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Abstract

We describe a computational procedure for the simulation of maneuvers with comprehensive ro-
torcraft models. Our current approach uses model-based trajectory planning followed by model-
based predictive tracking. We describe the predictive tracker and the adaptive reduced model
on-line identification procedure. Numerical examples show that rapid and good quality reduced
model identification can be achieved by the proposed scheme.

List of Symbols

(̃•) system (comprehensive model)
quantity

(•)plan planning problem quantity

(•)track tracking problem quantity

(•)steer steering problem quantity

(•)adapt model adaption problem quantity

(•)∗ given or desired value

x̃ system states

λ̃ system Lagrange multipliers

ũ system controls

ỹ system outputs

y reduced model states

u reduced model controls

p reduced model parameters
˙(•) derivative with respect to time

t time

Ti initial time

Tf final time

J cost function

(•)h discretized quantity, as obtained
by the use of a numerical method

Introduction

We are at present working on a research ef-
fort focused on the development of tools for the
simulation of maneuvering flight with compre-
hensive vehicle models [4, 5]. In this paper we
describe some recent progress on the prob-
lems of trajectory tracking and reduced model
identification, which are critical components of
our approach to the simulation of maneuvers.

The aero-servo-elastic model M̃ of the vehicle
is formulated in the framework of flexible multi-
body system dynamics [1], and it is governed
by the following system of differential-algebraic
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equations:

f̃( ˙̃x, x̃, λ̃, ũ) = 0, (1a)

c̃( ˙̃x, x̃) = 0, (1b)

where the first set of equations, (1a), rep-
resents the equations of dynamic equilibrium
and the kinematic equations, and the second
set, (1b), represents the holonomic and non-
holonomic constraint conditions. The servo-
structural model of the vehicle is coupled with
appropriate aerodynamic models, which in this
work are represented by lifting lines and state-
based rotor inflow models. The system states
are noted x̃, while λ̃ are the Lagrange multipli-
ers used for enforcing the constraints (1b), and
finally the controls are noted ũ.

Our approach to the simulation of maneuvers
is based on the extraction from (1) of a reduced
model M that captures the flight mechanics
behavior of the vehicle, as described by a set
of system outputs ỹ computed as

ỹ = h̃(x̃). (2)

The reduced model is governed by a set of
parametric equations

f(ẏ,y,u,p) = 0,

with states y, inputs u and parameters p. The
free parameters p are computed so as to guar-
antee the matching of the plant outputs ỹ and
of the reduced model states, i.e. ỹ ≈ y, when
the two are subjected to the same inputs. We
have found that “good” reduced models for ro-
torcraft applications can be obtained by the
use of a reference analytical model augmented
with an adaptive neural element, as described
below and in References [5, 4].

The reduced model is used for: a) planning of
the maneuver path; b) tracking of the planned
path. Path planning is formulated as an op-
timal control problem defined on the reduced
vehicle model. Given a current estimate p∗ of
the reduced model parameters, the planning

problem is formulated as follows:

min
u

Jplan
, (3a)

with: Jplan = φ(y,u)
∣∣
T +

∫ T

T0

L(y,u)dt, (3b)

s.t.:f(ẏ,y,u,p∗) = 0, (3c)

gplan(y,u,T ) ∈ [g
plan
min ,gplan

max], (3d)

ψ(y(T0)) ∈ [ψ0min,ψ0max], (3e)

ψ(y(T )) ∈ [ψTmin,ψTmax]. (3f)

