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Abstract 

This paper will present innovative techniques for use in the trimming and stability analysis of advanced 
models of rotorcraft. It begins by exploiting the rotor symmetry to produce an efficient definition of periodic 
trim which is applicable to rotorcraft simulations. This definition is then used as the basis of a trimming 
algorithm which is capable of trimming advanced simulation models to a specified periodic trim state. The 
definition of periodic trim is then used to derive a technique for use in the stability analysis of advanced 
simulations. This technique is a specialised enhancement of classical Floquet theory and exploits the rotor 
symmetry to reduce computational burden. The trim and stability analysis techniques are then used, in 
conjunction with an individual blade simulation model, to assess the stability characteristics of the XV-15 
tilt-rotor whilst it is performing a banked turn. This study demonstrates that the trimming algorithm is 
efficient and robust to the quality of its start values and that the stability analysis is capable of identifying 
accurately all the modes of the non-linear modeL 
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System matrix, averaged system matrix 
Partition of system matrix containing the flap derivatives 
Control state vector 
.Jacobian matrix 
Number of model states 
Number of blades per rotor 
Number of time steps in a complete revolution of rotor azimuth 
Fuselage roll, pitch and yaw rates about body axis set 
Vehicle overall permutation matrix, rotor permutation matrix 
Permutation matrix for a 3 bladed rotor with two flapping states 
per blade 
Floquct Transition matrix 
Partial Floquet Transition matrix 
Vector of initial body states and control states 
Body axis, induced flow and right (left) rotor state vectors 
Vehicle state vector 
Vector comprising vehicle states at 21r /n and mean flight path states 
Time to half amplitude 
Time for one period of oscillation in rotor forces and moments 
Time for one full revolution of rotor azimuth 
F\tselage velocity components along x, y and z body axis respectively 
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Uniform induced flow component for right (left) rotor 
Harmonic induced flow components for right (left) rotor 
Magnitude of vehicle speed 
Flight state vector, mean flight state vector and specified mean flight 
state vector 
Blade flapping angle, fuselage sideslip angle 
Harmonics of blade flap 
Error vector 
Fuselage angles of climb, pitch and roll 
nacelle incidence (measured from helicopter mode) 
Continuous eigenvalue, discrete eigenvalue 
Combined and differential collective inputs 
Combined and differential longitudinal cyclic inputs 
Combined lateral cyclic 
Real and imaginary parts of continuous eigenvalue 
Fuselage turn rate 
Rotor Speed 
Rotor azimuth angle 

2 Introduction 

Future rotorcraft will be required to perform manoeuvres across a broad flight envelope in order to attain high 
levels of agility and realize a wide range of applications [1]. When performing such manoeuvres, non-linear 
aerodynamics and higher order rotor dynamics will exert a significant influence on the flying characteristics 
of the vehicle. Previous generation, or Level 1 [2], simulations sacrifice fidelity by neglecting these effects and 
therefore Level 1 models are inappropriate for a complete assessment of rotorcraft handling qualities throughout 
the vehicle's operating environment. A new generation of simulations (or Level 2 simulations) has been developed 
to support design studies across a larger extent of the flight envelope. These models attain the necessary levels 
of fidelity by incorporating individual blade modelling techniques in conjunction with numerical integration of 
the rotor loads and non-linear aerodynamics; features such as compressibility and blade elasticity are also often 
included. Before the potential offered by Level 2 simulations may be fully exploited, new analysis techniques 
must be developed so that the high levels of fidelity are accessible to the flight dynamicist and control system 
engineer. This paper will focus on two such key areas, namely, the determination of rotorcraft trim conditions 
and evaluation of stability characteristics from Level 2 simulations. 

Generally, the evaluation of a specified trim state represents the starting point for any simulation, conse­
quently, it is vitally important that the associated trim algorithm is both robust and efficient. Level 2 simulations 
adopt trim conditions, achieved with constant control positions, which are no longer time invariant (as is the 
case with Level 1 simulations) but are periodic about a fixed mean. Therefore, when seeking a trim condition, 
it is necessary to obtain a periodic solution to the equations of motion which satisfies the stipulated flight 
condition in the mean. This paper will begin by presenting a modified periodic shooting algorithm which is 
capable of reliably and efficiently trimming Level 2 rotorcraft simulations. 

The operation of rotorcraft in adverse area.<:; of the flight envelope promotes the requirement for control 
systems of increasing complexity in order to preserve acceptable handling qualities throughout the operational 
environment. This fact is recognised by the authors of the U.S. Handling Qualities for Military Rotor craft [:l] who 
make recommendations on the development of new high bandwidth control systems for application to rotorcraft. 
It is generally accepted that the integrity of these high bandwidth control systems will be largely dependent 
on a detailed knowledge of the vehicle higher order dynamics and in particular the rotor and structural modes 
will be of increasing significance [1]. Level 2 simulations encompaos the higher orc:c>r dynamics of the vehicle 
and arc therefore ideally suited to support the design of high bandwidth control systems. However, fast. and 
reliable stability analysis techniques are essential if these models are to yield practical benefit in the formulation 
of control laws. This paper will derive a. specialised technique for assessing rotorcraft stability characteristics 
from Level 2 simulations. The technique is essentially an extension of classical Floquet theory and exploits the 
symmetry of the rotor to produce an efficient approach which is specific to Level 2 simulations. 

The trim and stability analysis algorithms developed in this paper have been extensively applied to an 
individual blade simulation (TILTSTAB) of a generic tilt-rotor configuration [4]. The paper will proc:cccl by 
presenting results obtained when trim. and stability analysis arc performed on a tilt-rotor vehicle which is 
performing a banked turn in transition mode. This section of the paper will demonstrate that the trimming 
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algorithm is robust to the quality of initial values and capable of rapidly producing very high quality trim states. 
The results presented from the stability analysis will show that this technique is capable of identifying both the 
rigid body and higher order rotor modes of the full non-linear simulation model. FUrthermore, these results 
will highlight limitations in the widely adopted Average A stability analysis technique [5] when identifying the 
higher order rotor modes. 

