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Unsteady curvilinear motion of a helicopter on the ground is nothing similar to the motion of a car or the 
ground motion of a plane. Calculations carried out have allowed us to determine conditions of the helicopter 
running takeoff and its tipping over when making turns at taxiing. 

1. Fonnulation of the problem 

The conventional dynamics theorems were employed to solve the problem of helicopter ground unsteady curvilinear 
motion, yet supplemented with three ground reactions at the pcints where the helicopter wheels touch the runway. 
Such a methodic is relevant to both aircraft and vehicles ground motion analysis. However the nose landing gears of 
the nowadays planes prevent them from tipping over at taxiing, while only loss of the lateral stability makes vehicles 
tip over. It is all the way about with the helicopters as the pilot can always counteract banking in progress (which 
leads to tipping the helicopter over) by deflecting the swashplate. 

In addition, the helicopter ground motion differs from that of the plane or the car for they apply the nose landing gears 
to make turns, as well as differential braking of the main landing gears and changing the engine pcwer. The single­
rotor castoring helicopter makes tums by changing the tail rotor thrust, while the helicopter with running engines 
suffers the torque reaction in the plane of motion. 

2. Equations of motion 

The helicopter motion is analysed in the c.g.-<:entered body axes (fig.!). The underlying surface restricts the helicopter 
DOF in the vertical direction, pitching-up, and rolling; so the conventional system of the motion differential equations 
is as follows: 

mVx = Tsin&- H- X 1 -Gsin.9 0 - F"' 

mV, = sign,(Za +ZJ, 

Mr = M, - T,,L, +My . /. 

Za = Tsiny +S- T,, +Z1. 

DY17- I 



1 

s1gn2 = 
0 

Where 

if 

if 

if 

if 

IM,J 2: 

~I •. , I < 

24111 EL'ROPE./u~ RoTOCRAFT FORlJ1o.1 

~IARSEILLES, fRAI'~CE- 15TH-17TH SEPTEMBER 1998 

I(F~ -F~)%+z,c[ 
[<F -F ':_+z c[ { r) 

2 
u 

m, G. J,- ti1e helicopter mass, gravity and yawing moment of inertia respectively; 

Vn V1 - tile forward speed components: 

T, H, S -the tilTUst, longitudinal and lateral forces of the rotor; 

T,n L~ -the tail rotor thrust and ti1e helicopter e.g. -tail rotor distance; 

xfi zfi }cfy- the aerodynamic forces and yaw moment applied to the fuselage; 

F,. Z,. - the tangential and lateral forces of reaction applied to the landing gears; 

F1• F, - the tangential forces applied to the left and right main landing gears respectively; 

b, c -the track and distance between the landing gear axis and helicopter e.g.; 

E, [) 0 - the angle of ti1e rotor axis setting and helicopter static ground angle; 

y - the helicopter angle of roll. 

At a low speed of the helicopter ground motion (V<50 kmlh) the tilt of ti1e rotor cone, lateral force and fuselage 
aerodynamic moments can be well neglected: 

'u H+H"" TD;t, 

T s S+ s "'TDry. 

Where 

x. 11 are tile swash plate deflections in the longitudinal and lateral planes accordingly; 

D is the kinematics coefficient; 

T H, T s - time constants responsible for the rotor dynamic properties. 

The rotor and tail rotor thrust, fuselage drag are determined by the conventional aerodynamic analysis with regard to 
the underlying surface being extremely close to the helicopter. 

3. Forces applied to the landing gears 

Normal reactions acting on the nose, left and right landing gears ( P, , P, , P,) we find from the moment equations 

obtained for all the forces applied to the landing gears at the point where the wheels touch the ground After some 
obvious transformation [3] we have the following set of equations: 
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P, =-[(G-T)c+Txm -M,], 

a 

I I 
P =-A--B 1 2a b ' 

I I 
P =-A+-B 

' 2a b ' 

A=(G-T)d-Tx +M. m ., 

h 
B = M + 2-"'- L\.eG. 

X b 

Where 

a = c + d - the w heelbasc; 

L\.e - the main landing gears deformation difference; 

xm -the longitudinal center of gravity. 

The longitudinal moment M, and lateral one l'vf x the helicopter is ex-posed to are as follows: 

Where 

y m,Y,, ,hm -the distances between the helicopter center of gravity and the rotor plane of rotation, the tail rotor axis 

and ground snrface accordingly; 

OJ Y - ti1e helicopter yaw rate. 

