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ABSTRACT

In this paper some approaches are presented for improving the
accuracy of dynamic internal force calculation of nonuniform gé;tghr
blade with discontinuous stiffness and mass distribution, They are 1) the
method using high-order finite elements, for which a family of nonuni-
form rotating beam conforming elements is developed, 2) the dyna_ﬁ;:ic
stiffness method, in which the internal forces of blade are determined
directly from the nodal displacements by means of the dynami”c'stiffn.éss
matrixes of the finite elements, and 3) mixed-finite-element method, in
which the method of weighted residuals is used, As an example, the
blade flapwise bending vibration has been analyzed, Bending moments
and some other numerical results are presented for a blade which has
discontinuous bending stiffness and mass distribution along the spanwise
direction, The results show that the approaches presented in this paper

are effective,
NOTATION,

¢ w— distance from center of rotation to blade root

El
F— nodal force for the mixed-element-method

bending stiffnmess

H coefficient matrix of the Hermitian polynomial
K—— stiffness matrix
| K. elastic stifiness matrix
K, centrifugal stiffness matrix
! length of finite element
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m—-— mass per unit length

M bending moment

M—— mass matrix

N—— displacement shape function ‘.

Nr force shapé funétion ‘

P applied load per unit leagth '~ - o
P-—— external nodal force _

q-— ampiiﬁde of rodal displacement

r blade radial coordinate

R—— rotor radius

$—— nodal force for the displacement method
$,—— amplitude of nodal force
T— centrifupgal force

U~ nodal displacement

W~ lateral displacement normal to the plane of rotation :
X element coordinate _ : »
Ko i’_ow matrix [1 x x2e.... x2=1]
«,p——see Eq.(3-6), (4-7), (4-8)
£ angular velocity of(rot_atio:n
e — frequency of vibration ‘ N
()—2-
Gt

()—=
C

Matrices and column vectors are denoted by bold symbols,

element matrix

1. Introduction

-Accurate p:rediction of rotor blade stresses or internal fofces, 4bend‘ing
moments, torsion moments, is one of the most difficult analytrical
problems of helicopter technology, This is due to the importance of
noanlinear, unsteady, three~di1ﬁensi6nai, compressible aerodynamics, and
the complexity of the structural dynamic characteristics of nonuniform
rotor blades, In order to improve the accuracy of the prediction,- of
course, it is the most important to improve the methods of aerodynamic
and blade motion response calculations, However, the significance of the
accuracy of calculating blade internal forces or stresses must not be-
underestimated for a certain accuracy of blade motion response
calculation, There were some examples of dynamic component redesign

during the helicopter development as a result of inaccurate blade elastic
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moment calculation, And this problem have been presented and
discussed 12 During developing a composite main rotor blade for the
y-2 helicopter, the elastic moment calculation problem was also presented,
Therefore, some approaches were explored to improve the accuracy of
nonuniform rotor blade dynamic internal force calculation.

A rotor blade is generally a nonuniform rotating beam with
discontinuities in stiffness and mass distribution, For such a structure,
the conventiona! Rayleigh-Ritz method is not suitable, but the finite
element method is a very good approach to calculate dynamic intarnal
forces, The iiaite element method has been used widely for rotor
dynamics anzlysis, including acroclastic analysis, 110 g those analysis,
however, conventional-deam~elements are generally used, Generally
speak‘ing, aczeptable modal frequencies, modeshapes and displacement
response for a variety of rotor dynamics problems can be obtained by using
this element, The derivative which determines the dynamic stress,however,
is almost always nnacceptable, And the internal forces which are
determined by the derivatives, as a rule, do not §a;cisfy.‘t'he equilibrium
conditions at the nodes and the boundary conditions, With the purpose to
overcome these disadvantages, we presented the following approaches in
this paper,

Firstly, using the high-order finite elements is suggested, For that, a
family of nonuniform rotating beam conforming elements is developed,
Secondly, the dynamic stiffness method is used, In this method the
internal forces of blades can be calculated directly from the nodal
displacements by means of the dynamic stiffness matrices, The above two
approaches are based on:the displacement method, The third approach is
using a mixed-finite-element method, im which the basic unknown
parameters are not only the displacments but also the forces of nodal
points, The formulae of the mixed-finite—element method for the rotor
dynamics analysis are derived by using the method of weighted residuals,
and a solving process is presented,