From the preceding discussions it should be apparent that the periodic trim state adopted by Level 2 
simulations is central to the trim and stability analysis algorithms derived in this paper. The most appropriate 
introduction to these algorithms is therefore to develop a formal definition of the periodic trim state. 

3 Partial Periodicity of Rotorcraft 'frim States 

The periodicity of rotorcraft trim states is a direct consequence of two factors influencing the behaviour of a 
rotor blade as it advances round the azimuth. Firstly, if a constant cyclic pitch input is applied, then the blade 
angle of attack will vary periodically as it advances round the azimuth. Secondly, if the vehicle has a non-zero 
velocity then the blade will experience a periodic variation in dynamic pressure as it rotates round the disc. 
Both these effects lead to a periodic solution of the trimmed rotor equations which in turn introduces periodicity 
in to all the trimmed model states. The model states naturally fall into three distinct categories reflecting the 
physical components of the vehicle:-

1. blade states 
2. body axis flight states 
3. induced flow states 

and the periodic behaviour adopted by each of these components will now be considered in turn. 

3.1 Periodicity of Trimmed Blade States 

In the trim, each blade experiences once-per-revolution periodic forcing it travels round the rotor azimuth. 
Therefore, the full period of the trimmed blade states is described in one complete revolution of rotor azimuth. 
It is apparent that the period of the blade states is independent of the number of blades in the rotor. Thus, in 
the trim, for an n bladed model incorporating two flap states per blade:-

sr(2rr) = sr(O) (1) 

where, in this case, the rotor state vector is given by:-

The expression given in Equation 1 is a valid definition of a rotor in trim which relies on a complete revolution 
of rotor azimuth. A more economic definition can be obtained by considering the symmetry of the rotor when 
it consists solely of identical blades. In this situation, all blades trace out exactly the same trajectory as they 
advance round the rotor azimuth with a phase shift of 2rr /n radians between the path of each successive blade. 
Thus, for a rotor in trim, the states of an arbitrary blade, m, at 1/Jr = 21r /n radians will map onto the initial 
states of the identical blade m + 1 when 1/Jr = 0. This characteristic can be exploited to form a definition for a 
rotor in trim using only 2rr /n radians of rotor revolution and may be expressed as:-

(2) 

where the general form of the rotor permutation matrix, Pr, is given by:-

0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 

Pr = 

0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
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As can be seen, the permutation matrix, Pro takes the form of the identity matrix with the non-zero 
elements shifted to the right by an amount corresponding to the number of states per blade. The versatility 
of this definition is reflected by the ease in which more sophisticated rotor models can be accommodated. In 
particular, rotor models with more states per blade (e.g. lag or elastic states) can be included in this definition 
by shifting the non-zero permutation elements further to the right by an appropriate amount. 

3.2 Periodicity of Trimmed Body Axis Flight States 

The periodic nature of the trimmed body axis flight states is strongly dependent on the characteristics of the 
rotor forces and moments which drive the equations of motion. In the trim, any given azimuthal location round 
the rotor disc will have its own associated blade pitch and aerodynamic velocity and thus, for a rotor with 
identical blades, each blade will generate exactly the same contribution to the rotor forces and moments as it 
passes through that azimuthal location. An n bladed rotor must rotate through 2rr jn radians to have had, 
instantaneously, a blade in all azimuthal locations and therefore the full period of the rotor forces and moments 
is described in 2rr jn radians of revolution. As a result, the vehicle body states will also adopt a periodic 
trajectory in the trim and the full period of this trajectory will be given in 2rr jn radians of rotor azimuth. 
When a trimmed flight state has been achieved, the vehicle body states satisfy:-

srs(2rr jn) = srs(O) (3) 

where the body axis flight state vector is given by:-

[ P q 1. 8 ·']T. Sfs = Ua Va Wa 'f' 

3.3 Periodicity of Trimmed Induced Flow States 

Direct inclusion of the rotor induced states into the definition of periodic trim is dependent on the induced 
flow model being used. When induced flow models of the Glauert [6) type are included, the initial induced flow 
states corresponding to a set of trimmed initial rotor and body states can be ascertained iteratively without 
direct inclusion in the trim algorithm. Dynamic inflow models [7) typically incorporate a first order differential 
equation to model the rotor induced flow field. Consequently, it is necessary to ascertain the trimmed initial 
states of this equation by direct inclusion in the trimming algorithm. The induced flow field generated by the 
rotor is driven directly by the thrust and aerodynamic moments and therefore, the periodicity of the trimmed 
induced flow states will be described in 211' jn radians of rotor revolution. If the rotor is in trim the induced flow 
states satisfy:-

s;r(2rr fn) = s;r(O) ( 4) 

for a tilt-rotor, the induced flow state vector (containing a uniform component and two harmonics for each 
rotor) is given by:-

3.4 Definition of Vehicle Trim 

The expressions given in Equations 2, 3, 4 can be combined to define the overall vehicle trim. For a simulation 
with two three bladed rotors, two flapping states per blade and three inflow states per rotor the overall definition 
of trim becomes:-

(5) 

Where, in this case n=3, and the vehicle permutation matrix, Pv, is given by:-

r· 0 0 

:] Pv = ~ P, 0 
0 Io 
0 0 I a 

The vehicle state vector is given by:-

Sv = (srr 
'I' 

Sic Sjf srs] . 

The definition of rotorcraft trim given by Equation 5 is central to the derivation of the economical trim and 
stability analysis algorithms which are described in the following sections of this paper. 
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4 Partial Periodic Trim Algorithm 

Two problems require solution when seeking a given specified periodic trim state. Firstly, one must a.scertain 
the correct set of initial conditions to ensure periodicity in the flight state (i.e., satisfy Equation 5). Secondly, 
one must obtain the set of control displacements necessary to produce the specified trim state. 