Jplan is the planning cost which we seek to op-
timize, typically a measure of the vehicle per-
formance. The optimization is subjected to
the satisfaction of the reduced model vehicle
equations of motion (3c), maneuver defining
constraints (3d), initial and final conditions (3e)
and (3f). The problem is solved numerically us-
ing a direct transcription approach [3].
The numerical solution of problem (3) yields
a reference trajectory y∗h , that is subsequently
tracked by the detailed aero-servo-elastic ve-
hicle model using a model-predictive con-
troller [8], as described below.
As the model M̃ is “flown” along y∗h , the re-
duced model is identified on-line, i.e. the re-
duced model M learns the characteristics of
M̃ through its adaptive nature. Since a new
improved estimate of the reduced model is
available at the completion of the tracking task,
a new planning (3) can be performed, which
yields a new tracking trajectory. Iterations be-
tween planning and tracking-learning are con-
tinued until a desired tolerance in the track-
ing error is achieved. This iterative procedure
results in the Multi-Model Steering Algorithm
(MMSA) [4], which can be interpreted as a way
to solve the maneuver optimal control prob-
lem at the level of the comprehensive vehicle
model M̃ at acceptable computational costs.
In the following, we describe our current ap-
proach to the solution of the tracking problem,
and to the associated learning or on-line sys-
tem identification phase.
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Adaptive Tracking with Comprehensive
Vehicle Models

Model Predictive Tracking The trajectory track-
ing problem is formulated within the framework
of non-linear model predictive (receding hori-
zon) control. At the current time t = T track

0 , the
plant states are x̃(T track

0 ) = x̃0, and the corre-
sponding outputs are ỹ0 = h̃(x̃0). Given the
current estimate p∗ of the reduced model pa-
rameters and the tracking path y∗h as computed
by solving (3), the future control actions are
found from the solution of the following discrete
model predictive problem on the tracking win-
dow [T track

0 ,T track]:

min
uh

Jtrack
h , (4a)

with: Jtrack
h =

∫ T track

T track
0

M(yh,y
∗
h ,uh)dt, (4b)

s.t.:fh(ẏh,yh,uh,p
∗) = 0, (4c)

gtrack
h (yh,uh) ∈ [gtrack

min ,gtrack
max ], (4d)

y(T track
0 ) = ỹ0. (4e)

The problem aims at minimizing the tracking
cost, Jtrack, which is computed as the integral
over the tracking window of the function

M(yh,y
∗
h ,uh) = ||yh −y

∗
h ||Strack

y
+ ||u̇h||Strack

u̇
.

The first term accounts for the tracking error,
while the second term penalizes the control
rates for ensuring smooth control policies. The
solution of this optimization problem satisfies
the reduced model governing equations, (4c),
together with additional desired input and out-
put constraints, (4d). Notice that the latter ef-
fect is difficult to incorporate in other control
approaches.
As for the planning problem (3), also prob-
lem (4) is solved in this work using a direct
transcription method. Since the two problems
are similar, the only difference being the cost
function and possibly some boundary condi-
tions, they can be solved using the same soft-
ware.

The numerical solution of (4) yields the opti-
mal control inputs u∗

h, which are now used for
steering the plant M̃ on the short time hori-
zon [T steer

0 ,T steer< T track]. This phase of the
problem amounts to the solution of an initial
value problem with given control inputs, and it
is performed by the coupled aero-servo-elastic
multibody-based solver. Once the plant has
reached the end of the steering window un-
der the action of the computed control inputs,
the model predictive tracking problem (4) is
solved again, looking ahead in the future over
the tracking horizon shifted forward in time
as T track

0 = T steer. This procedure results is a
feedback, receding horizon approach, and is
graphically depicted in Figure 4.
More precisely, the steering phase involves
two steps. The controls u∗

h computed on the
grid T track

h used for the solution of problem (4)
are mapped to the grid T steer

h used by the multi-
body solver, an operation which can be for-
mally written u∗

h|T steer
h

= P(u∗
h|T track

h
). The two

grids are different, since different time scales
need to be resolved in the two cases: while the
tracking problem is defined at the level of the
reduced model and captures only the flight me-
chanics scales, the steering problem is defined
at the level of the comprehensive model and
captures the vibratory response of the aeroe-
lastic vehicle model.
The second step involves the forward-in-time
integration of the plant equations starting from
the current state x̃0, i.e.:

f̃( ˙̃xh, x̃h, λ̃h,u
∗
h) = 0, (5a)

c̃( ˙̃xh, x̃h) = 0, (5b)

x̃(T steer
0 ) = x̃0, (5c)