The problem of determining free vibration, response. and stability
ckaracteristics of rotor is complex, especially when flapwise and
chordwise bending and torsion are considered, Therefore, only the blade
flapwise bending vibration is amalyzed in this paper, thus, the main
idea of these approaches can be expounded simply and cleariy, And, for
the same reason, oaly the numerical results of the natural frequencies,
and the modeshapes for the displacement and the bending moment of blade

flapwise bending vibration are presented in this paper., Thesz approaches,
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however, can be applided to some more complex problems,
2, A Family of Nonuniform Rotating Beam Conforming Elements

In order to improve the accuracy of the analysis using the finite
element method based on assuming shape functions of the elements,
it is an effective approach to increase the order of the shape functions,
For example, we may use the 5th, 7th or still higher order polynomial
instead of the 3rd order, For that, there are various combination of
nodes and/or nodal parameters, For a beam elemen®, for instance, we
may increase the number of degrees of freedom at two extreme nodesli,
or increase noles within the element®, The former is not suitable for
rotor blade with discontinuously varying properties, but a very good
result can be oitained if the latter is used®), The analysis in Ref, 6 is
only for nonrotating beams, In the present work, the analysis is developed
for rotating beams, and a family of nonuniform rotating beam conforming
elements is presented,

A beam element rotating at constant angular speed 2 about an axis
o—o is considered, The bending motion is described by W (Fig.1). The
beam is assumed to he imextensional and the bending motion is purely

out of plane ( flapping).

V)
Y W
n
" - - -
L— jo
TOP VIEW END VIEW

Fig.1 Geometry of the kth beam element

It is assumed that n (>2)is the number of the nodes on the
element, There is one node at each end of the element, and other n-2
nodes (if n>2) are within the element, The displacement W and slope

c};’}:f at every node are used as nodal paramenters, The displacement
function can be expressed as
W= [Ho ()W (r)+ Hy G- 8] (2-1)

where W{(x,) and _de_}(::_Q are the displacement and slope at the node i,
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respectively, H;{(x)is Hermitian polynomial ( j=0,1,i=1,2,--8),
Obviously, W(x) is an arbitrary odd power, 2n-i, polynomial,
Equation (2~1) can be written in matrix form as

W(x)=XHU* (2-2)
where X=[1 X XPeerersx?n~1]
¢ dW] de T
U "‘[Wi el W, S ]

H=coefficient matrix of the Hermitian pclynomial

n is a2 varialle number, so W (x) is a power series of a variable number
of terms, Using these shape functions, we can develop a family of
conforming elements,

In order to improve the accuracy, the rotating beam element in
which the cross-sectional dimensions or mechanical properties may vary
along its length is considered, It is assumed that the variations of mass
m(x) and bending stiffness EJ(x) of the element can be expressed by

2
m(x)=my(1+ T+ o) (2—3)
2 3 4
EJ(0)=E3 (1481 +Bir+ B +Bia) (2—4)

where m, and EJ, refer to the values at the left end of the element, i e,
node k, [ is the length of the element, x is the local co-ordinate runing
{from 0 to [ in the elemeat, and a; (i=1, 2), B; (ij=1,2,3,4) are the
coefficients depending on the structural properties,

The mass matrix Me, the elastic stiffness matrix K:, and the
centrifugal stiffness matrix K; of the nonuniform rotating beam

conforming element can be obtained

Me=m,H (j (1+a1 T+ )x Xdx)H

%2 3 dexr gz :
K? “EJ,,HT(I (1+BI ——+B, 7z +Bs 73 -+ gt 14 ) d:s):(z d};(;f- dx )H (2—s5)

;= [ 7 dn)n

o

where (3% . T, represents the centrifugal force acting on the section x

within the element
1 r
=7, +mr,x —}——2 my (al—l"_ﬂ-— ,)xz

1 T 1 1 _ap
g (et o, e (2—6)
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in which r, is the distance from the left end of the element to the
center of rotation, and
Ty="T W/ &
T, is the centrifugal force acting on the left end section of the element,
The matrices Me, K9 and K{ of the elements with displacement functions
based on the 3rd, 5th and 7th order polynomial respectively are presented
in Ref,6 and 7, and are not given in the present paper due to lack of
space, ' '
3. _The Dynamic Stiffness Method for Internal Force Calcuiation