For Level 2 simulations, the trimmed flight path is most conveniently specified in terms of the time averaged 
integral across one period of the flight path states [4, 8]:-

X=~ (''X dt 
tv lo 

When considering the tilt-rotor application, five control states are available to the pilot:-

therefore, the flight path may be specified in terms of the following five parameters [4, 8]:-

Xtdm = [V f3 I n .pf · 

(6) 

Once the required set of control displacements have been obtained, the time averaged integral given by Equa­
tion 6 will equal the specified trim state:-

X= Xtrim· (7) 

Together, Equations 5 and 7 define the conditions which must be satisfied to attain a given specified periodic trim 
state. The trimming process now reduces to an iterative procedure which yields the blend of initial conditions, 
sv(O), and control displacements, c, necessary to satisfy Equations 5 and 7. For this application, a linearisation 
derived from a Taylor expansion about the solution values results in the following Newton-Raphson iteration 
scheme with periodic shooting,:-

[
sv(O)] = [sv(O)] _ [Jn -Pv 

c i+l c i J21 

J12] -1 
[sv(21fjn)- Pvsv(O)] 

Jzz X- Xtrim 
(8) 

where Jn, J 12 , J 13 and Jz2 are partitions of the Jacobian matrix, J. In this case, the elements of the Jacobian 
are given by:-

J·. _ 8sx; 
tJ - 8sc · 

' 
and the vector, sx, comprises the vehicle states at 21f jn and mean flight path states:-

and the vector of control and initial vehicle states, sc is given by:-

(9) 

We will term the iteration scheme given by Equation 8 a.s the Partial Periodic Trimming Algorithm (PPTA). 
This technique yields extremely high levels of computational efficiency in three ways:-

1. the definition of vehicle trim, given by Equation 5, is exploited during the periodic shooting pha.se 
in which the non-linear model is integrated through only 21f /n radians of rotor azimuth 

2. the PPTA is a single stage method which obtains simultaneously the initial conditions, sv(O), and 
control displacements, c, to provide the specified periodic flight condition 

3. the PPTA is particularly robust and there ha.s been no recourse to damping or acceleration parameters 
to improve the stability characteristics of the iteration scheme. 
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The PPTA offers considerable advantages (in terms of both robustness and computational efficiency) over 
those iterative techniques which disregard the periodic property of the trim state and rely on integrating the 
equations of motion until the transients sufficiently decay. Such techniques have their performance dictated 
by the rate of decay of the most persistent natural mode. Since rotorcraft typically posses at least one lightly 
damped mode (and are often unstable), such methods are usually several orders of magnitude slower (if they 
converge at all) than those which exploit the periodicity of the equations. In order to enhance the performance 
of these slower schemes there is often recourse to techniques such as the freezing of body states or model order 
reduction. The implication of these approximations is that different models are used during the trimming and 
forward simulation phases. Consequently, the quality of the resulting trim state is compromised and transient 
behaviour is evident in the forward simulation. When using the PPTA, there is no requirement for simplification 
of the model strL!Cture in order to reduce computational times to an acceptable leveL Therefore, exactly the 
same model is used during trimming and forward simulation phases. This results in exceptionally high quality 
trim states which are maintained for extended periods of forward simulation. 

The efficiency of the PPTA and the quality of the trim states it produces will be demonstrated in the case 
study presented in Section 6 of this paper. 

5 Stability Analysis of Level 2 Rotorcraft Simulations 

The equations of motion for the full non-linear simulation model (controls fixed) may be written as an Initial 
Value Problem of order m:-

Sv(O) =so (10) 

As discussed in Section 3, the trim states adopted by Level 2 simulations are generally periodic in nature so 
that:-

represents the total periodicity of the solution to Equation 10. Alternatively, the definition introduced in 
Section 3 can be exploited to express the partial periodicity of the trim state:-

J (sv (t + Tjn),,.im) = P,j (sv (t)tcim) · 

In addition, the system matrix evaluated by linearisation, A, reflects this property and is also periodic in the 
trim:-

A(t + T) = A(t) 

In fact, the partial periodicity condition may by introduced to show that:­

A(t + T jn)t,.;m = P,A(t),,·imP,- 1
• (11) 

The generally accepted approach [5] for stability analysis of Level 2 simulations is to obtain an approximate 
linearisation of the periodic system by evaluating an averaged system matrix, A, through one full period of the 
model states:-

nstps--1 
-- 1 I: A=-- A(ti) 

nstps 
i=O 

Eigen-analysis of this averaged system matrix, A, then yields an estimate to the stability of the full non-linear 
simulation modeL H.esults presented in Section 6 will show that this approach has limitations when evaluating 
rotorcraft stability characteristics using Level 2 simulations and is particularly unreliable when identifying the 
higher order modes of the system. A more rigorous approach is found in classic Floquet theory which is 
specifically derived to assess the stability characteristics of periodic systems such as that given by Equation 10. 
A detailed discussion on classic Floquet theory is provided by Pontryagin [9]. Floquet theory was first applied 
to rotorcraft simulation models by Peters and Hohenemser [10] and is described by MCVicar and Bradley [11]. 
The following section will present a novel technique that exploits the partial periodicity condition gi\'Cn by 
Equation 11 to produce an efficient enhancement of classic Floquet theory which is specific to Level 2 simulations. 
A similar, independently developed, enhancement of classical Floquet theory is reported by Peters [13]. 
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5.1 Partial Floquet Stability Analysis of Level 2 Simulations 

Partial Floquet theory considers the following (controls fixed) linear system:-

Sv = A(t)sv 

where the system matrix obeys the partial periodic relationship given by Equation 11:-

A(t + T fn) = PvA(t)P;; 1
. 

Now, let the solution of:-

Sv = A(t)sv; 0 < t < Tfn; Sv(O) = e; 

give:-

Sv(T /n) =f. 

Since there is a matrix S, (which we will term the Partial Floquet Transition Matrix) found from m linearly 
independent solutions such that:-

Se=f 

for all f we can write:-

s(Tfn) = Se. 

Then the problem for the next segment may be expressed as:-

Sv = A(t)sv; T/n < t < 2Tfn; Sv(T fn) = f = Se; 

to be solved for s(2T/n). Application of the partial periodicity condition, given by Equation 11, leads to the 
form:-

T/n < t < 2Tfn; Sv(T /n) = f = Se; 

to be solved for s(2T fn). This may also be written:-

P;;1sv = A(t- Tfn)Pv- 1sv; Tfn < t < 2T/n; P;;1sv(T/n) = P;;'Se; 

to find pv-'sv(2T fn). The solution to Equation 12 is equivalent to solving:-

Sv = A(t)sv; 0 < t < T/n; 

to find s(T fn). From the linearity of the problem, the solution to Equation 13 is:­

sv(T /n) = spv-lf = SPV-l Se 

and so Equation 12 has the solution:-

which is more conveniently written as:-

Continued application of this argument leads to the result for a complete revolution:­

pv-"sv(T) = Sv(T) = (Pv- 1S)" e, 

having used the result that pv-" = I m, the identity matrix of order m. 