which yields a solution in terms of x̃h and
λ̃h. The outputs are readily computed as ỹh =

h̃(x̃h). The state solution at the end of the
steering window, x̃(T steer), provides the new
initial condition for the next tracking-steering
problem. In this work, the numerical integra-
tion of the multibody dynamics equations is
based on the non-linearly unconditionally sta-
ble energy decaying scheme described in [2]
and references therein.
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Reduced Model The vehicle reduced model is
here based on a reference model augmented
by a neural network [7]. The governing equa-
tions are written

fref(ẏ,y,u) = d(y(n)
, . . . ,y,u), (6)

where (·)(n) indicates the n-th order derivative
with respect to time. Notice that higher order
derivatives (n > 1) of the outputs maybe nec-
essary to capture aerodynamic effects, intro-
duced by the coupling of (1) with suitable aero-
dynamic models. For the rotorcraft applica-
tions of this paper, the reference model fref is
a two-dimensional flight mechanics rigid body
model with rotor aerodynamics based on blade
element theory with uniform inflow [6]. The re-
duced model states are defined as the com-
ponents of the position vector of the vehicle
center of gravity, their time rates, the pitch an-
gle, the pitch rate, and the rotor angular veloc-
ity. The controls are defined as the main and
tail rotor collective, the lateral and longitudinal
cyclics and the available power.
In equation (6), the term d(y(n), . . . ,y,u) repre-
sents the reference model defect, i.e. that un-
known function that would ensure the match-
ing of reduced states and comprehensive
model outputs, y = ỹ. The defect is assumed
to be null for the kinematic equations, while it
corrects the three dynamic equilibrium equa-
tions, namely the horizontal, vertical and pitch
equilibrium.
The unknown defect d is approximated using
three separate single-hidden-layer neural net-
works, one for each dynamic equation:

di(y(n)
, . . . ,y,u) = di

NN(y(n)
, . . . ,y,u)+ ε i

, (7)

where εi is the functional reconstruction error
for the i-th component. Each single neural net-
work is written as

di
NN(y(n)

, . . . ,y,u) =W iTσ(V iTx+ai)+bi
,

i = 1,Nd , Nd = 3,

where W i, V i, ai and bi are the matrices of
synaptic weights and biases of the i-th net-
work, and σ(φ) = (σ(φ1), . . . ,σ(φNn))

T is the
vector-valued function of sigmoid activation

functions of the Nn processing elements in the
hidden layer. Finally, x = (y(n)T , . . . ,yT ,uT )T

represents the input vector for the networks.
The reduced model governing equations are
expressed in a compact form as

f(ẏ,y,u,p) = 0,

where the reduced model parameters p are
readily identified with the synaptic weights and
biases of the networks:

p=(. . . ,piT
, . . .)T

,

pi =(. . . ,W i
jk,V

i
jk,a

i
jk,b

i
jk, . . .)

T
.

Model Adaption The fidelity of the reduced
model to the plant is crucial for the perfor-
mance of the model predictive approach, both
at the planning and at the tracking levels. In
this work, proper matching between the two
models is obtained through the adaptive ele-
ment of the reduced model.
On-line adaption is here obtained based on
the minimization of the functional reconstruc-
tion error of equation (7), which is accom-
plished according to the following procedure,
illustrated in Figure 5. At first, the multibody
outputs ỹ∗h obtained during the last steering
problem by the time marching solver are pro-
cessed using a fourth-order Butterworth filter,
in order to remove the vibratory response from
the flight mechanics solution. Next, the filtered
outputs F (ỹ∗h) are projected onto the adap-
tion grid T

adapt
h , which is defined as that por-

tion of the tracking grid that corresponds to
the interval [T steer

0 ,T steer]. The projection oper-
ation can be formally expressed as ỹ∗h |T adapt

h
=

P−1(F (ỹ∗h |T steer
h

)). Time derivatives of ỹ∗h , as
necessary, are now computed based on a suit-
able interpolation of the filtered and projected
solution.
Indicating with T adapt

k the time corresponding to
the k-th node of the T

adapt
h grid, the functional

reconstruction error at T adapt
k is now computed

as

E i(T adapt
k ) =

[
ε i(ỹ

∗(n)
h , . . . , ỹ∗h ,u

∗
h)

]2
∣∣∣∣
T adapt

k

,
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with

ε i(T adapt
k ) =

[
f i
ref(ỹ

∗(n)
h , . . . , ỹ∗h ,u

∗
h)−

−di
NN(ỹ

∗(n)
h , . . . , ỹ∗h ,u

∗
h)

]∣∣∣∣
T adapt

k

.

