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In the past, airframe manufacturers and subcontractors through-
out the world have spent considerable time and financial
resources on developing advanced manufacturing facilities and
techniques for composite structures. An extensive selection

of technologies is available today, and the approaches even
within my own company differ widely according to the field of
application as well as to load and performance specifications,
(Fig. 1)
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Encouraged by the successful introduction of advanced composites
in the production of rotor blades more than 25 years ago, the
evolution of airframes followed the path towards lightweight
fuselages in composite design.

Today it is known that one can best save on specific weight in

the case of highly loaded structures with only a few load intro-
duction areas and insert bridges by using a sandwich desiagn

made of advanced composites. For medium loaded structures or
fuselages with many load introduction areas, hand holes., edges
etc. the box-type constructicon may be the more efficient composite
solution, Both solutions are normally highly integrated and
sometimes even manufactured in one shot, that is to say, with a
minimum of process cycles.

This brings me to a basic question on future manufacturing
technology. Who or what is going to be the future workmate in
the composite shop 7?7 (Fig., 2)

The future of composites manufacturing ?

fig, 2
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Will it be a robot or maybe a workmate in protective clothing
or just a normal craftsman ?
To answer this question, we have to analyse the manufacturing
pProcess in two aspects:

The first aspect i1s : Health impairment

The second aspect is : Cost effiency

In planning a lay-out for a composite plant we have to be
thoroughly aware of potential health risks involved in storing.
handling and processing composite materials. (Fig. 3)
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Although the chemical industry strictly bans and replaces any
known hazardous compound out of its mfr. program, there will
still remain a considerable risk that existing or future
compounds may be declared to be health impairing, or even worse,
carcinogenic.

This is partly due to the diversity of materials with low
purchase quantities in the airframe industry and to the less
comprehensive impairing tests of advanced materials compared
for example to the automobile industry. Once a material in
aerospace industry has been qualified and established in a program,
a complete substitution will last at least 3 years., (Fig. 4)
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The introduction of long fibre composites and epoxy based
adhesives in the production of helicopters changed the

mechanical manufacturing process into a chemical and physical
manufacturing process with considerable shop floor investments.
These investments were to ban any remaining health risk contained
in handling advanced composites based on thermoset resin systems.
Modern composites plants usually consist of dislocated mfr. areas
with specific clean-air or suction systems for all kinds of
volatile resin compounds as well as fibre particles,



Within the processing industry we have learned to take the
so-called “subacute” exposure to resin systems., solvents,
fine dust particles etc., as serious.

Today we all know that the careless exposure to these
materials, for instance by prepreg lay-up without protective
gloves, may cause allergic reactions, eczemas or even worse
acute itching rash.

Such symptoms normally subside when the correct use of pro-
tective measures both for the exposed operators as well as for
the working areas is re-established. Special attention has to
be paid to providing the operators in the composite shop with
comprehensive health information and education on the correct
and safe use of thermoset materials., (Fig. 5)

Thermoplastic composites

Hethopter arel
Mary Abarak

¢ PEEK varns & fabrics ¢ Commingled yarns & fabrics
e Powder prepregs

PEEK~flhras

0L IR

Carbon flbres
woven with

Carben fibre
ro~anforced
tharmoplast

thormoplast-ibros

TR

o Stiff & non—drapable ¢ Drapable ! flexible material
fjg ., 5 at room temperature ! ®» No soivents
e (hot forming >250°C) # Broad goods
¢ Preforming

= Multilayer
= Near net shape

Sowce =MBB-TH : ZTTS5 QBT
=BASF Shructusaf htatenzining

H5 Experimental Shop, Qllobrunn 05.30.1989



Although today the use of fibre reinforced thermoplasts in

the helicopter industry is still in the stage of feasibility
studies, we should closely observe the development of price and
performance of these nonpolluting new composites. Safer thermo-
plastic materials with sufficient lay-up characteristics at
room temperature may soon be available for manufacturing.

The prepregs on the right side of this figure already fulfill
the drapability specification at room temperature and may be a
promising approach to health safety in composite manufacturing.
(Fig. 6)
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With respect to the high cost implications of qualification
programs for advanced materials, cooperation between partners
in international airframe programs as well as in the composites
industry has to be as close as possible,

Both the chemistry and aerospace industries have to be aware of
the increasing cost risks involved, depending on the degree of
their engagement in advanced materials.



Expensive material cqualification programs as well as con-
siderable plant investments for health and environment pro-
tection have been the admission charge to a new technology.
Now we have to make sure that this financial burden will be
paid back by a cost-effective and streamlined production line,
Comparing recurring costs in the aerospace industry, we must
carefully analyse the variety of materials and existing
structural design solutions in composite production. (Fig. 7)

Variety of composiie materials

fig., 7
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Today, we are able.to handle and process nearly any combination
of different materials such as fibres, resins, prepregs, foams,
honeycombs etc. Prices, however, differ up to a factor of 30

even within one material group, as does for example the group of
unidirectional carbon-prepreds which is mainly dependend upon the
young’s modulus ! Lot size, amount of scrap material, expiration
date etc., are further factors that make it difficult to compare
material costs.



Concerning mfr., costs and manhours, the complexity and variety
of design solutions in the aerospace industry make it even more
difficult to Jjudge according to a general vard stick. (Fig. 8)

Variety of composite structures

fig., 8
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This figure should give a slight impression of the nearly
unlimited possibilities in design and functional performances
one can achieve by using advanced composites. Calculations of
mfr. costs, however, depend upon the individual process chain
of these components and cannot normally be compared o each
other. (Fig. 9



Cost potentials in composite manufacturing
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After this introduction, I would like to compare the production-
cost calculation of identical structures both in metal (here:
Aluminium alloy) and carbon fibre reinforced plastic.

