
 

NASA/ARMY/MIT ACTIVE TWIST ROTOR CLOSED-LOOP CONTROL TEST  
FOR VIBRATION REDUCTION 

 
SangJoon Shin  Carlos E. S. Cesnik 

The University of Michigan 
Ann Arbor, MI 48109, U.S.A. 

 
Steven R. Hall 

Massachusetts Institute of Technology 
Cambridge, MA 02139, U.S.A. 

 
Abstract 

 
Closed-loop control experiments were 

conducted with the integrally twist-actuated 
helicopter rotor blades for reducing vibratory loads 
developed in forward flight. The rotor is a four-
bladed fully articulated Active Twist Rotor (ATR) 
system. The integral twist deformation of the blades 
is obtained using Active Fiber Composite actuators 
embedded in the composite blade construction. The 
experiments were conducted at NASA Langley 
Transonic Dynamics Tunnel. During the test, rotor 
system response characteristics were first identified 
with respect to the blade twist actuation. Since a rotor 
in forward flight is a time-periodic system, the 
adopted methodology requires the determination of 
multi-component harmonic transfer functions. 
However, identification results indicate that the rotor 
system may be treated as a linear time-invariant 
system under the level flight conditions tested. The 
designed closed-loop controllers featured multi-
harmonic and multi-mode characteristics. For the 
four-bladed ATR system, 4/rev is the primary target 
frequency for vibration reduction. There was also a 
significant 1/rev normal shear vibratory component 
(associated with blade tracking). The two cyclic 
modes were used to reduce the 4/rev vibration while 
the collective mode was employed for the 1/rev 
vibration. More than 40 dB of the hub normal shear 
vibratory load (lb) was eliminated at 4/rev. Another 
significant reduction was observed at 1/rev. Due to 
the open-loop characteristics of the ATR system, the 
other components of the fixed-system loads at 4/rev 
were in general reduced when minimizing the normal 
shear component.  There were, however, increase in 
some of the higher frequency components of the 
vibration.  

 
Nomenclature 

 
CT non-dimensionalized rotor thrust coefficient 
d disturbance on the measurement 
D2 second-order derivative operator matrix 
e error vector 

G transfer function in Laplace domain 
G harmonic transfer function estimate 
Gi harmonic transfer functions 
J cost function 
n number of data points in the input vector 
nh number of harmonic transfer function 
N  number of blades 
td actuation period 
tp no actuation period between chirps 
T plant period 
Td delay time 
T control response matrix 
u vector of N/rev actuation amplitudes 
U(jω) input matrix in frequency domain 
U Fourier transformed input vector  
Y(jω) output matrix in frequency domain 
Y Fourier transformed output vector  
z response of the plant vibratory load 
z vector of vibration amplitudes 
zo  vector of baseline vibration amplitudes 
α weighting scalar for D2 
αS rotor shaft tilt angle  
φcl closed-loop response spectrum  
φol open-loop response spectrum  
ΦUU auto-correlation of U  
ΦUY cross-correlation of U and Y 
µ advance ratio 
ωP primary frequency of the plant 
Ω rotor rotational frequency 
ψ blade azimuth angle 
 

Introduction 
 

Higher harmonic control and individual blade 
control have been proposed as ways to reduce 
helicopter vibrations (Ref. 1, 2). These methods 
directly modify the excitation forces, principally 
aerodynamic forces acting on the rotor blades, to 
reduce or eliminate vibration. For a closed-loop 
control implementation coupled with these methods, 
the so-called T matrix approach is usually used to 
identify system transfer functions and determine the 
design of controllers (Ref. 1, 3, 4). More advanced 
control algorithms based on the basic T matrix 
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approach have also been developed and tested on an 
experimental rotor system in the wind tunnel (Ref. 1, 
3, 4). Flight test on a modified OH-6A aircraft was 
also conducted successfully (Ref. 4). These 
controllers, in general, exhibited satisfactory 
performance in vibratory load reduction for either 
fixed or rotating-system loads. However, certain 
problems were identified that include excessive 
power requirement, limitations on actuator excitation 
frequency, and the extreme mechanical complexity 
required for hydraulic sliprings for IBC. 

A variety of actuation mechanisms based on 
active materials have recently been suggested to 
overcome those problems shown in the conventional 
HHC (Ref. 5-7). By replacing the traditional 
hydraulic systems with active material-based 
actuators, potential advantages can be obtained in 
terms of weight, power consumption, and bandwidth. 
In the present study, an integral twist actuation 
concept is chosen among the various 
implementations (Ref. 8). Although each 
implementation results in different physical 
configuration, the closed-loop control may be 
developed from a common HHC scheme. A control 
algorithm based on the T matrix approach was 
implemented successfully on an active rotor blade 
with trailing edge flap driven by an X-Frame actuator 
in hover (Ref. 9). A similar scheme using optimal 
control theory was investigated analytically for 
possible application on a flap-actuated active rotor 
system (Ref. 10).  