For a undamped vibration, the equations of motion for each

element are

MeUe - KeUr=S¢(t) (3—1)
And for harmonic vibration, the equations can be written as

(—~ oMK )q=8; (3—2)
where the vectors g and §; are the amplitudes of the nodal displacement
U¢ and the nodal forces §¢ respectively, w is the circular {requency of
vibration, Qbviously, after the q (or also w) is obtained, the nodal
forces §8; (and $°) can be easily got from (3~2),

it is interesting and imporiant to note that the nodal forces of the
two extreme nodes are just equal to intermal forces on the end sections of
the element for beam and bar types of elements, and that Eq,6 (3—2) is
similar to the force-displacement relationship inm static analysis, so
matrix D=(—w2M+K*) is defined as dynamic stiffness matrix, Therefore
the internal forces of the blade (and the beam, bar types of structures)
can be calculated directly by Eq, (3—2) {rom the nodal displacement q
and the dymamic stiffaness matrix D, This approach is called the dynamie
stiffness method, This approach is only suitable for harmonic vibration
because of using Eq, (3—2).

If ® and q are natural frequency and mode shape respectively, the
mode internal forces can be obtained by means of the dynamic stiffness
method,

It is necessary to remember that K¢ for rotating beam consists of the
elastic stiffness matrix K{ and the centrifugal stiffness matrix K,
that is

Ke=K;+K¢

It also should be noted that only the internal forces on the end

sections of the element can be obtained by using the dynamic stiffness
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method (i e Eq.(3—2)), and the nodal forces within high-order element
are not equal to internal forces,

There are some points which should be emphasized, The internal
forces which are determined by the dynamic stiffness method do satisfy
the equilibrium conditions at the nodes between neighburing elements
and the boundary coﬁditions, and-they will converge to the exact
solution if the global solution U (or also @ for free vibration) converge
to the exact solution, The accuracy of the internal forces only depends
on the accuracy of the solution U (or alse ), and it is not related to

. , . 2
the derivatives of the solution U, such as ddg

4. The Mixed- Fimte Eiement Method for the Rotor Dynamic Analyszs
In this section, the formulae of the mixed-finite-element method for

the rotor dynamic analysis are derived by using the method of weighted

residuals,® and a solving process is presented, In the mixed-finite-
element method, the basm anknowsd parameters of the problem are not
only the displacements but also the forces of nodal poiants, The o
advantage of the approa.ch is that both the displacements and the -
forces with a certain accuracy can be obtained 51mu1taneously As an
example, ‘the blade flapw1se bending vibration is still con51dered :
The dtfferentlal equation -of the blade flapwlse bending v1brat1on

can be appropriately written as

i (TW )+ mW=p (4=1)
Wi — EJ e M=10 ' (4—2)
The boundary conditions are given by ' '
M=0 - _
} ~at  r=R
M'=0
and
W=0 ’ '
} at r=e (articulated blade)
M=0 : .
or
W=0 N L
} at r=e (cantilevered blade)
W'=0 E : o,
(4—3)

According to the method of weighted residuals,!®] the formulae of
the mixed—finite—element method are derived as follows,

The blade (global domain) is divided into-a number of elements
(subdomains), In the interior of each element the displacements and the
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bending moments are assumed, respectively, to be of the forms
W==N*Ue
(4—4)
M=N:F*
where U* and F¢ are the nodal displacements and forces respectively,
They are independent, N¢ and N are corresponding shape functions,
Imposing compatibility conditions and equilibrium conditions, the nodal
parameters U° and F° can be combined into a matrix of displacements
U and a matrix of forces F on the assembled structure respectively.
The local approximation, Eq_(4—4), can be extended over the whole
domain by defining them as zero outside the particular element with
which they are associated, Then, the global approximation can be
expressed as
W=NU
: M=NsF
where U and F are undetermined independent nodal displacements and .