According to this calculation, we have to assume that a light-
weight structure made with carbon fibres is still more expensive
today, mainly due to the high material prices.

We expect, however, that the price for advanced composites
will become more competitive in the next decade, partly due
to the higher purchase quantities of the cooperating airframe
industries, Furthermore we may assume that material waste
Wwill be minimized by means of better nesting programs for
computer-controlled cutting machines, batch manufacturing

of cuttings, modular cutting, structured Mylar films etc,

There is still the question of the portion of the recurring cost.
which is a challenge for the mfr. engineer., By this I mean the
cost potentials in the composite shop or the manhour potentials.
(Fig. 10)



Lay—up of composite structures
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The core operation of composites manufacturing is very similar
t0 an assembly process, where different parts have to be
positioned and fixed in a given orientation.

As vou probably remember, this lay-up of fabric-cuttings cannot
be completely simulated on drawing boards or design screens if
the loft or surface of the composite parts is curved.
Furthermore, the draping of a flat cutting on a curved surface
will follow a natural path and will eventually fall in folds.

Two consequences may be derived from this complex operation:

1) Cutting and lay-up drawings for composite mfr,
can only be optimized by parallel mfr. tests
in a nearby experimental shop. This is also valid
in spite of improved 3D-computer aided design tools.

2) Even with optimal design data, the lay-up process
of broadgood cuttings on double curved surfaces
or along restricted corners will not be completely
mastered by usual automatization approaches in series
production. Unfortunately this lay-up work might have
t0o be primarily performed by hand in the near future !



Fibre placement In serles production
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This figure shows well known methods and types of mechanical
fibre placement in composites manufacturing. What all these
kinematic solutions have in common is that we have a continous
lay-up process with endless rovings or tapes and that they

can be profitably used to manufacture flat or convex parts
with closed surfaces.

The support of machines, however, for the fabrication of concave
lay-ups in negative-moulds, double curved structures full

of corners as well as highly integrated sandwich structures

is extremely limited.

In my opinion, the lay-up work will continue to be performed

by hand for most of these parts unless we succeed in developing
reproducible forming processes for flat lay-ups such as hot-
forming, bag moulding etc. (Fig. 12)
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In contrast to forming and deep~drawing processes used on
(isotropic-) sheet metal, tne nature of remoulding flat composite
lay-ups is based on a fibre-displacement process in the softened
matrix. This explains why short fibre lay-ups can easily be deep-
drawn into complex surface shapes. It also explains why remoul-
ding of long-fibre reinforced thermoset lay-ups is generally
limited to a preforming operation used to gain a rough formed,
bi-stage part.

Endshape forming and final curing still need the autoclave
process or solid mouldings with complex pressure tools.

[ am afraid that this process chain will stay the usual tech-
nology for the reproducible manufacturing of composite struc-
tures based on long-fibre reinforced thermosets.,

But even for this conventional process chain we can streamline
our shop organization with respect to the many provisioning

and distribution operations involved or in general in respect

to indirect times. (Fig., 13)
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Here a schematic representation of a build-line for sandwich
structures is shown, which allows a high division of labor
and sufficient flexibility in the case of freauently changing
batches. Cutting and preforming honeycombs and prepregs

is done in batches in specific mfr. areas, which are then
stored, ready to be available on order call,

The next figure shows some plant photos with details of the
tooling circle and material distribution area next to the
cold-storage depot of prepreg cuttings. (Fig. 14)



Build—line facilities for series production of composites

fig. 14
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I should emphasize that this kind of investment only pays off
if a reasonable series production of composites components is
taken as a basis. New shop lay-outs, however, can be planned
according to the expected logistical demands.

The last cost potential I would like to mention here concerns
the aspect of standardization or specification of part families
as well as functional modules. (Fig. 15)



Modular techniques in composite manufacturing
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I assume that we all know the modular or unit construction
principle very well from many designs of structures and
equipment both in aerospace products as well as in tooling.
Regarding the variety of composite structures and toolings,
however, [ feel that this idea should be taken up again by
the production engineers,

A consistent translation of this principle into a composites
structure is, for instance, the carbon fibre structure of the
Airbus vertical stabilizer,

In this case, the frame-stringer structure was divided into
modular structural boxes, which can be manufactured separately
and then bonded together in one shot. The economic benefits
are mainly due to the limitation of cutting shapes, tool-
modules, shop operations etc. while the production lead-time
can be reduced by the high degree of parallel pre-fabrication
of structural modules,



Before I run out of time, let me briefly come back to the
opening guestion of the future employee in the composite
shop. Advanced composite materials represent nearly unlimited
possibilities in the design of lightweight structures.

The variety and complexity of today’s aerospace structures

is a reflection of the many degrees of freedom in design

that the airframe engineers have been offered by these
materials.

Even the hard-line advocates of standardization won't argue
about the benefits of individual lightweight and functional
designs. They may, however, suggest that, if possible, a minor
cut in performance or weight can be profitable for the series
production in the sense that the limitation to 90 % of the
technical optimum may eventually save 20 up 25 % of the
manufacturing cost.

In any case, in the near future, composites shop work will
remain a skilled manual-craft, at least in the core operation,
that is to say, the lay-up of broadgood cuttings.

The peripheral areas, however, ranging from cutting to non-
destructive testing, will be consistently streamlined and
automated. Hopefully, new materials will allow us to throw away
the protective gloves and substitute manual draping with forming
processes based on flat lay-ups, or even wWith consolidated
profiles and semi products.

Dr. D. Minke
Experimental Shop
MBB - QOttobrunn