The NASA/Army/MIT Active Twist Rotor 
(ATR) program was conducted to investigate integral 
blade twist actuation for helicopter vibration 
reduction in a more comprehensive fashion. It is a 
collaborative research effort between the U.S. Army 
Research Laboratory, at NASA Langley Research 
Center, and the University of Michigan/MIT. 
Throughout this program, analysis and design 
methodologies were explored regarding an active 
blade with embedded actuators (Ref. 11). Using these 
methodologies, a prototype ATR blade was designed 
and fabricated for bench/hover tests (Ref. 12-13). 
After minor design modification, a set of active 
blades were manufactured and tested in forward 
flight (Ref.14-15). During the open-loop forward 
flight test, significant impact on both fixed- and 
rotating-system loads was observed from a prescribed 
blade twist actuation (Ref. 14-15). The success of the 
open-loop test motivated the development of an 
effective closed-loop controller for the ATR system. 

For the successful design of a closed-loop 
controller, it is essential to understand in advance the 

transfer function relationship, for example, between 
the fixed-system loads and blade twist actuation. In 
the conventional T matrix approach, the 
characteristics of the system are determined only at 
the single frequency of interest by typically using 
open-loop sine-dwell test (Ref. 1, 3, 4). However, this 
approach neglects the importance of the system 
response at nearby frequencies, which may result in 
limited performance and potential instabilities of the 
closed-loop system.  

Recently, transfer function relationships for 
different active rotors were identified experimentally 
over a wide range of frequencies using sine-sweep 
actuation (Ref. 9, 16). All these tests and the 
corresponding identification were conducted in 
hover. In forward flight, however, helicopters present 
a more complex behavior. While a helicopter rotor is 
a time-invariant system in hover, it becomes time-
periodic in forward flight due to the periodicity from 
the aerodynamics environment. It is also known that 
the characteristics of a linear time-periodic (LTP) 
system can be completely described by multi-
component harmonic transfer functions (Ref. 17, 18). 
Also, a practical system identification methodology 
was recently developed to estimate such multi-
component harmonic transfer functions for a 
helicopter rotor in forward flight (Ref. 19). 

This paper presents the closed-loop control 
studies for vibration reduction of the ATR system. It 
describes the methodology employed for system 
identification and the rotor characterization as LPT or 
LTI during forward flight. Continuous-time 
controllers are then designed based on modern 
control approaches. Multi-harmonic and multi-mode 
controller structures are implemented and tested in 
the ATR. Detailed discussion of the experimental 
results and corresponding conclusions are presented 
herein.  
 

ATR characteristics 
 

The original requirements for the ATR blade 
came from an existing passive blade used by NASA 
Langley. The baseline (passive) system had been well 
studied and characterized over the years, and is 
representative of a generic production helicopter 
(Ref. 20). The ATR blade was designed based on the 
external dimensions and aerodynamic properties of 
the existing baseline blade to be tested in heavy gas 
(R134a) medium.  Table 1 summarizes the general 
blade dimension and shape characteristics.  
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The ATR blade employed a total of 24 Active 
Fiber Composite (AFC) packs placed on the front 

spar only, and distributed in 6 stations along the 
blade span (Ref. 17). Figure 1 shows basic blade 
planform and cross section characteristics selected 
for the ATR prototype blade. The front spar was 
further reinforced by one more 0/90° E-Glass ply 
added to the prototype blade design. Blade properties 
in Table 1 and the fan plot shown in Figure 2 are 
based on the final ATR design. The material 
properties of the passive prepregs and the AFC plies 
used in the blade are presented in the appendices of 
References 11 and 13.  
 

LTP system characteristics 
 

In a linear, time-periodic system, a sinusoid 
input at single frequency ω generates a superposition 
of sinusoids at several frequencies of various 
amplitudes and phases. The multiple output 
frequencies are the input frequency modulated by the 
plant frequency ωP, i.e., ω, ω+ωP, ω-ωP, ω+2ωP, ω-
2ωP, … Although the number of frequencies to be 
superposed is theoretically infinite, they may be 
truncated for practical purposes, and the smallest 
number of them are retained, which adequately 
represents the system dynamics. Consider, for 
example, that only three frequencies in the output are 
to be accounted for. Then, the output Y comprises of 
the linear combination of the responses due to inputs 
at frequencies ω, ω+ωP, and ω-ωP. This is equivalent 
to considering the system output as a linear 
combination of three different harmonic transfer 
functions (each corresponding to one of the three 
frequencies): G0, G+1, G-1, respectively. Thus, 

 
(1) 

 
 

 
Table 1. Characteristics of the ATR Blade 

 

Description Value 

Rotor type Fully articulated 
Number of blades 4 
Blade chord 10.77 cm 
Blade radius 1.397 m 
Solidity 0.0982 
Section airfoil NACA 0012 
Blade pretwist -10° 
Hinge offset 7.62 cm 
Root cutout 31.75 cm 
Pitch axis 25% chord 
Tension axis 34.4% chord 
Center of gravity 17.9% chord 
Lock number 9.0 
Tip Mach number 0.6 
Centrifugal loading at tip 738.5 g 
Rotor speed 687.5 rpm 
Rotor over speed 756 rpm 
EA 1.787 101 N 
GJ 3.143 101 N-m2 
EIflap 4.419 101 N-m2 
EIlag 1.153 103 N-m2 
Sectional torsional inertia 3.810 10-4 kg-m 
1st torsional natural frequency 
at 100% rpm  

