Then, U can be obtained by solving Eq .(4-12), and F can be 

obtained from Eq_(4-9). 

For modal parameters determination, let P=O, the equation of 

motion becomes 

(K,-1-K,)U+MU=O 

Let U=qe 1••, Eq,(4-1.3) becomes 

(K,+K,-ro 2M)q=0 

(4-13) 

(4-14) 

The natural frequencies and mode shapes can be obtained from Eq, 

(4-lt.), and the mode internal forces can be calculated from Eq,(4-9). 

It should be noted that K, is a symmetric matrix. And the eigenmodes 

q are orthogonal with respect to the stiffness matrix K (=K,+K,) and 

the mass matrix M respectively. 

Obviously, Eq, (4-12) and Eq, (4-14) are the same forms as in the 

conventional displacement method, Therefore, many approaches and 

programes used in the displacement method can be also used here. Of 

course, this is very convenient and wishful. 

As in the displacement method, the element properties matrices 

depend on the nodal parameters, the shape functions of displacement 

and force, mass and stiffness distributions within the element, In order 

to compare with the conventional conforming element, the mixed-finite 

-elements used in this paper are uniform beam elements, in which the 

nodal displacements and forces respectively are 

U'= [W, e, W; B,]T 
(4-15) 

Where 
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e- dW 
- dx 

Q= dM 
dx 

And the shape functions are cubic interpolation polynomials 

W =ao+a1x+a2x2 + a3x3 

M=b0+b1x+b2x2 + b3x3 

5. Illustrative Example and Discussion of Results 

(4-16) 

The approaches presented in previous sections have been used to 

c1dculate the natural frequencies, the mode shapes for the displacement 

a]ld the bending moment for many cases. And they have also been used 

to calculate the dynamic stresses for the y-2 composite main rotor 

blade. Some numerical results are presented here only for mode analysis 

of a nonuniform discontinuous rotating articulated blade. 

The blade considered has discontinuous mass and stiffness 

distributions, 

m(r) = f 
3.75 o.07<;;;r<;;;0.5 

0.655-0.026 r { 
kg-sec2 ) 0,5<;;;r<;;;1.25 (m) 

l m' 

0.675-0.042r 1.25<;;;r<;;;5 

EJ(r)= { 

13000 O.O?<;;;r<;;;0.5 

5900-40COr (kg-m') 0.5<;;;r<;;;1.25 (m) 

1050-120r 1.25<;;;r<;;;5 

Rotor radius R=5m 

Flap hinge offset e=0.07 m 

Angular velocity of rotation D=37 .5 1/sec 

In table 1 the natural frequencies (J) and the bending moments EJW" 

for the 3rd and 5th modes are tabulated for four differe]lt cases. Here 

NB3 and NB7 represent the nonuniform rotating beam conforming 

elements with displacement functions based respectively on the 3rd and 

7th order polynomial, and n is the number of the elements. The results 

show the good convergence of the family of nonuniform rotating beam 

conforming elements. For a given number of elements, of course, high­

order element is superior to low-order element. Even though for a given 

number of degrees of freedom, high-order element is also superior to 

low-order element. The fact has been observed by other researchers. 

Here it should be emphasized that the satisfactory values of the 
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Table 1 3rd and 5th natural frequencies ro and mode shapes (moment EJW") ( NB3,NB7) 

I 3rd mode I 5th mode 
r(m) I NB3,n=51 NB7,n=51NB3,:t=151NB7,n=111 NB3,n=5!NB7,n=51NB3,n=15INB7,n=11 
0.07 126 .li92 0.00012 -3.18415 0.00016 -1140.05 -0.02517 29.6163 0.02515 

0.50 
-1509.11 -1274.47 -1306,96 -1274.48 -10604.7 -8544.49 -8814.37 -8544.52 
-1083.57 -1267.56 -1261,71 -1274.36 -9625.03 -8546.57 -8567,32 -8544.52 

1. 00 -1140.24 -1160.28 -4784.14 -4735,29 
-1159.07 -4735.65 

-1092.27 -1160.23 -4806,30 -4735.31 
-779.775 -970.055 -906.604 -976.934 -2053.39 -1907.07 -1958,06 -1904.96 