(12) 

(13) 

(14) 

From Equation 14, it is apparent that the matrix given by (Pv-1S)" perTorms the mapping of initial to final 
states across one period of the system. This matrix is therefore the Floquet Transition Matrix (which we will 
denote by R) of classic Floquet Theory:-

(15) 
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Thus, Partial Floquet Theory has exploited the symmetry of the rotor to evaluate the R matrix by considering 
only a partial period of the system. 

Eigen-analysis of the R matrix provides a description of the stability characteristics of the system. That 
is, the eigenvectors of R characterise the modal response of the system and the corresponding eigenvalues will 
reflect the growth of these modes across one period. Consequently, the eigenvalues of R must lie within the unit 
circle for stability. 

For a more meaningful insight to the stability characteristics, the eigenvalues of the discretised system may 
be mapped to of those of an equivalent continuous system. The damping of the k'h discrete eigenvalue, A., is 
mapped to the continuous plane by the following expression:-

n 
"• = TlniA•I (16) 

and its frequency is mapped by:-

n _1 (imag (Ak)) 
Wk = Ttan real (A•) + nfl,.l (17) 

where the ambiguity in frequency, conveyed by the arbitrary integer I, is attributable to the periodicity of the 
tan- 1 function. As commented upon by Peters [13], it is apparent that the Partial Floquet technique offers an 
additional benefit over classical Floquet Theory when converting the eigenvalues from discrete to continuous 
planes. That is, the ambiguity introduced to the characteristic frequency component is improved from 1-per 
revolution, as occurs in classic Floquet, to n-per revolution in Partial Floquet. 

5.2 Some Practical Considerations of Partial Floquet Analysis 

The first stage in Partial Floquet Analysis is to trim the non-linear simulation model to the required flight state. 
It is essential that this trim is of high quality so that the system matrix obeys the partial periodic relationship 
given by Equation 11. The non-linear equations of motion are now integrated through 2n /n radians of rotor 
azimuth to establish the A matrices occurring in a partial period. If necessary, the full set of A matrices can 
be obtained by application of Equation 11. The Partial Floquet Transition Matrix, S, is then evaluated by 
integrating the linear model, given by Equation 10, through a partial period of the system using the identity 
matrix as the initial condition. Finally, the Floquet Transition Matrix, R, is obtained using Equation 15. 

6 Trim and Stability Analysis of a Tilt-Rotor Simulation Model 

In this section, the capabilities of the PPTA and Partial Floquet techniques are demonstrated by means of an 
investigation into the stability characteristics of the XV-15 tilt-rotor vehicle. In particular, this investigation 
will focus on the turning flight condition specified below:-

vehicle speed, V 
vehicle sideslip angle, (3 
vehicle turn rate, n 
vehicle angle of climb, 1 
nacelle incidence, fn 

100 Knots 
0' 

10o5-! 

0' 
60'. 

The first stage in the stability analysis is to trim the non-linear simulation model, TILTSTAB, to the specified 
flight condition and this process is now used to demonstrate the performance of the PPTA. 

6.1 Performance of the Partial Periodic Trimmer 

As stated in Section 5.1, the integrity of the Partial Floquct Stability analysis technique is dependent on the 
trimmed A matrix obeying the partial periodic relationship given by Equation 11. This condition will only be 
satisfied if the trim state obtained by the PPTA is of the highest quality. In order to ensure that Equationll is 
satisfied (and also to demonstrate the capabilities of the PPTA), an extremely stringent convergence criterion 
of± le-12 was imposed on all elements of the error vector, E during the trimming phase; where € is given by:-

C = [sv(2njn) - I'vsv(O)l· 
X- Xtrim 
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In this example, the specified trim state was obtained in 10 iterations which represents very rapid convergence 
indeed given that the full set of initial conditions and control displacements have been ascertained to the 12th 
decimal place. From a practical viewpoint, however, the CPU time necessary to attain the trim is perhaps of 
greater interest than the associated number of iterations. When using the PPTA to trim a simulation with n 
blades per rotor, the rotor must be integrated through 2rr/n radians to form each row of the Jacobian matrix. 
Consequently, for a model with 3 blades per rotor and 30 states (as in this case), each iteration will require 10 
revolutions of rotor azimuth to complete: for the XV-15 in transition mode this corresponds to approximately 
1.1 seconds of real-time simulation. It follows that, the PPTA would require 11 seconds of real-time simulation 
to produce the trim condition discussed in this section. (When implemented on a DEC Alpha 3000 model 400 
platform, this requirement translated to 18.5 seconds CPU time). Hence, the PPTA is a very fast algorithm 
both in terms of its convergence characteristics and also the CPU time it requires to produce exceptionally high 
quality trim states. 

Tables 1 and 2 provide a comparison between the start values input to the PPTA and the trimmed parameters 
obtained at the lO'h iteration. With reference to these tables, it can be seen that an extremely poor set of start 
values were used in this example. In particular, errors of up to 267os-1 exist between the start values for the 
initial flap rates and their corresponding trim values. Also, the start values used for the control states include 
very poor estimates for the longitudinal stick, lateral stick and pedal displacements (fully aft, fully left and fully 
left respectively). From this example, it is evident that the PPTA is capable of quickly producing very high 
quality trim states despite the use of exceptionally poor start values. It may therefore be concluded that the 
PPTA is robust to the quality of start values. 