6.97/rev 

Twist actuation at 0 rpm, 
2,000 Vpp/0 VDC  

2.46°/m (peak-
to-peak) 

Blade chord, c (4.24)

Blade radius, R (55.0)

12.5

6.87

Coincident flap-lag hinge location (3.0)

Blade pitch axis

(0.25 c)

AFC actuator plies

(top and bottom)

Center of

rotation

0.191 0.181

0.476

1.88

(Unit:inch)

4.24

Nose
E-Glass 0/90
S-Glass 0
E-Glass +45/-45
E-Glass 0/90

Active Region
E-Glass 0/90
AFC +45
E-Glass +45/-45
AFC -45
E-Glass 0/90

Lap Joint Region
Active region plies +
Web plies +
Fairing plies

Fairing
E-Glass 0/90

Web
E-Glass 0/90
E-Glass 0/90

Figure 1.  Planform and cross-section of the ATR 
prototype blade (Dimensions are in inches.) 
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A linear system represented by Equation (1) is 
depicted in the block diagram in Figure 3. 

However, since there is only one equation 
available in order to estimate three transfer functions 
G0, G+1, G-1, the identification problem becomes 
underdetermined. This leads to the need for three 
different input applications, in order to obtain three 
independent equations, each of which is similar to 
Equation (1). Due to the periodic nature of the plant 
under consideration, it is important to account for the 
time of application of each input relative to the plant 
period T. In order for the plant behavior to be 
completely analyzed, multiple identical input signals 
are applied which are evenly distributed over the 
plant period. In Figure 4, an example of the input 
signals is shown. There, three input signals are 
created in sine-sweep (chirp) form with uniformly 
separated initiation interval Td over the plant period 
T, where 

 
(2) 

 
Among the three input signals, the first one 

should have no delay between the start of the plant 
period and its initiation time. Then, the input U and 
output Y0 can be modeled as in Figure 4. For the 
second signal, there should be a delay Td seconds 
between them, and the input can be described as 

dTjejU ωω −)( , which results in a block diagram shown 

in Figure 5. Similarly, the delay for the third signal is 
2Td. Then, the vector of outputs Y can be expressed as  
 

 
 
 
 
 

(3) 
 

 
 
 
 
 
 
where Y1/3 and Y2/3 are the outputs due to the second 
and third chirp signals, respectively. Also, W is 

defined as W = dpTj
e

ω  = ej2π/3. Equation (3) can be 
written simply as 

(4) 
 

or to compute the harmonic transfer functions 
directly 

 (5) 
 
        The derivation so far is based on the assumption 
that the output measurements due to each input signal 
must be conducted by allowing the response to settle 
down significantly before the next input signal is 
initiated. Then, it can be assumed that Y0 is only due 
to the first input, Y1/3 due to the second input, and so 
on. However, to make the identification process 
faster, input signals with less non-actuation time 
between successive signals are preferred. This leads 
to the idea of treating the entire input sequence as a 
single input signal, and similarly for the output 
signal. However, this will once more render the 
problem underdetermined. Further assumptions on 

G1(jω)

G0(jω)

G−1(jω)

Y(jω)U(jω)

U(jω−jωp)

U(jω)

U(jω+jωp)

ejωpt

e0

e−jωpt

 
 

Figure 3. LTP system block diagram with three 
harmonic transfer functions 
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Figure 4. Input signal generated with appropriate 
time intervals over the plant period 
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Figure 5. Delayed input signal and corresponding 
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the characteristics of G are required to make the 
problem well-defined. Therefore, a methodology to 
estimate harmonic transfer functions is adopted, 
which makes the problem constrained with these 
additional assumptions. 

 
LTP system identification 

 
The identification methodology developed in 

the previous section requires three sets of data, 
namely the input u, output y, and time measurements 
ψ (at which u and y occur). For rotor system 
identification, the information of ψ can be extracted 
from the record of the azimuth measurements. These 
data are recorded during the experiment in a discrete 
manner with some fixed sampling frequency. 
Therefore, all the data can be assembled in a vector 
of length n, where n is the total number of the data 
points. The input data can be expressed as 

 
(6) 

 
y and ψ are similarly defined. If nh harmonic transfer 
functions of the system need to be identified, an nh × 
n matrix U is constructed according to Equation (3) 
with an appropriately modulated and Fourier 
transformed vector u at each row, so that 

 
(7) 

 
where m = (nh -1)/2. Similarly, Y can be constructed 
as the discrete Fourier transform of the vector y as 

 
(8) 

 
Recalling that the empirical transfer function 

estimate of a linear time invariant (LTI) system 
involves the power and cross spectral densities of the 
input and output, these spectral densities can be 
defined in a similar manner for the LTP system as 

 
(9) 

 
 
where U* is the complex conjugate of U. Then, the 
transfer functions can be obtained for an LTP system 
similarly as in LTI case as  

 
(10) 

 
where G(ω) is the transfer function estimate with 
each harmonic transfer function Gi at its row as 

 
(11) 

 