1.25 
-1022.98 -977,079 -973.770 -977.098 -877.113 -1904.67 -1871,97 -1904.91 

-821.286 -823.423 689.119 652.693 
1.50 -823.422 

-825.335 
652.728 

721.835 652.709 EJWII -823.422 
-534.12R -503.880 -507.703 -503.897 4216.51 3203.75 3301,84 3203.58 

2.00 
-604.246 -503.849 -521.641 -503.898 3186,96 3212.00 3621.50 3203.59 

2.50 -58.9787 -42.6600 1241.21 894.C93 
-42.6584 894.919 

-51.3886 -42.6501 832.745 894.084 

3.00 484.243 490.323 -2973.26 -2812.66 
490,332 -2811.08 

500.435 490.323 -3322.79 -2812.69 
913.910 908,743 922.629 908.734 -4559.55 -2097.39 -2596.16 -2101,40 3. 50 
1301.60 907.577 945.632 908.733 1465,65 -2100.02 -2280,59 -2101.42 

4.00 1000,20 959.915 2383,58 2419.72 
959.804 2422.38 

1009.48 959.915 :972.64 2419.76 

4.50 532.605 488.819 3699.70 3118.92 
488.571 I 

556 
3119.38 

461. 488.830 3149.65 3119.01 
5.00 134.031 -0.334985, -58.8369 0.0109931 2584.26 14.8523 -312,671 0.101387 

ro(1jsec) 163.1786 162.7428 I 162.7520 162.74281 405,33951 381.4113' 381.7636: 
--

381.411 z, 



moment EJW" can be obtained by using only a few high-order elements. 

This is showed by the values of EJW" of neighbouring elements at the 

same node points. So for improving the accuracy of dynamic internal 

forces, high-order-element is very effective. 

In table 2 the displacements W, slopes W', moments EJW" and M for 

the fifth mode shape are tabulated for both NB3 and NB7. The number n of 

the elements is 11. Here the displacements W are normalized for deflection 

of unity at the tip. M represent the moment calculated by dynamic stiffness 

Table 2 5th mode shape (W~displacement, M~bending moment) 

11~elements (NB3, NB7) 

w I W' I EJW" I M 
r(m) 

I I I I I I !liB;-NB3 NB7 NB3 NB7 NB3 NB7 NB3 

0.07 0.00000 0.00000 -0 .8C378 -0.80551 -1062.60 -0.02515 0.00000 0.00000 

0.50 
-10110.5 -8544.52-8533.4 -8544.4 

0.31662 0.31734 -0.61899-0.62054 
-8704.78 -8544.521-8533.4 -8544.4 

1.00 0.58325 
-4896.28 -4735.29-4727.3 -4735.2 

0. 33274 0.33367 0.58249 
-4803.03 -4735.31-4727.3 -4735.2 

1.25 
-1959.68-1904.96 -1900.6 -1904.9 

0.11158 0.11253 1.17142 1.17146 
-1873.91-1904.91 

-0.216481-0.21565 

-19C0.6 -1904.9 

681.844 652.(93 650.27 652.69 
1.50 1.33372 1.33421 

982.633 652.709 650.27 652.69 

2.00 
3571.02 3203.58 3189.3 3203.5 

-0.60553 -0.60550 -0.05081 -0.04812 
3617.26 3203.5 3203.591 3189.3 

1244.29 894.093 883.10 894.07 
2.50 -0.13885 -0.13966 -1.58202 -1.57996 835 

894.0841 883 .10 894. 07 .193 

3.00 0.56545 0.56492 -0.78335 
-2972.70 -2812.661-2805.31-2812.6 

-0.78517-3322.73 -2812.69-2805.3,-2812.6 

3.50 
-2598.23 -2101.40-2087.8-2101.3 

0.38399 0.38428 1.45158 1.44868 
-2282.70 -2101 42-2087.8-2101.3 

1.31222 
2383.05 2419.72 2416.5 2419.7 

4.00 -0.46955 -0.46925 1.31255 
2972.51 2419.76 2416.5 2419.7 

' 
3700.93 3118.92 3115.1 3118.9 

4.50 -0.38872,-0.38791 -1.80570 -1.80424 
3150.72 3118.9 3119.01 31.15.1 

5.00 1. 000001 1.000001-3.176431-3.17541-312.745 0.1013871 o.occcc o.oocoo 
-
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method The results show that the dynamic stiffness method is very si~p~3 