Figure 1 shows a comparison of the periodic trajectories produced for some examples of rigid body and rotor 
states at the start and end of a 120 second forward simulation. In each plot, the solid line depicts the trajectory 
produced during the first turn of the rotor (i.e. from t=O) and the crosses depict the corresponding trajectory 
produced during the final turn of the rotor (i.e. to t=l20 seconds). With reference to this figure it is apparent 
that, despite the extended run time, the periodic trim state is maintained throughout the duration of the 
simulation. In fact, inspection of the time histories revealed that the periodic trajectories of all the model states 
are maintained to within the specified convergence criteria(± le-12) for the fulll20 seconds of simulation. It is 
also interesting to note that the earth a.·ds trajectory and ground track produced during the forward simulation 
describe an orbit which is perfectly circular in nature over a radius of 300 metres. Furthermore, as a 10 degree 
per second turn rate was specified as part of this trim condition, over 3 full orbits were completed during the 
forward simulation. Inspection of the vehicle trajectory revealed that, despite the large radius and extended 
simulation time, these orbits are coincident to within the 12th decimal place. Hence, it can be concluded that 
the trim state produced by the PPTA is of the highest quality with all of the model states maintaining their 
periodic trajectories throughout the duration of the extended simulation. 

From the results presented in this section, it may be concluded that the PPTA is a very efficient and robust 
algorithm which is capable of producing high quality states to adverse areas of the flight envelope. 

6.2 Stability Analysis of the XV-15 in Turning Flight 

As discussed in Section 5, the widely adopted approach [5] for stability analysis of Level 2 simulations is to 
perform eigen-analysis of the averaged system matrix A. The following results will show that, whilst this 
approach may adequately estimate the rigid body modes, it has limitations when considering the higher order 
modes of the system, which in this case are the rotor modes. 

6.2.1 Comparison Between Eigenvalues of the Floquet Transition Matrix and Average A Matrix 
in the Discrete Plane 

Figure 2 and Table 3 provide a comparison between the eigenvalues of the Floquet Transition Matrix and 
average A matrix in the discrete plane. Before performing this comparison, the k'h eigenvalue of the continuous 
(average A) system was mapped to that of an equivalent discrete system by the standard expression:-

Ak = e(u,Tlcos(Twk) + je("'T)sin(Twk) 

where, Uk is the real part of the continuous eigenvalue and Wk is its imaginary part. 

When discussing the results presented in Figure 2, it is most convenient to classify the modes according to 
the following three categories:-

1. rigid body modes 
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2. induced flow modes 

3. flap modes 

and each of these is now discussed in turn starting with the rigid body modes. 

1. Rigid Body Modes:- With reference to Figure 2 and Table 3 it is evident that very good agreement 
exists between the average A and Floquet techniques for the classic 6 DOF rigid body modes. In fact, with one 
exception, the Floquet eigenvalues for the rigid body modes lie within 1% of their counterparts established by 
average A analysis. 

2. Induced Flow Modes:- Figure 2 shows that the average A and Floquet techniques establish similar 
distributions for the 6 induced flow modes (3 for the right rotor and 3 for the left rotor). After inspection of 
the corresponding eigenvectors, these modes may be classified as follows:-

• lateral harmonic induced flow mode for the right rotor 

• lateral harmonic induced flow mode for the left rotor 

• uniform/longitudinal harmonic induced flow mode for the right rotor 

• unifonn/longitudinal harmonic induced flow mode for the left rotor. 

The structure of the Peters-HaQuang dynamic inflow model [7) is responsible for the distribution of induced 
flow modes described above. In particular, the dynamic gain matrix couples the response of the uniform and 
longitudinal induced flow states with the rotor thrust and aerodynamic pitching moments. Hence, the modal 
response of the uniform and longitudinal induced flow states is coupled producing the two pairs (one pair for 
the right rotor, one pair for the left rotor) of complex modes described above. Conversely, the lateral induced 
flow is driven purely by the aerodynamic rolling moment and hence its response takes the form of a single real 
mode for each rotor. 

From Table 3 one can see that disparities of up to 32% exist between the Floquet and average A eigenvalues 
for the induced flow modes. Hence, each technique is establishing the same distribution of eigenvalues for these 
modes but the level of correlation is degraded over that obtained for the rigid body modes. 

3. Flap Modes:- With reference to Figure 2 and Table 3 it is apparent that the average A and Partial Floquet 
techniques establish differing characteristics for the flap modes. More specifically, the flap modes produced by 
Partial Floquet Analysis may be considered to occur in 3 distinct groups:-

Group 1 
Group 2 
Group 3 

2 pairs of complex modes 
2 pairs of complex modes 
4 real flap modes 

(at -0.2868 ± 0.6061j and -0.2816 ± 0.6099j) 
(at -0.3648 ± 0.5262j and -0.3608 ± 0.528lj) 
(between -0.6423 and 0.7429) 

whereas the average A flap modes occur in 2 distinct groups:-

Group 1 
Gmup 2 

2 pairs of complex modes 
4 pairs of complex modes 

(at -0.2918 ± 0.5986j and -0.2867 ± 0.6027j) 
(at -0.2932 ± 0.5368j and -0.2964 ± 0.5339j). 

Correlation between the average A and Partial Floquet techniques is very good for the Group 1 flap modes 
with the real parts lying within 2% and the imaginary parts within 1.5%. Figure 4 provides phasor representa­
tions of eigenvectors produced by average A and Partial Floquet Analysis for one of the Gmup 1 flap modes. 
With reference to this figure, it can be seen that both techniques are establishing a similar shape for this mode. 
In particular, the modal response is dominated by the flap states of the right rotor with some excitation also 
present for the right rotor's induced flow states. The response for each of the dominant flap states are in phase 
and the main induced flow contribution is provided by the uniform component, therefore, it may be concluded 
that this is a coning mode for the right rotor. Similar anv.lysis for the remaining Group 1 flap mode reveals that 
it represents a coning mode for the left rotor. Hence, the Group 1 modes, as identified by both Partial Floquet 
and Average A analysis) represent 1 pair of complex coning modes for the right rotor and 1 pair of complex 
coning modes for the left rotor. 