Notice, however, that the computation of the 
transfer function based on Equation (10) will not 
yield an accurate result since only a few harmonics 
are considered instead of an infinite number. The 
cumulative effect of the neglected harmonics may be 
significant. Suppose that a given system has 
inherently Nh transfer functions of significant 
magnitudes, but only nh of them are evaluated. Then, 
its output can be expressed as 

 
 

(12) 
 

 
where the un-modeled part essentially appears as the 
error e. In addition to this modeling error, the 
identification problem is still underdetermined. To 
solve this problem, an assumption is made that the 
transfer functions are relatively smooth, so it does not 
present drastic variations with frequency. This 
generates a minimization problem with a cost 
function J, which penalizes a quadratic error and the 
curvature of the transfer functions, so that 

 
(13) 

 
where D2 is a second-order differential operator, and 
α is a weighting factor. That is, the penalty term 
penalizes the curvature of the transfer function. 
Taking the derivative of J with respect to G in 
Equation (13) and setting it to zero, the minimizing G 
can be found as 

 
(14) 

 
where D4 = D2⋅ D2. Equation (14) is the final form 
that is utilized in the following system identification. 
Other issues on the practical implementation of 
Equation (14) and their solutions are provided in 
Reference 19. 
 

Traditional HHC algorithm 
 

Under the assumption of quasi-steady operation 
and linearity, the amplitudes of the sine and cosine 
components of the vibrations at the N/rev frequency 
can be formulated as  

 
(15) 

 
where z is a vector of vibration amplitudes (cosine 
and sine), T is the transfer matrix, u is the vector of 
the actuation amplitudes, and zo is the vector of the 
vibration amplitudes with no actuation (baseline). In 
that equation, zo is the disturbance to be rejected. The 
control algorithm traditionally adopted by previous 
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researchers (Ref. 1, 3, 4) is based on the idea of 
canceling the disturbance zo by use of the higher 
harmonic swashplate input u. Since the disturbance zo 
is unknown, the approach is to measure the vibration 
at each time step and adjust the swashplate input u to 
just cancel that disturbance. The resulting control law 
is  

 
(16) 

 
where the subscripts denote the index of the time 
step. The measurement of the vibration zn is 
accomplished by a Fourier decomposition of the 
vibration at the N/rev frequency, over the n-th time 
period. Hall and Wereley (Ref. 21) showed that the 
discrete- time system could be reduced to a simple 
LTI system when the helicopter dynamics are 
assumed to be linear and time-invariant (LTI), with 
transfer function G(s). Then the control response 
matrix T is a 2 × 2 matrix and has the form 

 
(17) 

 
 
where 
 
 
With a slight simplification, the control law can be 
expressed in continuous time as shown in Figure 6. 
This control law is equivalent to an LTI compensator, 
K(s), as given by 

 
 

 
 

(18) 
 
 
 

 

 
where T is the sampling period of discrete-time 
controller. Furthermore, this LTI feedback 
compensation structure turns out to be essentially the 
same as a classical disturbance rejection algorithm, 
which will eliminate a harmonic signal at constant 
frequency. Stability and performance issues of the 
closed-loop system associated with this feedback 
compensator are discussed in Reference 32. This 
analytical form enables the prediction of the stability 
of the closed-loop system before the controller 
implementation. Furthermore, this classical control 
formulation allows for control performance 
improvements by adjusting the control law to 
increase stability margins, increase overall gain, and 
so forth. 
 

Experimental setup 
 

The experiments for the system identification 
and closed-loop control of the ATR system were 
conducted at the Transonic Dynamics Tunnel (TDT) 
at NASA Langley Research Center. The Aeroelastic 
Rotor Experimental System (ARES) helicopter 
testbed was also used in the test. Detailed unique 
characteristics of the TDT and the ARES testbed are 
described in References 14 and 15. Figure 7 shows 
the ATR test blades mounted on the ARES helicopter 

 

Figure 7.  The ARES testbed inside the TDT with the 
ATR blades  
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testbed in the TDT. For this study, the active blade 
twist control algorithm was implemented in dSPACE 
(Ref. 22). That generates a prescribed input signal for 
system identification, and a control signal for the 
closed-loop control laws.  

As described in the previous section, sinusoids 
are used to determine transfer functions, and more 
specifically, sine sweep waves (chirp signals) are 
used to obtain the system response over a specific 
range of frequencies. The chirps may have 
frequencies that vary linearly, quadratically, or 
logarithmically with time. The frequency content and 
time interval of the chirp is dependent on the system 
characteristics. It is also important to take into 
account the chirp phase in the case of an LTP system. 

All the system identification tests were 
conducted in the heavy gas medium of the TDT at a 
nominal density of 2.432 kg/m3. The rotor rotational 
speed throughout the test was held at 688 rpm, 
resulting in a nominal hover tip Mach number of 
0.60. The rotor speed did vary slightly during the 
open-loop test. The small drifts in rotor speed were 
accounted for in the identification algorithms.  