(4~—5)

forces respectively, and N, Ny are corresponding shape functions,
The approximate global solution Eq (4—5) is substituted into the .
- Eq.(4—1) and (4—2), The shape functions N are used as weighing for
Eq, (4—1), and Nf for Eq . (4—2) (i, e, the Galerkin method), The
weighted residual, obtained through appropriate combination of the
weighted differential equation and boundary condition residuals, is
integrated by parts, Then, the following equa{ions are obtained
—aF +K,U-+MU=P | (4—6)
a’U+BF=0 (4—7)
where matrixes a, B, K,, M, P can be formed from the corresponding
element matrices «¢, f¢, K, M°, P¢, The assembly of the element
matrices into the complete system matrices is similar to the conventional
finite element method, when utilizing the direct stiffness approach,

And these element matrices are,

o [f d(N)T  dNj
« mj-o dx dx dx

1 z 1 [
B' :'L(NF)‘T _EJ__NF dx

e £ d(NT . dN’
K=—L i T gy dx

M‘=Y0(N')T m N° dx

| |
Pr=f, (7 o dx (+—8)
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It is clear that Kf, M® and P® are the same element matrices as in
the displacement approach, K¢ is the centrifugal stiffness matrix, M is
the mass matrix, and P¢ is the external loading column matrix,

Solving the equations Eq (4—6) and Eq.{4—7), ail of the unknowns
U and F are obtained, A solving method is presented as follows,

From Eq _(4—7), F can be expressed as

F=—B-la’U (4—9)
Substituting Eq (4—9) into Eq(4—s6)
af-ta?U+ KgU+M{j:P (4~—10)
Let
K.=af-'a” (4—11)
Rewriting Eq (4—10) as
(K.+K)HU+MU=P (4—12)

Then, U can be obtained by solving Eq (4—12), and F can be
obtained from Eq (4—9),

For modal parameters determination, let P=(, the equation of
motion becomes

(K. 4K, JU+MU=0 (4—13)
Let U=qe'™*, Eq (4—13) becomes
(Ke+K; —0M)q=0 (4—14)

The natural frequencies and mode shapes can be obtained from Eq.
(4—14), and the mode internal forces can be calculated from Eq, (4-—9),

It should be noted that K, is a symmetric matrix_, Aad the eigenmodes
q are orthogonal with respect to the stiffness matrix K (=K,+K,) and
the mass matrix M respectively,

Obviously, Eq,k (4—12) and Eq, (4—14) are the same forms as in the
conventional displacement method, Therefore, many approaches and
programes used in the displacement method can be also used here Of
course, this is very convenient and wishful,

As in the displacement method, the element properties matrices
depend on the nodal parameters, the shape functions of displacement
and force, mass and stiffness distributions within the element, In order
to compare with the conventional conforming element, the mixed-finite
-elements used in this paper are uniform beam elements, in which the
ncdal displacements and forces respectively are

=[W, 0, W; 8,17
F°=[M.‘ Qi Mj Qj]T

(4—13)

Where
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dW

0= dx
_ dM
Q= dx

And the shape functions are cubic interpolation polynomials

W=a0+alx+azx2+a3x3
(4—16)
M=bo+blx+b2]{2+ngs

5. Illustrative Example and Discussion of Results

The approaches presented in previous sections have been used to
calculate the natural frequencies, the mode shapes for the displacement
and the beanding moment for many cases, And they have also been used
to calculate the dynamic stresses for the y—2 composite main rotor
blade, Some numerical results are presented here only for mode analysis
of a nonuniform discontinuous rotating articulated blade.