and effective for internal force calculation, especially, when the low-order 

elements are used. Here we only emphatically point out the following facts, 

1) The internal forces calculated by the method always satisfy the equilibrium 

conditions and the boundary conditions. As has been stated. however, for 

the conventional compatible element method the internal forces determined 

by the derivatives (such as EJW") generally do not satisfy the above 

conditions. Therefore, the dynamic stiffness method can simply overcome 

the disadvantage of the conventional compatible element me+ hod. 2) The 

accuracy of the internal forces calculated by the dynamic stiffness method 

only depends on the accuracy of the solution U (or also w) of the whole 

structure, and it is not related to the derivatives of the solution U (such 

as W"). In table 2, the values of EJW" for NB3 are not usable, but the 

values of M are quite accurate. The similar results are obtained in many 

other calculations. 3) Botb the internal force calculated by the dynamic 

stiffness method and that by the derivative of the displacement converge 

to the same value, but, generally, the former is higher accurate (for the 

same U ). 

The natural frequencies w for 11 

elements model for three cases are 

tabulated in table 3, and the displacements 

W, the bending moments EJW" or M for 

the same cases are presented in table 4. 

Here UB3 and UB7 represent the uniform 

rotating beam conforming elements with 

displacement functions based respectively 

on the 3rd and 7th order polynomial, 

and MB3 represents the mixed-element 

with cubic shape functions. The results 

show that both the displacements and 

the internal forces with satisfactory 

accuracy can be obtained simultaneously 

by using the mixed-finite-element method. 

In comparison with the results calculated 

by UB7, it is shown that the frequencies 

Table 3 Natural frequencies w 

11-elements 
(UB3, UB7 ,MB3) 

~I (j) (lfsec) 

UB3 I UB7 I MB3 
---~~ 

1 I 37.9258 1 37.9258 I 37.9258 

21 92.7397 I 92.7393 I 92.7393 

31162.s095I162.7993I162.7995 

'4! 257.9381 I 257.8513 I 257.8551 
-: 
51 380.8590 1 380.4189 1 38o. 4489 

61530.63551529.17571529.3037 

71 no. 1011 1 101 .o6nl 101.4632 

81928.99731920.74911921.8397 

9!1190.058911171.914811174.67CO 

:1011514.6115 11457.5622 11467.2122 

]-order of frequency 

and moments by MB3 are superior to ones by UB3. The moments M by 

MB3 are quite accurate, but the moments EJW" by UB3 are not usable. 

Therefore, as far as the result is concerned, the mixed-finite- element 

method is superior to the conventional displacement approach. 
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Table 4 5th mode shape (W-displacement, M-bending moment) 

11-elements (UB3, UB7, MB3) 

w I EJW" I M 
r(m) 