The flight conditions used in the tests are 
representative of helicopters in forward level flight 
(Table 2). For each flight condition, the rotor was 
trimmed to a nominal thrust coefficient CT of 0.0066. 
The rotor was considered to be in trim when the first 
harmonic of blade flapping was less than 0.1° (Ref. 
14, 15). This condition was referred to as “baseline.” 
Data corresponding to the baseline condition was 
acquired first, and then the constructed chirp signal 
was applied to the ATR system. Data from the ARES 
testbed fixed-system balance, blade built-in strain 
gauges and accelerometer, and the high-voltage 
amplifier channels were recorded at a rate of 4,000 
samples per second. Among them, the ARES 1P 
signal extracted from the rotor control system is 
composed of sharp peaks indicating the instant that 
Blade No. 1 passes through 0° azimuth location. This 
provides the azimuth information for the system 

identification. Due to a high sampling frequency and 
many channels of simultaneous acquisition used, data 
corresponding to each phase angle of chirp actuation 
had to be saved separately before proceeding to the 
next phase.  

For the closed-loop control tests, the flight 
conditions were the same as those tested for the 
system identification phase. The controllers used 
were all based on the transfer function identified at 
the highest advance ratio (µ = 0.333). Due to 
increased computer workload, the same basic set of 
data was recorded at 2,000 samples per second for 
the closed-loop control test. The controller targeted to 
suppress only the hub normal shear component. Thus, 
only the normal component from the rotor fixed-
system balance is extracted and used as a reference 
signal z(t) for the closed-loop control. (See the 
definition of z(t) in Figure 6.) Unfortunately, at the 
beginning, an unidentified electrical problem caused 
this channel to be noisy. In particular, there were 
“spikes,” or transients, in the signal, which induced 
the control system to produce control signals that 
were unrealistically large, and which did not reduce 
vibration. To eliminate this problem, a nonlinear 
filter was developed to remove these transients in real 
time.  

 
System identification results 

 
Before one can apply the system identification 

algorithm described in the previous section, the 
amplitude of the baseline loads must be subtracted 
from those under actuation. This is due to the 
definition of the transfer matrix that is used in the 
closed-loop controller design, as represented in 
Equation (15).  

Since the load data under chirp actuation were 
saved separately for each phase division, these must 
be concatenated into a single array before the system 
identification algorithm is applied. In the test, 20-
second duration was selected for td, the single 
actuation period, and 4-second for tp, the non-
actuation period between two successive actuation 
chirps, respectively. As a result, nine successive 
chirps (each with a different phase) generate an array 
approximately 200-s long. Furthermore, three sets of 
chirps were repeated for the same condition during 
the test, and used to estimate an average result on the 
harmonic transfer functions. Varying torques on the 
rotor system caused the rotor rotational speed to vary 
from its prescribed value (688 rpm), and were 
accounted properly during data reduction (Ref. 19).  

Table 2.  Advance Ratios and Shaft Angle 
Pairs for the ATR Closed-loop Control Test 

 (αs is the shaft angle) 
 

 µ = 
0.140 

µ = 
0.200 

µ = 
0.267 

µ = 
0.333 

αs = -1º X X   

αs = -2º   X  

αs = -6º    X 
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As mentioned above, three different sets of data 
were acquired for each test condition. Also, after 
three data sets were acquired for the broad frequency 
range (5 to 70 Hz), the same condition was tested 
with a narrow frequency range of actuation. The 
narrow frequency range is used to obtain more 
accurate harmonic transfer function results near 4P. 
Thus, 40 and 52 Hz were selected for the lower and 
upper frequency bounds in the test, since 4P 
corresponds to 46 Hz in the case of the ATR system.  

The system identification scheme developed in 
the previous section is applied to the concatenated 
input and output arrays with the weighting factor α =  
1014 in Equation (14). Five harmonic transfer 
functions, G-2, G-1, G0, G+1, G+2, are estimated 
simultaneously. Results for the hub normal shear are 
shown in Figure 8 for the case of collective blade 
actuation and flight condition µ = 0.333, αS = -6°, CT 
= 0.0066. The magnitudes of the five harmonic 
functions are shown in the figure; the phase is only 
shown for G0. As can be seen in the figure, G0 has an 
amplitude which is significantly larger than the 
others. Higher order components of the harmonic 
transfer functions appear to be negligible. This 
indicates that the response of the ATR system may be 
described only by the G0 component, behaving like a 
linear time-invariant system, for the particular flight 
condition and blade actuation considered here. More 
insight about the blade dynamics can be also 
extracted from the G0 result for the hub normal shear. 
It is observed that the peaks approximately match the 
frequencies of the rigid and elastic flap bending 
modes of the blade. (See the fan plot shown in Figure 
2.) 

The harmonic transfer functions for cyclic 
actuation are shown in Figures 9 and 10. The results 
are similar to the results for collective actuation, in 
that the G0 response dominates. Therefore, the ATR 
system may be considered as being LTI for cyclic 
actuation as well.  

Notice also that the two cyclic modes of 
actuation exhibit much more control authority at 4P 
(approximately 10 lb for each mode) than the 
collective mode does (less than 2 lb). Thus, the two 
cyclic modes of blade actuation can be used more 
effectively to reduce 4P hub normal vibratory loads 
by the closed-loop controller for the level flight 
condition considered here. Ineffectiveness of the 
collective mode for 4P hub normal vibratory load 
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Figure 9.  Harmonic transfer functions of the hub 
normal shear during the lateral cyclic actuation for µ
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reduction was already observed in the ATR open-
loop forward flight experiment (Ref. 21, 24). 
However, significant control authority is found at 1P 
frequency in the ATR system from the collective 
mode of actuation. This suggests the possible use of 
the collective mode for alleviating 1P vibratory loads, 
and therefore, improving blade tracking.  