The blade considered has discontinuous mass and stiffness

distributiouns,
[ 3.78 0.07<{r<0.5
— 2
m(r)z} 0.655-0.026 r {“E=52% ) 0,5<r<t.25 (m)
0.675—0,042r 1.25<r<5
13000 0.07<r<0.5
EI(r)= { 5000—4000r (kg—m?) 0 5<r<i.25 (m)
1050— 120 1,25<r<s

Rotor radius R=5m

Flap hinge offset e=0.07m

Angular velocity of rotation =37 5 1/sec

In table 1 the natural frequencies @ and the bending moments EJW
for the 3rd and 5th modes are tabulated for four different cases, IHere
NB3 and NB7 represent the nonuniform rotating beam conforming
elements with displacement functions based respectively on the 3rd and
7th order polynomial, and n is the number of the elements, The results
show the good convergence of the family of nonuniform rotating beam
conforming elements, For a given number of elements, of course, high-
order element is superior to low-order element, Even though for a given
number of degrees of freedom, high-order element is also superior to
low-order element, The fact has been observed by other researchers,
Here it should be emphasized that the satisfactory values of the
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T1-28

Table 1

3rd and 5th natural frequencies © and mode shapes (moment EIW») (NB3,NB7)

} 3rd mode .. 5th mode
r(m) | NB3,n=5 | NB7,n=5 [NB3,1=15 [NB7,n=11| NB3,n=5 | NB7,n=5 |[NB3,n=15 [NB7,n=11
0.07 | —126.892 | 0.00012 | —3.18415 | 0.00016 | —1140.05 | —0.02517 | —29.6163 | —0.02515
0.50 | TI909.11 | —~1274.47 | —1306.96 | —£274.48 | —~10604.7 | —8544.49 | —8814.37 | —8544.52
—1083.57 | —1267.56 | —1261,71 | —1274.36 | —9625.03 | —8546.57 | —8567.32 | —8544.52
1.00 1159 g7 | —1140.24 —‘1160. 28 735,65 —4784 .14 | —4735,29
—1092.27 | —1160.23 —4306.30 | —4735.31
L —779.775 | —970.055 | —906.604 | —976.934 | —2053.39 | —1907.07 | —1958.06 | —1904.96
: —1022.98 § —977.079 | —973.770 | —977.098 | —877.113 | —1904.67 | —1871,97 | —1904,91
—821.286 | —823.423 689,119 |  652.693
1.50 —823,422 652.728
E1We —825.335 | —823.422 721.835 | 652.709
—534,128 | —503,880 | —507.703 | —503.897 | 4216.51 | 3203.75 | 3301.84 | 3203.58
2.00 | 404,246 | —3503.849 | —521 641 —503.898 | 3186.96 | 3212.00 | 3621.50 | 3203.59
250 ' 4z e5as | 389787 | —42.6600 594,919 1241.21 |  894.093
—51.3886 | —42.6501 832.745 |  894.084
300 490,332 484.243 | 490,323 81108 —2973.26 | —2812.66
5006.435 | 490,323 —3322,79 | —2812,69
350 913.910 1 908,743 | 922.629 | 908.734 | —4559.55 | —2097.39 | —2596,16 | —2101,40
1301.60 | 907,577 | 945.632 1 908.733 | 1465.65 | —2100.02 | —2280.59 | —2101.42
4.00 959804 1000.20 | 959,915 2422, 38 2383.58 | 2419.72
1009.48 | 959,915 2972.64 | 2419.76
4.50 468,571 532,605 | 488.819 3119 38 3699.70 | 3118.92
461.556 |  488.830 3149.65 | 3119.01
5.00 134,031 | ~—0.334985 —58.8369 |  0.010993  2584.26 | 14.8523 | —312,671 | 0.101387]
(1/sec) 163.1786] 162.7428 | 162.7520 162.7428  405.3395] 381,4113 331.7636  381.4117




moment EI'W!" can be obtained by using only a few high-order elements,

This is showed by the values of EJW" of neighbouring elements at

the

same node points, So for improving the accuracy of dynamic internal

forces, high-order-element is very effective,

In table 2 the displacements W, slopes W/,

moments EIW' and M for

the fifth mode shape are tabulated for both NB3 and NB7, The number n of
the elements is 11, Here the displacements W are normalized for deflection