It is evident that Partial Floquet and Average A analysis establish differing distributions for the Group 2 
flap modes. Table 3 and Figure 2 reveal that the avenrge A group comprises 4 pairs of complex flap modes 
(distributed as 2 repeated pairs) whereas the Partial Floquet group comprises only 2 pairs of complex modes. 
Figure 5 provides pbasor representations of eigenvectors produced by average A and Partial Floquet Analysis 
for one of the Group 2 flap modes. Both eigenvectors shown in this figure are dominated by the flap states 
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of the right rotor with a 120° phase shift being established between the response of the blades in each case. 
The presence of this phase shift suggests that the Group 2 modes are either disc progressing or disc subsidence 
modes. In fact, a multi-blade transformation was used to analyse the response of the rotor disc plane to the 
Group 2 modes and revealed that these may be classified as disc progressing modes. 

With reference to the phasor diagrams shown in Figure 5, it can be seen that average A analysis identifies 
that the response of the disc progressing modes involves purely the flap states for the one rotor. Conversely, 
Floquet analysis establishes fairly strong excitation of the induced flow states and some excitation of the other 
rotor's flap states as part of the modal response. Hence, it should be noted that Floquet and average A analysis 
are identifying differing mode shapes for the disc progressing modes. 

Partial Floquet Analysis alone establishes the 4 real flap modes which form the Group 3 set. Analysis of 
the modal response of the rotor disc plane, again using a multi-blade transformation, allows us to classify these 
modes as disc subsidence modes. 

With reference to Figure 2, it can be seen that the full set of eigenvalues lie within the unit circle and 
therefore all modes of the vehicle are stable in this regime. It is perhaps apparent that the discrete plane gives 
only a fairly qualitative insight to the stability characteristics of the vehicle. For example, one can deduce that 
the rigid 6 DOF modes which lie at the periphery of the unit circle are lightly damped whereas the inflow 
modes lying near the origin are heavily damped. However, a more detailed quantitative appraisal of the modal 
damping is extremely difficult from this plot. Furthermore, the discrete plane yields only very limited qualitative 
information on the modal frequency content, in fact, one can only readily determine whether the modes are 
complex or real. For a comparison in more familiar terms one must map the discretised eigenvalues, using 
Equations 16 and 17, to those of an equivalent continuous system. 

6.2.2 Comparison Between Eigenvalues of the Floquet Transition Matrix and Average A Matrix 
in the Continuous Plane 

Figure 3 and Table 4 provide a comparison between the eigenvalues of the Floquet Transition Matrix and 
Average A matrix in the continuous plane. When generating this plot, only the fundamental frequency of the 
Floquet eigenvalues were considered as it was felt that a shift of 30" in this case 180 rads- 1 , in the angular 
velocity would produce unrepresentative eigenvalues of the system. From the results presented here, it is clear 
that the continuous plane provides a more meaningful insight to the characteristics of all the vehicle's modes. 
In particular, one can readily determine the modal frequency and time to half amplitude from inspection of the 
continuous eigenvalues and this is of great assistance when establishing the nature of the modes. 

From Figure 3 and Table 4 it is clear that both average A and Floquet analysis are establishing similar 
characteristics for the 6 DOF rigid body modes where, in most cases, the respective eigenvalues lie within 10%. 

The disparities occurring between average A and Floquet rotor modes are clearly visible in the continuous 
plane. With reference to Figure 3 one can again see that differing distributions are identified by average A and 
Floquet analysis for the flap modes. Also, it is apparent that the Floquet induced flow modes are, in all cases, 
more heavily damped than their counterparts established by average A analysis. 

7 Analysis of Floquet and Average A Flap Modes 

As stated in the introduction to this paper, high bandwidth control systems are now being developed for 
the stability and control augmentation of the next generation of rotorcraft. It is also noted that a detailed 
knowledge of the vehicle higher order dynamics is essential in order to ensure the integrity of these new high 
bandwidth control systems. Clearly, any high bandwidth control system design•'d around an incorrect evaluation 
of the rotor modes would be of questionable integrity and this could have serious implications on the handling 
qualities of the augmented vehicle. Hence, it is important to determine which of the above analysis techniques 
is establishing the correct distribution of flap modes. 

The two partitions (1 for the right rotor, 1 for the left rotor) of A{t) that contain the flap derivatives have 
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the following structure:-

where:-

and, in this case:-

A(t)Jiap = 

8/J" - 0 
8{3,., -

aii" _ 0 Bf3m -

~Z" = 0 (constant) 

f!J[,_ = 1 (constant) 
e~" 

-3614s-2 

-3639s- 2 
right rotor 
left rotor (mean values, periodic) 

right rotor 
left rotor (mean values, periodic) 

Figure 6 depicts the full periodicity of the dominant flap derivatives, gg:, for the right rotor. When 
generating these plots, the system matrix, A(t), was evaluated for a partial revolution of rotor azimuth and the 
partial periodicity condition, given by Equation 11, used to provide the full periodic trajectories. As one would 
perhaps expect, these derivatives all exhibit the same periodicity (peak-to-peak 800 s-2 , mean -3614 s-2 ) with 
a phase shift of 27f j n of rotor azimuth occurring between the path associated with each consecutive blade. 

Floquet stability analysis captures the effects of the periodicity and phase shift shown in Figure 6 when the 
periodic A linear model is integrated through a partial revolution of rotor azimuth. The Floquet transition 
matrix, R, therefore, provides an exact evaluation of the growth in the model states across one period of the 
linear system. Hence, eigen-analysis of the R matrix will yield an accurate set of flap modes for the periodic 
system. 

Conversely, the average A approach does not encompass the periodicity of the state derivatives but instead 
adopts their mean values. This approximation has implications for all the identified modes but has greatest 
impact on the flap modes as the flapping derivatives have the largest peak-to-peak amplitude (e.g. 800 s-2 for 

~ as opposed to 5ms-2rad- 1 for ~ ). The A flap partitions for each rotor are now dominated by the mean 

~-;;- derivatives and these values will be repeated for each blade. For example, the Atlap partition for the right 
rotor is given by:-

0 1 0 0 0 0 
-3614 -28 0 0 0 0 

Ajlap = 0 0 0 1 0 0 
0 0 -3614 -28 0 0 
0 0 0 0 0 1 
0 0 0 0 -3614 -28 

It is this block diagonal structure of the A 11 a 1, partition which leads to the generation of repeated eigenvalues 
in the average A flap modes. In fact, cigen-analysis of the partition quoted above yields 3 pairs of repeated 
complex modes whose eigen-value is equal to that of the right rotor progressing modes given in Table 4. 