Transfer function results for the hub normal 
shear obtained for different flight conditions are 
shown in Figure 11. Again, the G0 component shows 
much larger amplitude than the other higher-order 
harmonic transfer functions in each flight condition 
and blade actuation mode used. Thus, only the 
magnitude results of the fundamental transfer 
function, G0, are provided for different advance 
ratios. It is observed that the transfer function varies 
slightly with advance ratio. This suggests the 
possibility of using a single control law for all 1-g 
flight conditions.  
 

Controller structure 
 
The actuation frequency and blade actuation 

mode used in the controller are selected based on the 
magnitude and phase of the corresponding transfer 
functions. Since the ATR is a 4-bladed rotor system, 

4P is the primary frequency of hub shear vibratory 
loads. The ATR collective mode of blade actuation is 
relatively ineffective for affecting the hub normal 
shear. The longitudinal and lateral cyclic modes of 
actuation impart more significant influence on 4P hub 
normal shear. Therefore, these two modes of cyclic 
actuation are selected to suppress 4P vibratory loads 
of the hub normal shear. On the other hand, the 
collective mode shows a quite large control authority 
in 1P frequency component. Thus, the 1P collective 
mode is used to control the 1P vibration due to rotor 
tracking errors. This combination of different blade 
actuation modes at different frequencies results in a 
multi-harmonic and multi-mode structure for the 
controllers. The controllers are generated by 
combining multiple copies of the feedback structure 
of Figure 6 in parallel for each mode and frequency, 
as shown in Figure 12. This simple adaptation of the 
control architecture allows for many other harmonics 
of the vibration to be target for reduction. Prechtl and 
Hall (Ref. 21) have demonstrated this for a rotor in 
hover under the actuation of a flap. 

The total control signal is the sum of the control 
signals from each single controller. However, the 
summation may force the resultant signal to exceed 
the voltage limit of individual actuators. Therefore, a 
device is needed to monitor the control signal and 
prevent saturation. To prevent the control input u(t) 
from exceeding the saturation limit, an anti-windup 
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mechanism is added to each feedback structure. 
Although it is not shown in Figure 12, this scheme 
constrains the control signal contribution from each 
feedback structure to a specific limit. The constant 
gain in front of each feedback structure, as shown in 
Figure 12, provides a way of assigning relative 
weight to the different modes of actuator. In the 
closed-loop experiment, many different combinations 
of these constant gains were attempted to determine 
the variation in vibration reduction performance from 
different controllers.  
 

Closed-loop system stability 
 
Before implementing the controllers, the 

stability of the closed-loop system should be 
examined. For this purpose, the loop gain, which is 
the product of the identified plant transfer function, 
G0(s), and the designed compensator, K(s), is 
investigated in frequency domain. Since the plant 
transfer function was identified with respect to 
different blade actuation modes, examination of the 
closed-loop system stability is conducted for each 
mode. Among the actuation modes included in the 
controller (Figure 12), longitudinal cyclic mode at 4P 
is considered first. The Nichols plot for the closed-
loop system without any modification on K(s) is 
displayed as a dotted line in Figure 13 for the 
advance ratio condition µ=0.333. The stability of the 
system is ensured if there are no encirclements of the 
critical point (unity magnitude at 180° of phase). In 
the same plot, contours of constant disturbance 
attenuation (or amplification) are also plotted 
according to the relation 

 
(19) 

 
 

The closed contours around the critical point with 
positive values represent degrees of vibration 
amplification. The thick, inverted U-shaped contour 
represents 0 dB boundary, where no vibration 
attenuation or amplification is obtained. The other 
contours indicate how much attenuation results (in 
dB) for the corresponding loop gain. Also, along the 
loop gain line, corresponding frequencies are 
designated with asterisks. 

To aid in interpreting the level of vibration 
reduction or amplification, the magnitude of Equation 
(19) as a function of frequency is plotted in Figure 
14. As expected, there exists a significant reduction 
of disturbance at the target frequency, 4P, in Figure 
14. However, in the vicinity of 4P, there also appears 
an undesirable amplification of the disturbance. The 
amount of amplification present is related to the 
stability margin of the control system. From the 

Nichols plot, the gain and phase margins are easily 
identified by measuring the proximity of the loop 
gain line to the critical point when the phase equals 
180° or the gain equals unity, respectively. According 
to Figure 13, the present controller with the 
unmodified K(s) turns out to have gain margin of 
approximately 3.2 dB, and phase margin of 70°. The 
low gain margin is the cause of the amplification of 
the vibratory load shown in Figure 14 near 3.7P and 
5P. However, a modification to the original controller 
can improve performance. A simple solution is to 
alter the closed-loop phase characteristics, which is 
shifted by -40° at 4P from its original one. Such 
modification generates a new plot, which is shown as 
a solid line in Figure 13. Therefore, the controller 
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parameters A and B are modified by replacing 
G(jNΩ) in Equation (18) with a new one defined as  
 

 (20) 

The other modes of blade actuation used in the 
controller, i.e., 4P lateral cyclic and 1P collective 
mode, are also modified in a similar way to the 4P 
longitudinal cyclic mode. The control signal from 
each controller is ultimately adjusted by an additional 
constant gain in front of each feedback structure 
before applied to the individual actuators, as shown 
in Figure 12.  
 