I I I I I UB3 UB7 MB3 UB3 UB7 MB3 

0.07 0.00000 0.00000 o.ococo -1102.97 

I 
-0.025886 o.oooco 

0.50 0.33053 0.33123 0.33155 
-10292.5 -8666.59 

-8678.34 

o .32sso I 
-8915.00 -8666.56 

1.00 0.32664 0.32677 
-5109.04 -4804.93 

-4811.29 
-4799.59 -4804.93 

1.25 0.0~9751 0.10085 
-1929.62 -1931.95 

-1933.64 0.1C070 
-1881.48 -1931.94 

1.50 
7C8.314 661.422 

662.446 -0.2£637 ' -0.22549 -0.22622 
1027.13 661.447 

2.00 -0.60836 -0.60859 -0.61019 
3614.82 3202.35 

3209.65 
3574.94 3202.34 

2.50 -0.13477 -0.13594 -0.13622 
1199.40 876.422 

881.083 
759.386 876.406 

3.00 0.5(976 0.56927 0.57100 
-3042.22 -2819.71 

-2826.63 
-3311.37 -2819.73 

3.50 0.38411 0.38498 0.38625 
-2596.55 -2101.66 

-211.1.34 
-2198.40 -2101.67 

4.00 -0.47275 -0.47207 -0.47377 
2462.80 2417.08 

2425.02 
2981.38 2417.14 

4.50 -0.39177 -0.39163 
3737.23 3130.58 

3153.44 -0.393361 
3093.02 3130.64 

5.00 1.0000 1.0000 1.ooooo 1 -379.923 0.087723 0.00000 

6. Conclusioa 

The three approaches presented in this paper have been shown to be 

very effective for improving the accuracy of nonuniform rotor blade dynamic 

internal force calculation. Not only the accuracy of the displacement but 

also the accuracy of the derivative which determines the internal force 

are improved by using the high-order-element. The dynamic stiffness 

method can improve the accuracy of the dynamic internal force calculation 

for a certain accuracy of displacements. Both the displacements and the 

internal forces with sati-sfactory accuracy can be obtained simultaneously 

by using the mixed-finite-element method. A concrete analysis of concrete 
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co~ditio.ns must be made to determine which method sh~uld l)e uSed . For 

example, the high-order element may be used for the structure which can 

be represented by using less elements. If it is necessary to represent the 

structure usirig more eleritents because of more discontiiluoU:s points of the 

.structure prop.erties or orther reasons, using the low-order elements is 

still suitable. The internal forces can be calculated simulhneously by the 

<dynamic stiffness method and the conventional approach( snch as EJWi') 

when the conforming elements are used, However, generally, when the 

high-order elements are used, EJW" should be .made. acceplable, and when 

the low-order elements are used, the internal forces should be obtained 

from the dynamic stiffness method. For the case in which usin·g the low­

order shape function is desired and the dynamic stiffness method is not 

usable, the mixed-finite-element method should be used. Obviously, for the 

conventional low-order-element computer programs which have been used, 

the dynamic stiffness method is the most cow1enie~t and effective for 

improving the internal force calculation if it is usable. 

It should be emphasized that although the analysis and example 

considered in the present paper have been limited to flapwise bending 

vibration and the numerical results are from free vibration, the approaches 

described herein can be extended to the more complex problems such as 

coupled bending, torsion vibration, etc 

7 • ~ c k-~~~.". d geE?.:.::! 

The author is grateful to Professor Zhu Demao and Mr. Gao De ping 

for their helps in completing the English manuscript of this paper. 

REFERENCES 

1. D. P .Schrage,An Overview of Technical Problems in Helicopter Rotor 

Loads Prediction Methods ,AIAA/ ASME/ ASCE/ AHS 20th Conference, 

1979. 

2. R.L.Bielawa, Bladle Stress Calculations-Mode Deflection vs. Force 

Integration, J.A.H.S. Vol 24, No.~, 1978. 

3. Liu Shoushen, A Method of Analyzing the Dynamic Response of 

Rotor Blades, J.of NAI, No.3, 1979. 

4. F.K.Straub and P.P. Friedmann, A Galerkin Type Finite Element 

Method for Rotary-Wing Aeroelasticity in Hover and Forward 

Flight, Vertica, Vol.S. No.1, 1981. 

5. V. T .Nagaraj and P .Shanthakumar, Rotor Blade Vibrations by the 

52-15 



Galerkin Finite Element Method, Journal of Sound and Vibration, 

Vol,43, No.3,1975, 

6, Zhu Dechao, A Family of Tapered Beam Conforming Elements and 

Its Application to Beam Natural Vibration Analysis, ACTA 

AERONAUTICA ET ASTRONAUTICA SINICA, Vol, 1, No, 1 1980, 

7, Liu Shoushen, Improvement in the Finte Element Method for Rotor 

Blade Dynamics Analysis and Internal Force Calculation, J. of NAI, 

No.1, 1983, 

8, 0. C, Zienkiewicz, The Finite Element Method, (third edition), 

1977, 

52-16 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Left bottom (10.87 -2.96) Right top (806.12 53.35) points
      