In the previous equations, u∗
h are the in-

puts computed by solving the model predic-
tive tracking problem (4) and ỹ∗h are the cor-
responding filtered and projected outputs (with
their time derivatives) obtained through steer-
ing, all quantities being evaluated at time
T adapt

k . Notice that, at each step k, the error
E i(T adapt

k ) is a sole function of the network pa-
rameters pi.
Indicating with pi

k the currently available esti-
mate of the parameters, an updated estimate
is obtained with the steepest-descent correc-
tion

pi
k+1 = pi

k +∆pi
k,

with

∆pi
k = −η

∂E i(T track
k )

∂pi
k

,

where η is the learning rate.

Numerical Application

We consider a generic medium-size multi-
engine utility helicopter in the 9 ton class, with
a four bladed articulated rotor. At first, we plan
a trajectory using the sole reference model.
The maneuver represents a minimum time ver-
tical obstacle avoidance problem. The aircraft
starts from and returns to the same level flight
trimmed state, as described in [4]. This refer-
ence trajectory is now tracked multiple times,
to verify the effectiveness of the model adap-
tion procedure.
Tracking and steering windows were selected
as ∆T track= 2.0secand ∆T steer= 0.2sec, respec-
tively. The steering window, which dictates
the activation frequency of the predictive con-
troller, is small enough to capture the short pe-
riod mode of the vehicle. The adaption grid
has 2 nodes, and hence 2 successive param-
eter updates are performed for each steering.
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Figure 1: Pitch rate time history for the maneu-
ver tracking problem.

At first we verify the effectiveness of model
adaption. Recall that the goal of adaption is
to produce a reduced model whose states y
match as closely as possible the multibody out-
puts ỹ, when the two systems are subjected to
the same control inputs and starting from the
same initial conditions.

The verification of the achievement of good
matching performance is demonstrated by Fig-
ure 1. The solid line shows the time history of
the pitch rate output as obtained by integrat-
ing the multibody equations during steering,
i.e. by solving equation (5) on each steering
window with control inputs u∗

h obtained by the
solution of the corresponding model predictive
tracking problem (4). The dotted line shows
the pitch rate state obtained by the integra-
tion on each steering window of the sole ref-
erence model, again with the same control in-
puts u∗

h and starting from the same initial con-
ditions. Finally, the dash-dotted line gives the
pitch rate state obtained by integration of the
reduced model (reference plus neural defect
correction), again from the same initial condi-
tions and with the same control inputs.

Notice that the reference model has reason-
ably good prediction capabilities. In fact, the
dotted line follows quite closely, although not
exactly, the solid one: the temporal location
of all peaks is excellent, although the curves
clearly show a time varying offset. The dif-
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Figure 2: Fuselage pitch rate time history. Top:
first maneuver tracking; bottom: fourth maneu-
ver tracking.

ference between the two quantities is due to
the approximate nature of the reference model,
and must be reduced by the neural element by
adaption to capture the reference model de-
fect. By examining the dash-dotted and solid
lines one can appreciate how quickly the neu-
ral element reduces the gap between the two,
and in fact these quantities become extremely
similar to each other after the first two seconds
of the simulation. The rapidity of the adaption
is certainly also due to the reasonably good
performance of the reference model, which
makes the defect a relatively small quantity,
and this in turn makes the adaption a quicker
and easier task. From this point of view, we
believe that the selection of a good reference
model is a key ingredient for the success of the

overall reduced model identification and its fast
convergence.
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Figure 3: Vehicle airspeed time history. Top:
first maneuver tracking; bottom: fourth maneu-
ver tracking.