Closed-loop control tests 
 

  
As mentioned in the previous section, many 

different combinations of the blade actuation modes 
were examined in the closed-loop control test. In 
each combination, different gain constants were 
assigned to each feedback structure, and tested at 
different flight conditions. The combinations used in 
the test are summarized in Table 3. The closed-loop 
control test was conducted first at the high advance 
ratio flight condition, µ = 0.333, with the control 
parameters based on the system identification results 
from the same condition. In the very first case, only 
the 4P lateral cyclic mode was used for the controller, 
and then a combination of the two cyclic modes was 
used. In this two-cyclic-mode controller, the gain 
constants for each cyclic mode were increased from 
0.5 to 1. At each increment of the gain constant, the 
total electric field generated by the controller and 
supplied to the individual actuators was monitored to 
make sure that it did not exceed the saturation limit. 
A gain constant of 1.0 is approximately the maximum 
that can be applied within the saturation limit in this 
two-cyclic-mode controller.  

Next, the 1P collective mode is added to the 
two-cyclic-mode controller. From the transfer 
function results, relatively high control authority is 
observed at 1P for the collective actuation mode. 
Therefore, a small gain constant, 0.2, was assigned to 
1P collective mode controller along with relatively 
larger constants for the other cyclic modes. In the 
three-mode controller, gain constants of (0.2, 1.0, 
1.0) for collective, longitudinal cyclic, and lateral 
cyclic mode, respectively, give the maximum 
allowable electric field into the actuators. This three-
mode controller with the parameters determined from 
the condition µ = 0.333 was also tested in other flight 
conditions (µ = 0.267, 0.200, 0.140). Since the gain 
combination of (0.2, 1.0, 1.0) generated 
approximately the maximum allowable electric field 
at µ = 0.333, only two combinations of gain 

constants, (0.2, 0.9, 0.9) and (0.2, 1.0, 1.0), were 
attempted in the other conditions. 
  

Control results 
 

Since 4P is the primary frequency of interest for 
the ATR system, vibration reduction at 4P is 
computed and summarized in Table 4. Open-loop and 
closed-loop maximum 4P r.m.s. values are shown in 
the rightmost column and are referred to OL and CL 
rms (root-mean-square) normal load, respectively. As 
pointed out before, it is observed that there is a slight 
amplification of vibration around 4P when the 
controller is on. This amplification was predicted 
from the closed-loop system stability study (see 
Figure 13). Therefore, other estimates of vibration 
reduction are provided by integrating the response 
spectrum over a short interval across 4P frequency 
and comparing the open-loop and closed-loop cases. 
Four different integration intervals are considered 
here, such as 0.087P, 0.261P, 0.872P, as well as the 
whole spectrum. They correspond to 1 Hz, 3 Hz, 10 
Hz, and the whole spectrum in Table 4, respectively. 
The vibration level, expressed in dB, is then 
formulated as 

 
 

(21) 
 
 

 
As shown in Table 4, the closed-loop controller 

based on the parameters determined at the high 

Table 3.  Assignment of Gain Constants for the 
Closed-loop Control Test 

 

Case 
Name 

1P 
Coll. 

4P 
Long. 
Cyclic 

4P 
Lateral 
Cyclic 

Advance 
Ratio 
(µ) 

Cyc1 0.0 0.0 1.0 0.333 
Cyc2 0.0 0.5 0.5 0.333 
Cyc3 0.0 0.707 0.707 0.333 
Cyc4 0.0 0.9 0.9 0.333 
Cyc5 0.0 1.0 1.0 0.333 

CollCyc1 0.2 0.707 0.707 0.333 
CollCyc2 0.2 0.9 0.9 0.333 
CollCyc3 0.2 1.0 1.0 0.333 
CollCyc4 0.2 0.9 0.9 0.267 
CollCyc5 0.2 1.0 1.0 0.267 
CollCyc6 0.2 0.9 0.9 0.200 
CollCyc7 0.2 1.0 1.0 0.200 
CollCyc8 0.2 0.9 0.9 0.140 
CollCyc9 0.2 1.0 1.0 0.140 
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advance ratio, µ = 0.333, exhibits good vibration 
reduction performance at the different advance ratios. 
In fact, it shows even better performance at most of 
the other flight conditions than its designed one (µ = 
0.333). This is because the open-loop (baseline) 
vibration level varies significantly among the flight 
conditions. (See the OL rms load column in Table 4.) 
One of the best reduction indices, approximately 40 
dB, is obtained at µ = 0.267 with the gain 
combination (0.2, 0.9, 0.9), that is, Case CollCyc4. 
The corresponding spectrum is shown in Figures 17.  