        
     0
     10.8669 -2.9637 806.1228 53.3464 
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 2 to page 2
     Mask co-ordinates: Left bottom (0.99 38.52) Right top (60.26 834.76) points
      

        
     0
     0.9879 38.52 60.2616 834.7639 
            
                
         2
         SubDoc
         2
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     1
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 3 to page 3
     Mask co-ordinates: Left bottom (551.25 39.51) Right top (596.69 807.10) points
      

        
     0
     551.2457 39.5079 596.689 807.1028 
            
                
         3
         SubDoc
         3
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 4 to page 4
     Mask co-ordinates: Left bottom (2.96 51.36) Right top (51.37 815.99) points
      

        
     0
     2.9637 51.3627 51.3706 815.9938 
            
                
         4
         SubDoc
         4
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (0.00 588.55) Right top (21.76 841.77) points
      

        
     0
     0 588.548 21.7613 841.7699 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 5 to page 5
     Mask co-ordinates: Left bottom (542.05 43.53) Right top (595.47 806.16) points
      

        
     0
     542.0531 43.5275 595.4671 806.1606 
            
                
         5
         SubDoc
         5
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 6 to page 6
     Mask co-ordinates: Left bottom (-7.90 30.62) Right top (65.20 819.95) points
      

        
     0
     -7.9032 30.6169 65.2011 819.9454 
            
                
         6
         SubDoc
         6
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 7 to page 7
     Mask co-ordinates: Left bottom (539.09 29.68) Right top (602.39 812.10) points
      

        
     0
     539.0856 29.6794 602.3911 812.0955 
            
                
         7
         SubDoc
         7
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     6
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 8 to page 8
     Mask co-ordinates: Left bottom (2.96 48.40) Right top (60.26 820.93) points
      

        
     0
     2.9637 48.399 60.2616 820.9333 
            
                
         8
         SubDoc
         8
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 9 to page 9
     Mask co-ordinates: Left bottom (548.52 58.30) Right top (594.97 819.31) points
      

        
     0
     548.5218 58.2957 594.9732 819.308 
            
                
         9
         SubDoc
         9
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 10 to page 10
     Mask co-ordinates: Left bottom (-4.96 42.62) Right top (61.46 804.91) points
      

        
     0
     -4.9564 42.6203 61.4589 804.9089 
            
                
         10
         SubDoc
         10
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 11 to page 11
     Mask co-ordinates: Left bottom (541.99 26.76) Right top (608.37 829.34) points
      

        
     0
     541.9883 26.758 608.3745 829.3368 
            
                
         11
         SubDoc
         11
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     10
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 12 to page 12
     Mask co-ordinates: Left bottom (37.52 536.74) Right top (811.62 592.20) points
      

        
     0
     37.5223 536.736 811.6242 592.2037 
            
                
         12
         SubDoc
         12
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     11
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 13 to page 13
     Mask co-ordinates: Left bottom (542.59 61.26) Right top (591.02 810.41) points
      

        
     0
     542.5919 61.2607 591.0199 810.413 
            
                
         13
         SubDoc
         13
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     12
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 14 to page 14
     Mask co-ordinates: Left bottom (10.87 48.40) Right top (55.32 814.02) points
      

        
     0
     10.8669 48.399 55.3222 814.0181 
            
                
         14
         SubDoc
         14
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     13
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 15 to page 15
     Mask co-ordinates: Left bottom (533.46 46.42) Right top (606.57 805.13) points
      

        
     0
     533.4636 46.4232 606.5679 805.127 
            
                
         15
         SubDoc
         15
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     14
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 16 to page 16
     Mask co-ordinates: Left bottom (4.95 60.45) Right top (62.42 806.55) points
      

        
     0
     4.9542 60.4465 62.4228 806.5475 
            
                
         16
         SubDoc
         16
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     15
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 17 to page 17
     Mask co-ordinates: Left bottom (544.15 36.73) Right top (623.59 816.21) points
      

        
     0
     544.1474 36.7297 623.585 816.211 
            
                
         17
         SubDoc
         17
              

       CurrentAVDoc
          

      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1
     Quite Imposing Plus 2
     1
      

        
     0
     17
     16
     1
      

   1
  

 HistoryList_V1
 qi2base