The quick identification of a good reduced
model improves the predictive capabilities of
the tracking controller, which in turn reduces
the tracking errors. This means that the multi-
body model can be controlled to better follow
the planned path. These effects are demon-
strated by Figures 2 and 3, which show the
pitch rate and vehicle airspeed time histories,
respectively. The to-be-tracked quantities are
shown using dash-dotted lines, while the cor-
responding multibody outputs are plotted using
solid lines. Both figures show on top the results
for the first tracking, and at bottom the results
obtained at the fourth tracking of the same ma-
neuver.
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Remember that in this problem the track-
ing path was generated with the sole refer-
ence model solving a performance optimiza-
tion problem. Since the reference model only
roughly approximates the behavior of the multi-
body model, the planned path can not be ex-
actly tracked by the multibody system, and null
tracking errors should not be expected. There-
fore, performing multiple trackings of the same
path, one should expect to see a reduction of
the tracking error up to the point when this er-
ror can not be reduced further. In the presence
of a “perfect” reduced model, i.e. a model that
ensures exact matching of multibody outputs
and reduced model states (perfect prediction
capabilities), the remaining tracking error is a
measure of the infeasibility of the tracking path.
This could be reduced only with a new plan-
ning, as described in [4].
Examining Figure 2, it appears that the
planned pitch rate can be followed very closely
even at the first tracking of the whole maneuver
(upper figure). An appreciable error is present
only in the very first seconds of the simula-
tion, when the neural element has not yet con-
verged.
Figure 3 shows the airspeed tracking. In this
case it appears that the initial error in the first
seconds of the maneuver, when the neural el-
ement has not yet converged, has a less local
effect. Observing the figure on the bottom, it is
clear that the tracking error has been substan-
tially reduced from the first to the fourth track-
ings of the maneuver. It was observed that by
repeating the maneuver further, this error did
not change in an appreciable manner. As pre-
viously noted, this remaining tracking error is
not due to a deficiency of the reduced model
or the tracking controller, but to the effective in-
feasibility of the planned path for the multibody
model.

Conclusions

We have described a procedure for on-line
reduced model identification. The reduced
model captures the flight mechanics charac-
teristics of a detailed aero-servo-elastic virtual

model of a vehicle, and enables its model-
based control for the simulation of maneuver-
ing flight conditions.
The reduced model is formulated as a refer-
ence model augmented by an adaptive neural
element. The use of the reference model en-
sures that reasonable performance is achieved
even before any learning has been possible.
Furthermore, it substantially eases the adap-
tion process, since the neural element must
only be trained to capture the model defect,
which is small if the reference model is ade-
quate.
We have found that the use of independent
neural networks for the identification of each
single defect component, as opposed to using
a multi-output network, speeds up the learn-
ing phase at a negligible cost increase. Max-
imal use of the available information is made
by using a cascade steepest-descent update
for each coarse grip node in the steering win-
dow.
The fast learning convergence and the good
observed matching between reduced and full
models ensure excellent predictive perfor-
mance of the controllers, both at the planning
level (not investigated in this work), and at the
tracking level.
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and Foss, B.A., “State and Output Feed-
back Nonlinear Model Predictive Control:
An Overview”, European Journal of Con-
trol, Vol. 9, 2003, pp. 190–207.

29.8



Tracked trajectory *y

DT
track

Predicted output y

T
0

track
T

track

DT
steer

T
0

steer
T

steer

Actual output y

T
0

T

Figure 4: Schematic illustration of model predictive tracking, with the indication of the to-be-
tracked (planned) trajectory and the system (actual) and reduced model (predicted) output time
histories.

Nodes of the tracking grid Th

track

T
0

track T
track

T
0

steer
=T

0

adapt
T

steer
=T

adapt

y*

Nodes of the steering grid Th

steer

y*
y

T
k

adapt

y0

Cascading parameter updates

Figure 5: Illustration of model adaption during tracking, showing the details of the different
temporal grids.

29.9