Having summed up all the three equations for the landing gears reactions we obtain ti1e following: 

P, + P1 + P, = G - T. 

Tims generally in case of unsteady ground motion the sum of the landing gears normal reactions keeps constant, while 

ti1c nonnal reactions get re-distributed among the landing gears. In particular, if P, = 0 the left landing gear totally 

1 1 
relieves the load. When -A --B < 0 , tile left landing gear raises off the ground and the helicopter banks 

2a b 
forward and to the right about the q-q axis (which is the tipping over axis, refer to fig. 1), P, = 0 till the mentioned 

condition is valid. 

The tangential and lateral forces of the ground reaction applied to an i-th landing gear are determined from the 

correspcnding normal reactions P, and coefficients of friction fi : 

Here the following condition is valid for the nose castoring landing gear: Z" = 0, while for the rest of them 

F, = Fl + F,' z 0 = z I + z'. 
In general, the following ex-pressions are valid for the nnsteady gronnd motion of the helicopter (taking into account 
the main landing gears veering and braking): 
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Where 

! 1 -the coefficient of rolling friction; 

J, _ the coefficient of the veer drag; 

l _ the coefficient of friction; 

).. = 110 
-

11
b _the relative wheel skidding from the rotational speed of 110 to nb ; 

n, 

fx (A. ),],<>l ,f, (,8 ,P, ),]}Pl are experimental data [1] shown in fig_2. 

Note should be taken that 

• J, = fx (A.) = 0 at free rolling that lacks wheel veering and braking; 

• fx (A.) = O,],<>l = I at stringent rolling with wheel veering under the lateral force; 

• f. = 0 at rectilinear wheels motion with account of friction_ 

The maximum values of the fuselage tilt due to the difference in the shock struts and tires compression while the 

helicopter banks and tends to tip over equal 3' ___ 5'. whereas the tipping over angle reaches 30' .. .40'. Further we 
assume that 

• helicopter tipping over and preceding banking has non-periodic nature, which allows us to consider only 
static properties of the landing gear shock struts and tires; 

• changing of the aerodynamic and inertia forces arms about ti1e tipping axis due to the difference in the shock 
struts and tires compression becomes significant after one landing gear has raised off the ground; 

• ti1e main landing gears compression does not in1pact ti1e l!ack, and turning of the nose castoring landing gear 
does not influence the wheelbase, thus keeping the tipping axis motionless. 

The shock strut and tire compressions (e"and e,accordingly) comprise the landing gear deformation: 

Since ti1e helicopter main landing gear shock strut is placed at the angles of ,;1 and ,;, about the vertical reference 
planes (figure 3), ti1en 

Where e, is the shock strut compression in tlJe direction of its 011'11 longitudinal axis; 

rp, = cos.;1 cos.;, is the shock strut gain. 
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TI1e shock strut work 

As = Pses = P;e, 

where we find the shock strut axial loading: 

ps = P; 

here P, is the main landing gear radial loading. 

TI1e conventional curves for the tires and shock struts are used to determine the tire compression under the wheel 
radial loading P, and shock strut compression under the axial loading P, (the shock strut charging is assigned). 

4. Helicopter banking dynamics 

A tendency to tip over is typical of the helicopter (equally it is fair for any vehicle), and can come true under some 
crucial conditions about the q-q tipping axis, which comes through the points where the nose landing gear and one of 
the main landing gears touch the ground TI1e following differential equation describes helicopter banking (m, is the 
banking rate) under the tipping momentlvf,: 

1, w, 

TI1e rigid body moment of inertia J, about the intersected and parallel axes is 

J, =lrcos' x+J,sin' x+m(h; +d'sin' x). 

The banking angle y, made with the horizon determines angnlar position of the line I (refer to fig. 1,3), and can be 
found from the following differential equation: 

at the same time till the helicopter starts banking 

. hm r =arcsm-. ,, I 

Titis banking angle y, supplements the traditional landing gear anti-nosing over angle Y=, y qo = ~ - y nv· Titis 

banking angle y, enables us to identify the very event of tipping over (when the resultaot vector F •• of the forces 
applied to a vehicle crosses the ground outside the triangle formed by the points where the vehicle wheels touch 
the ground [2]): 

n: F., 
=--arctg--. 