Furthermore, the average A system matrix, A, has sacrificed the periodicity and relative phasing of the 
dominant Hap derivatives, gg:: , shown in Figure 6. The average A linear model is, therefore, a time invariant 
system in which the flapping derivatives experienced by the blades are constant (the respective mean values) 
and independent of the blades' individual azimuthal positions. This approximation is of greatest significance 
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in the context of the progressing and regressing modes where the modal response is periodic with a phase shift 
between the motion of each blade. In order to produce this behaviour accurately, the linear model must include 
the correct phasing and periodicity of the flap derivatives. Clearly, this information is lost during the averaging 
process and therefore the time-invariant model cannot correctly generate the progressing and regressing modes. 

To verify the preceding discussions, eigenvectors for each of the Floquet and average A flap modes were su­
perimposed onto the trimmed state vector and input to the full non-linear simulation model. The resulting time 
histories were then analysed to ascertain which set of responses were exhibiting transient behaviour consistent 
with the corresponding eigenvalues. The observations presented in the following section summarise the results 
obtained. 

7.1 Response of Non-Linear Simulation Model to A Floquet Disc Subsidence 
Mode 

The four Group 3 or real disc subsidence modes identified by Floquet Analysis are of key interest in this exercise 
as their presence indicates that eigen-analysis of the average A matrix has not fully captured the higher order 
modes of the system. In the following example, the eigenvector for one of the symmetric disc subsidence modes 
(.\=-8.6354, t0.5 =0.0803 seconds) was superimposed onto the trimmed state vector and input to the full non­
linear simulation model. For comparison, this eigenvector was also input to the linearised model used when 
evaluating the Floquet Transition Matrix, that is, the model which incorporates the Partial Periodic condition 
as given by Equation 11. The results obtained are exemplified by the time histories for the right rotor states 
provided in Figure 7. 

With reference to this figure, it can be seen that the linear model has accurately replicated the behaviour 
of the full non-linear simulation with both sets of time histories being virtually coincident for all states. Most 
significantly, the transient response of the non-linear model is consistent with both the identified modal damping 
(characterised by the Floquet eigenvalue) and with the mode shape (characterised by the Floquet eigenvector 
shown in Figure 4). In addition, there is negligible cross excitation of any other modes. It can be concluded that 
the real disc subsidence modes are indeed true modes of the system and thus, Floquet analysis has established 
accurately the higher order rotor modes. 

7.2 Response of Non-Linear Simulation Model to An Average A Disc Progressing 
Mode 

In this case, the modes of greatest interest are the two pairs of repeated progressing modes (occurring at A=-
13.8873 ± 57.1891j and A=-13.9316 ± 58.4953j) as coincident modes of this type were not identified by Floquet 
analysis. The eigenvector corresponding to one of the progressing modes for the right rotor was superimposed 
onto the trimmed state vector and input to the full non-linear simulation model. For comparison, this mode was 
also input to the linearised model which adopts the average A matrix as the system matrix. The time histories 
for the right rotor states are provided in Figure 8 and typify the results obtained. 

From this figure, it is evident that the level of correlation between non-linear and linear simulation models 
is poor when compared to the previous Floquet example. With reference to the time histories produced by the 
linear model it can be seen that this response is commensurate with the identified mode. Clearly, there is no 
excitation of the inflow states which maintain their periodic trim state throughout the simulation and this is 
in accordance with the identified mode shape - as shown in Figure 5 and discussed in Section 6.2.1. Also, the 
transient responses of the blade flap states are consistent with the period and time to half amplitude indicated by 
the modal eigenvalue. Therefore, as one would perhaps expect, the higher order modes of the linear simulation 
model have been identified accurately by eigen-analysis of the average A matrix. Of much greater significance, 
however, is the fact that the response of the non-linear simulation does not conform with the characteristics of 
the identified mode. Although the blade responses do appear to follow the transient prescribed by the modal 
eigenvalue, there is strong coupling to the induced flow states and this is inconsistent with the identified mode 
shape. In particular, one can see transient oscillations in excess of 1 ms- 1 on the harmonic induced flow states. 
In fact, it would appear that one of the real disc subsidence modes (as identified by Floquet analysis) has been 
excited in the transient response of the induced flow states. Hence, it may be concluded that the average A 
linear model does not accurately replicate the response of the full non-linear simulation and that eigen-analysis 
of the average A matrix has failed to identify the higher order rotor modes of the full non-linear simulation. 
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8 Conclusions 

A specialised, Partial Periodic, trimming algorithm (PPTA) was developed for application to the latest genera­
tion of rotorcraft simulation models. This algorithm is capable of simultaneously obtaining the initial conditions 
and control displacements necessary to produce a specified periodic flight state and achieves computational econ­
omy by exploiting the symmetry of the rotor. Furthermore, the PPTA is particularly robust to the quality of 
start values and, consequently, there is no recourse to damping parameters which would slow the convergence 
of the scheme. The full non-linear simulation model is used by the PPTA and hence exactly the same model 
structure is used during the trim and forward simulation phases. This feature results in trim states of the 
highest quality which are precisely maintained throughout forward simulations of extended duration. 

The partial periodicity relationships were then used to produce an efficient development of classical Floquet 
techniques for analysing rotorcraft stability characteristics using advanced simulation models. The resulting 
method, termed Partial Floquet Analysis, was used to assess tilt-rotor stability characteristics from an individual· 
blade simulation model. During the course of this work, the modes identified by Partial Floquet analysis were 
compared with those produced by eigen-analysis of the averaged system matrix. It was found that reasonably 
good correlation existed between the two approaches for the 6 DOF rigid body modes, however, differing 
characteristics were established for the higher order rotor modes. Injection of the flap mode eigenvectors to the 
full non-linear simulation model exposed limitations in the average A approach when analysing the higher order 
modes of the system. However, this exercise verified that Floquet analysis had identified accurately the higher 
order modes of the full non-linear simulation model. 
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right rotor left rotor 
state start value trim value start value trim value 

{1st Iteration) (lOth Iteration) (1st Iteration) (lOth Iteration) 