of unity at the tip, M represent the moment calculated by dynamic stiffness

Table 2 5th mode shape (W-—displacement, M—bending moment)
11—elements (NB3, NB7)
W W' EIW" M
r(m) -—
NB3 NB7 NBE3 NB7 NB3 NB7 NB3 | NB7
0.07 | 0.00000] 0,00000/—0.8C378—0.80551—1062.60/—0 02515 0,00000 0.00000
—10110.5— —8533.4|—8544 .4
0.50 | 0.31662 0.31734—0.61899—0,62054 8544.52—85 .
- —-8704.78-—8544.52l-8533.4—8544.d
- —4896,28/—4735,29,—4727.3— 47352
1.00 33274 0.33367] 0.58325] 0.58249 '
0.3327 0 —4803.03/— 4735 31— 4727 .3|—4735.2
— 1959, 68— —1900.6/~1904.9
1.25 | 0.11158 0.11253 1.17142 1,17146 1904.96~19
. |—1873.91—1904,91/~1900.6—1904.9
681,844 0.27] 652.69
1.50 |—0.21648—0.21565 1.33372 1.33421 652.693 65
982.633 652,709 650.27| 652.69
3571.02 3203.58 3189.3 3203.5
2,00 |—0.60553|—0.60550—0.05081—0.04812 ) ’
. 3617.260 3203.59, 3189,3 3203.5
1244,29) 894.093 883.10 894.07
2.50 |—0.13885|—0.13966/—1.58202—1.57996 : .
835.193 894.084 883.10 894.07
~2972,70|— 2812, 66— 2805 .3 —2812.6
3.00 | 0.56545| 0.56492—0.78335/—0.78517 > 2 8
—3322.73|—2812.69|—2805.3—2812.6
— 2598, 23— .40|— 2087 .8—2101.3
3.50 | 0.38399 0.38428 1.45158 1.44868 2101.40)—2087.8
—2282.70(— 2101 ,42|— 2087 .8 —2101.3
. 2383.05| 2419.72 2416.5| 2419.7
4,00 |—0,46955/—0,46925 1.31222] 1.31255 2419.72 - 241
: 2972.51 2419.76] 2416.5| 2419.7
3700.93] 3118.92 3115.1] 3118.9
4.50 |—0.38872—0.38791|—1.80570|—1.80424 3 !
3150.720 3119.03 3115.1 3118.9
5.00 | 1.00000, 1.00000—3.17643—3,17541|—312.745 0.101387] 0.0CCCC| 0.00C00
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method, The results show that the dynamic stiffness method is very simple

and effective for 1ntu‘na1 force calcu_iatmn especxa}ly, ‘when the low-order
elements are used, Here We dnlj emphatically peint out the following facts,
1) The internal forces calculated by the method always satisfy the equilibrium
conditions and the boundary conditions, As has been stated, however,. for
the conventional compatible element method the internal forces determined
by the derivatives (such as ETW'') generally do’ not satisfy the above
conditions, Therefore, the dynamic stiffness method can simply overcome .
the disadvantage of the conventional compatible element method, 2) The
accuracy of the internal forces calcuiated by the dynamic stiffness method
only depends on the accuracy of the solutionU (or also @) of the whole
structure, and it is not related to the derivatives of the solution U (such
as W', In table 2, the values of EJW*" for NB3 are not usable, but the

values of M are quite accurate, The similar results are obtained in many .

r

other calculations, 3) Both the internal forece caleulated by the dynamxc
stiffness method and that by the derivative of the displacement converge
to the same value, but, generally, the former is higher accurate (for the -

same U ), Table 3 Natural frequencies

The natural frequencies @ for 11 {1—elements

elements model for three cases are (UB3,UB7,MB3)
tabulated in table 3, and the displacements |~ @ (1/sec)
W, the bending moments EJW" or M for | UB3 | UB7 l MB3

the same cases are presented in table 4,
Her_e UUB3 and UB7 represent the uniform

rotating beam conforming elements with

1| 37.9258 | 37.9258 | 37.9258
2| 92.7397 | 92.7393 | 92.7393
3] 162.8095 | 162.7993 | 162.7995

on the 3rd and 7th order polynomial, il 257.9381 | 257.8513 | 257.8551
and MB3 represents the mixed-element _5; 380,8590 ’ 380.4189 | 380.4489
with cubic shape functions, The results El 530,6355 I 529.1757 I 529.3037
show that both the displacements and 7[ 710.7011 l 707 ,0672 ] 707.4632
the internal forces with satisfactory é{ 928 9973 ] 920.7491 | 9218397
accuracy can be obtained simultaneously ;[1190,0589 }1171.9148 ]1174,6700

by using the mixed-finite~element method, xi?)|1514.6115 |1457.5622 |1467.2122
In comparison with the results calculated

displacement functions based respectively

I—order of frequency
by UB7, it is shown that the freqitencies

and moments by MB3 are superior to ones by UB3, The moments M by
MB3 are quite accurate, but the moments EJW' by UB3 are nof usable,
Therefore, as far as the result is concerned, the mixed-finite-element

method is superior to the conventional displacement approach,
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‘Tabled 5th mode shape (\V;displacement, M—bending moment)