 Frequency spectrum analysis of the control 
signal in the case of CollCyc4 reveals that it is 

composed of 1P and 3P sinusoidal signals, as shown 
in Figure 18. Because of the low control gain 
assigned at the 1P collective mode, the magnitude of 
the 1P component is relatively small. The large 3P 
component is a result of combination of the two 
cyclic modes applied at 4P. Their original frequency, 
4P, is now changed into 3P due to the modulation 
with 1P to create the cyclic modes. It is also observed 
that each blade exhibits 90°. difference of its phase 
angle at 3P. This suggests that the 3P component of 
the generated control signal is close to the 3P IBC 
actuation signal used in the open-loop experiment. 
Note that the 3P IBC signals showed the biggest 
impact on the fixed-system load variation during the 
open-loop control test (Ref. 14). 

The closed-loop controller used in the test was 
originally designed for attenuation of the ATR hub 
normal shear vibratory load only. However, it turns 
out that the other components among the fixed-
system loads, such as longitudinal shear, lateral 
shear, pitching moment, and rolling moment, are 
reduced at the same time by the controller. Such 
simultaneous reduction of the fixed-system load 
component is similar to that observed in the ATR 
open-loop control test (Ref. 14). The closed-loop 
control signal generated to reduce the hub normal 
vibratory force results in a blade twist distribution 
that influences the other component in a similar way. 
The largest simultaneous reduction in the fixed-
system loads is obtained in the case CollCyc4, which 
corresponds to the case where most reduction in the 
hub normal component is observed. Vibration 
reduction result for this case is shown in Figure 19. 

 
Table 4.  Vibration Reduction Results for the ATR 4P Hub Normal Shear 

 

Reduction Performance (dB) Case 
Name 1 Hz 3 Hz 10 Hz Spectrum 

OL rms 
normal load 

(lb) 

CL rms 
normal load 

(lb) 

Cyc1 -4.20 -4.20 -4.17 -0.009 22.35 13.77 
Cyc2 -3.42 -3.42 -3.41 -0.013 22.45 15.14 
Cyc3 -5.42 -5.42 -5.38 -0.051 22.52 12.06 
Cyc4 -8.10 -8.09 -7.94 -0.027 22.55 8.87 
Cyc5 -9.94 -9.94 -9.70 -0.042 22.61 7.19 

CollCyc1 -5.35 -5.35 -5.29 -0.033 22.60 12.21 
CollCyc2 -8.20 -8.19 -8.00 -0.048 22.50 8.75 
CollCyc3 -9.33 -9.33 -9.15 -0.043 22.26 7.60 
CollCyc4 -40.04 -30.10 -17.58 0.015 10.71 0.03 
CollCyc5 -38.97 -30.53 -16.73 0.016 10.63 0.04 
CollCyc6 -19.96 -19.83 -17.96 0.024 14.06 1.41 
CollCyc7 -31.12 -29.51 -19.80 0.043 14.01 0.36 
CollCyc8 -6.50 -6.50 -6.47 -0.004 21.45 10.15 
CollCyc9 -7.77 -7.77 -7.71 0.012 21.35 8.72 
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The vibration levels for all six components are 
significantly reduced, except for the yaw component, 
which is almost unaffected. Although a multi-
component controller is expected to exhibit better 
performance, its design and implementation were not 
attempted in this study.  
 

Conclusions 
 

In this paper, the system identification and 
closed-loop control tests of the ATR system were 
described. The primary goal of this study was to 
demonstrate closed-loop control for the reduction of 
vibratory loads induced in forward flight, and it was 
successfully achieved. The system identification 
approach employed herein can determine the 
importance of periodicity for closed-loop control. For 
the ATR rotor, the periodic effects were shown to be 
unimportant, and, therefore, the system can be treated 
as linear and time-invariant. The system 
identification reveals that cyclic twist control is much 
more effective than collective twist control in 
reducing 4P vibration in the ATR rotor. It was also 
found that the transfer functions of the rotor do not 

significantly vary with level flight conditions, so that 
a single control law can be used to effectively control 
vibration over a wide range of advance ratios. 

For the closed-loop control tests, a continuous-
time control law was used, which is basically the T 
matrix approach recast as a continuous-time 
formulation. In this form, the control law is 
fundamentally the same as classical disturbance 
rejection control laws. Classical control techniques 
can be used to evaluate the efficacy of the control 
law, and to modify it to improve performance. For 
this narrowband disturbance rejection problem, the 
Nichols plot is a particularly effective design tool. 
Both 1P and 4P vibrations were simultaneously 
controlled by using collective twist actuation for the 
1P component and a combination of longitudinal and 
lateral cyclic actuations for the 4P component. 

Closed-loop tests of the ATR rotor produced 
significant levels of vibration reduction in all tested 
advance ratios. In some flight conditions, the 4P 
vibration was practically eliminated (40 dB 
reduction). It was also found that controlling the 4P 
and 1P vibrations indirectly reduced the vibration 
level of other harmonics, although by a lesser 
amount. The controller implemented in this work 
addressed vibration at two frequencies (1P and 4P) 
using three modes of actuation (collective twist, and 
two cyclic twists). It can, however, be easily 
extended to control other harmonics of the vibration 
as well.  
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