{31 ( deg) 0 -3.5385 0 -3.3985 
!31 ( degs 1) 0 -14.6212 0 -58.2782 

{3, ( deg) 0 3.6736 0 2.9564 
{3, ( degs 1) 0 256.3200 0 267.1903 

!33 ( deg) 0 4.2007 0 4.6576 
!33 (degs 1) 0 -242.9455 0 -210.5260 
vo (ms _,) 20.0 3.1796 20.0 2.8685 
v" (ms _,) 0 0.6176 0 -0.4892 
v1, (ms ·1 ) 0 3.1162 0 3.2408 

Table 1: Comparison Between Start Values and Trimmed Initial Conditions for Rotor States 

state start value trim value 
(1st Iteration) (10th Iteration) 

U 0 (ms ' 1 ) 60 48.2315 
Va (ms -1 ) 0 0.0000 
W 0 (ms -1 ) 0 16.9142 
p(degs-1) 0 -2.4467 
q(degs- 1 ) 0 6.7198 
r (degs -1 ) 0 6.9689 
e (deg) 0 14.1469 
¢ ( deg) 0 44.0452 

Bocc (de g) 45.3837 49.7707 
Xtong (% fwd) 0 40.0753 
Xtat (% right) 0 50.9732 

Xpcdal (% right) 0 60.0465 

Table 2: Comparison Between Start Values and Trimmed Initial Conditions for the Body States and the Control 
States 

100 200 300 
rotor azimuth (de g) 

100 200 300 
rotor azimuth (deg) 

Fh11 Tuto ol R<>tot (rmm ~~ =•l 

3 22 ,---,...---,---..,.---, 

' i1 
3 3.2. 
s 
.5 
§ 3.18 · 
2 
'E 

::> 3 ' 16 0!:----:1-7:00::--,:C:oo:::--::3-:cOO,----J 
rotor azimuth (de g) 

6 · 7 o'----,l.'coo=----,:::oo-c-·-cJ-oo___j 

rotor n1.imuth (dcg) 
+ Fto>l Turn of RO!nr (to 1~120 •cc•) 

Figure 1: Comparison Between Periodic Trajectories Produced at Start and End of 120 Second Simulation 
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Figure 2: Comparison Between Eigenvalues of the Floquet Transition Matrix and Average A Matrix in the 
Discrete Plane 

mode I Floquet Eigenvalue I Average A Eigenvalue I 
spiral 0.9735 0.9644 

roll divergence 0.9944 0.9948 
phugoid 0.9979 ± 0.0077j 0.9973 ± 0.0076j 

Dutch roll 0.9877 ± 0.0371j 0.9888 ± 0.0351j 
short period 0.9571 ± 0.1191j 0.9609 ± 0. 1194j 

lateral inflow - left rotor 0.1125 0.1485 
lateral inflow - right rotor 0.1171 0.1424 

longitudinal/uniform inflow - left rotor 0.0294 ± 0.0617j 0.0265 ± 0.0673j 
longitudinal/uniform inflow - right rotor 0.0327 ± 0.0644j 0.0296 ± 0.0705j 

anti symmetric disc subsidence 0.7429 -
symmetric disc subsidence 0.7366 -

anti symmetric disc subsidence 0.6423 -
symmetric disc subsidence 0.6496 -

coning - left rotor -0.2868 ± 0.6061j -0.2918 ± 0.5986j 
coning - right rotor -0.2816 ± 0.6099j -0.2867 ± 0.6027j 

progressing- right rotor -0.3648 ± 0.5262j -0.2932 ± 0.5368j 
progressing - left rotor -0.3608 ± 0.5281j -0.2964 ± 0.5339j 

progressing - right rotor - -0.2932 ± 0.5368j 
progressing- left rotor - -0.2964 ± 0.5339j 

Table 3: Floquet and Average A Eigenvalues in the Discrete Plane 
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Figure 3: Comparison Between Eigenvalues of the Floquet Transition Matrix and Average A Matrix in the 
Continuous Plane 

mode Floquet Eigenvalue Average A Eigenvalue I 
spiral -0.7598 -1.0238 

roll divergence -0.1601 -0.1481 
phugoid -0.0594 ± 0.2178j -0.0754 ± 0.2153j 

Dutch roll -0.3288 ± 1.0601j -0.2997 ± 1.0021j 
short period -1.0215 ± 3.4978j -0.9094 ± 3.4918j 

lateral inflow - left rotor -61.7272 -53.8820 
lateral inflow - right rotor -60.5921 -55.0538 

longitudinal/uniform inflow - left rotor -75.7937 ± 3L7934j -74.1802 ± 33.7700j 
longitudinal/uniform inflow - right rotor -74.2510 ± 31.0880j -72.6521 ± 33.1521j 

anti symmetric disc subsidence -8.3950 -
symmetric disc subsidence -8.6354 -

anti symmetric disc subsidence -12.5084 -
symmetric disc subsidence -12.1860 -

coning - left rotor -11.2931 ± 56.8593j -11.4871 ± 57.1891j 
coning - right rotor -11.2373 ± 56.5953j -11.4234 ± 56.9201j 

progressing - right rotor -12.5952 ± 6L5003j -13.8875 ± 58.4953j 
progressing - left rotor -12.6263 ± 6L3048j -13.9316 ± 58.6909j 

progressing - right rotor - -13.8875 ± 58.4953j 
progressing - left rotor - -13.9316 ± 58.6909j 

Table 4: Floquet and Average A Eigenvalues in the Continuous Plane 
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Figure 4: Phasor Diagrams of the Partial Floquet and Average A Right Rotor Coning Modes (at .\=-11.2373 
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Figure 6: Flapping derivatives against rotor azimuth for one turn of the rotor 
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Figure 7: Comparison Between Responses Produced by Linear and Non-Linear Simulation Models For the Right 
Rotor States when Symmetric Disc Subsidence Mode (>.=-8.6354) is Injected onto Trimmed State Vector 
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Figure 8: Comparison Between Responses Produced by Linear and Non-Linear Simulation Models For the Right 
Rotor States when Right Rotor Disc Progressing Mode (>.=-13.8875 ± 58.4953j) is Injected onto Trimmed State 
Vector 
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