11—elements (UB3, UB7, MB3)

' W ! ORIV M
r(m) . . . . :
UB3 ] UB7 ] MB3 UB3 UBY MB3
0.07 | 0.000C0 | 0.0000¢ |  0.000c0 | —1102.97 | —0.025886 | 0.000C0
| 10292, —8666.59
0.50 | 0.33053 | 0.33123| o0.33155| 02025 —8678.34
- | —8915.00 | —8666.56 ,
) | | | | —s109.04 | —4804.93
100 | 0.32550| 0.32664 | o0.32677] o090 —4811.29
03 . —4799.59 | ~4804.93
| : | - —1931.95
1.25 | 0.09975  o0.10085 | o.1cor0 | 102062 93195 1 _1933.64
’ . _ 188148 | —1931.94 |
| - 1.4
1.50 | —0.22637°| —0.22549 | —0.20622 | 7°5-314 661.422 | (o 446
| 1027.13 661,447
| o 3202.35
2.00 | —0.60836 | —0.60859 | —0.61019 | 01482 202 3209.65
o - 3574.94 3202.34
876.
2.50 | —0.13477 | ~0.13594 | —0.13622 | +99-40 422 | 51 083
759.386 876.406
| . —2819.71
3.00 | 0.5¢976 | 0.56927 | 0.57100 | —o042-22 —2826.63
SN sg11.37 | —2819.73 |
- —2101.66
3.50 | 0.38411| o0.33408 | 0.38625| 2003 —2111.34
| —2108.40 | —2101.67
2462, 2417 .08
2.00 | —0.47275 | —0.47207 | ~0.a7377 | 246280 2425 .02
2981.38 2417 .14
3130.58
4.50 | —0.39177 | —0.39163 | —0 30336 | /-2 3153. 44
3093.02 3130.64
500 | 1.0000 | 1.0000 | 1.00000| —379.923 | 0.087723 | 0.00600
6. Conclusion -

The three approaches presented in this paper have been shown to be

very effective for improving the accuracy of nonuniform rotor blade dynamic
internal force calculation, Not only the accuracy of the displacement but
also the accuracy of the derivative which determines the internal force

are improved by wusing the high-order-element

The dynamic stiffness

method can improve the accuracy of the dynamic internal force calculation

for a certain accuracy of displacements, Both the displacements and the

internal forces with satisfactory accuracy can be obtained simultaneously

by using the mixed-finite-element method A concrete analysis of concrete
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conditions mist be made to ‘determine which 'method should be used . For

example, the high-order element may be used for the"structurée: which can

be represented by .using.less elements,  If it is. necessary to: represent the

structure using more elements because of more discontiauous points iof the

structure properties or orther reasons, using the low-order elements is

still suitable . The internal forces .can be calf:uiated s1mu1taneously by the

dynamlc stiffness. method and the comventional approach (snch as EJW”)

when the conforming elements are used, However generally, when the

h1gh—orc§er elements are used Erwn should be made. acceplable and when
the low-order elements are used the internal forces should be obtamed

from the dynamic stiffness method, For the case in which using the low-

order shape function is desired and the dynamic stiffness method is not

usable, the mixed-finite-element method should be used, Qbviously, for the
conventional low-order—element computer programs which have been used,
the dynamic stiffness method is the most convenient and effective for

improving the internal force calculation if it is usable,

It should he emphasized that although the analysis and example
considered in the present paper have been limited to flapwise bending
vibration and the numerical results are from free vibration, the approaches
described herein can be extended to the more complex problems such as
coupled bending, torsion vibration, etc,
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