2 G-T 
77: 

When r q = -' tipping over is inevitable. 
2 

The banking moment M, influencing the helicopter after a landing gear has raised off the ground, is determined 
with the use of the d' Alarnber principle and the one of the connection release: 
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TI1e rotor damping moment is assumed equal to the lateral damping moment M;• ""AI:·. 

Let us assume U1at helicopter starts banking at a moment to when U1e normal reaction on the wheel internal in turn 

equals zero, while y q = y q, TI1e banking leads to eiti1er side-forward tipping over ( lr q I ?: ~ ) or on reaching some 

banking angle lr q I < ~ U1e helicopter tends to come back on three wheels ( lr q I > y q, ). At the same time while in 

banking it moves on the ground unsteadily along a curvilinear pati1 on two landing gears (the nose landing gear and a 
main one). 

5_ Characteristic results obtained from modelling 

All tilC results adduced below have been obtained for U1e Mi-8 production-line helicopter thorough studied in various 
fligllt tests and long-lasting operation. 111C latter was especially useful for verification of the developed math model. 

Figure 4 presents comparison of the data obtained from fligl1t tests (solid lines) '>'<ith tile ones obtained from the matl1 
modelling of the helicopter regular running takeoff on U1e concrete runway (dashed lines). TI1e piloting technique and 
main kinematic parameters at takeoff were maintained following the Flight Manual for the mentioned helicopter. 

One can easily sec that on the whole experimental data agree well with the ones obtained from modelling. A similar 
pattern is shown in fig.5, where tl1e comparison is drawn for an overloaded helicopter takeoff on the nose landing gear 

while the main landing gears raise off the ground (the nose-down pitching 9 = -(8' ... 12')). This considerably 
improves the rotor propulsive force and takeoff acceleration. TI1e takeoff time and ground run get mice as less in 
comparison wiU1 the regular running takeoff on U1rce landing gears. Russian pilots of the Mi-8 and Mi-24 military 
helicopters fully took advantage of this very effective takeoff pattern in Afghanistan [4]. 

Now in conclusion I'd like to draw your attention to the most complicated and dangerous though design helicopter 
motion- abrupt turns at taxiing, which have often entailed tipping over and damage to the helicopters. 

Let us consider a right tum at a constant speed of taxiing. TI1e helicopter enters the turn by a sharp deflection of the 

right control pedal, which increases the tail rotor setting by /1rp ~ following a linear law from its balancing value to 

nearly critical one, which implies the right landing gear load relief and helicopter left-forward banking followed by an 
equally sharp linear deflection of the left control pedal to counteract the banking (fig.6). 

Tilis banking is mainly due to the lateral component of the centrifugal force and lateral moment of the tail rotor thrust 
that appear after the rigl1t pedal has been deflected to enter turn. The other things being equal, the outcome depends on 

both duration of the exposure and amount of the disturbance t1rp, , i.e. the result depends on the disturbance impulse. 

The tipping over however takes no longer than 3 s after the right landing gear has raised off the ground (the value of y, 

comes from its initial value y,0 to the limiting value y,= 90' ). 

An excessive collective pitch of the rotor at taxiing (e.g. rp0 = 4' vs. regular rp0 = 2') makes the helicopter bank 

faster, all the other things being equal, including equal disturbance from the tail rotor. This phenomenon is due to the 
destabilizing effect of the rotor, which promotes unsteadiness of the helicopter ground component of the centrifugal 
force at turns. Tipping over has never happened to the helicopters moving at a speed under 10 km!h, no matter how 
abrupt were the turns they were making. Finally, slimy ground worsens the helicopter motion. A gain of the speed is 
one more crucial factor making taxiing turns unsteady for it increases the lateral dynamic response at taxiing turns 
(larger coefficients of friction and sliding) for both the longitudinal and lateral braking becomes much more 
si grtifi cant. 

Generally pilots can employ the directional control pedal, cyclic pitch control stick and collective pitch control lever 
(or combine the controls) to counteract banking after a main landing gear has raised off the ground by proportional 
deflections of various magnitude and time lag. 

Note should taken that sharp displacement of the pedals may hold up banking of the helicopter yet does not avert its 
tipping over (refer to fig.6, dashed curves). 
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Fig.2. The influence of helicopter movement parameters on coefficients of friction 
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Fig.4. Tlze main parameters of /ze/icopter regular running takeoff on three landing gears 
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Fig.6. 11te response to a sharp deflect[an 
of the right control pedal 




