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Abstract 
Tiltrotor aircraft maximum horizontal flight speed is limited by whirl flutter. Current research efforts focus on one side on 
experimentally investigating on the stability margins through specialized wind tunnel test-beds, and on the other side on developing 
efficient numerical tools, to both guide the development and gain information from experimental efforts. In this work, the 
development of TiPa, a software package providing a customizable interface to the general-purpose multibody dynamics solver 
MBDyn to provide a parametric tiltrotor model generation and investigation tool is presented. The tool is combined with DAKOTA, a 
state of the art Uncertainty Quantification (UQ) tool to form a complete aeroelastic stochastic analysis package. Two strategies for 
the parametric model generation are presented. One is based on the definition of complete MBDyn tiltrotor models while the other 
one relies on the generation of two different subsystems to be assembled through a substructuring approach. Some promising early 
results and assessment are presented, together 
with the expected future research direction. 

1 INTRODUCTION 

Tiltrotors, due to their capability of vertical takeoff and landing 
and high–speed forward flight, received increasing attention in 
the last several decades. Their design is mature enough to make 
possible their entrance in the civil air transport market [1]. 

Tiltrotor design is a challenging engineering task to the 
multipurpose missions to be accomplished by this aircraft. As a 
representative example, the case of whirl flutter is discussed in 
this work. Whirl flutter, a specific type of aeroelastic flutter 
instability [2, 3], is a phenomenon that is known to affect both 
turboprop and tiltrotor aircraft [4]. 

When a rotor mounted on a flexible structure rotates, the 
normal vibration modes associated to the elastic behaviour of 
the supporting structure are merged into precession modes. A 
point on the rotor axis of rotation draws circular paths about its 
initial position, changing the way each rotor blade perceive the 
incoming air speeds and generating a new set of aerodynamic 
loads. When this phenomenon is triggered, such forces can lead 
to the divergence of the system response and to the whirl flutter 
instability [5]. 

Nowadays, the understanding of the phenomenon in 
tiltrotor aircraft is still limited. Since many factors, for instance 
geometrical design, materials, actuators dynamics, can 
contribute to its occurrence, getting an accurate prediction of 
the aircraft aeroelastic behaviour can be very complicated. 

The research group of the authors has been involved in 
numerous research activities focused on the multibody 
aeroelastic modeling of tiltrotors [6]. Parametric multibody 

modeling of the vehicle has been used as the primary tool in 
order to study the sensitivities that each design parameter play 
on this phenomena. 

Within this research frame, a MATLAB tool aimed at the 
automatic generation of arbitrary tiltrotor multibody parametric 
models, currently in development by the authors, is presented. 
The tool has been called TiPa (Tiltrotor Parametric model 
generator). It generates a model suitable to be simulated with 
MBDyn (http://www.mbdyn.org/), a general purpose 
multibody software with well established aeroelastic 
capabilities. 

Furthermore, TiPa is able to manage the interaction between 
MBDyn and DAKOTA (https://dakota.sandia. gov/), an open 
source software under GNU LGPL licence widely used in the 
research community to perform uncertainty quantification and 
optimization [7]. The aim is to develop a comprehensive tool for 
uncertainty quantification in rotorcraft analysis, focusing in 
particular on stability analysis of tiltrotor configurations. 

The present work describes the design approach followed in 
the development of TiPa, describes its capabilities and presents 
some early results related to the WRATS [6] tiltrotor flutter 
analysis. 

2 TIPA 

The development of a parametric tiltrotor whirl flutter prediction 
tool is meant to satisfy specific investigation requirements. Whirl 
flutter is an aeroelastic phenomenon affected by a large number 
of factors. The need to understand how each design feature 
influences a specific system aeroelastic behaviour is crucial in 
gaining further insights on the origin of instability phenomenon. 
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The easy adaptability of TiPa models allow this type of 
investigation. First, it is designed to provide a semiautomatic 
model generator for an arbitrary user defined proprotor 
configuration. The process is based on three input cards that 
store information about the system features and the required 
simulation properties. The software is designed to handle 
different amounts of input data in order to match the specific 
level of knowledge about the model configuration. Such 
information is used by TiPa to prepare input files for MBDyn. It 
can, furthermore, directly manage the MBDyn simulation, in 
order to automatically complete the aeroelastic assessment of 
the current design. Finally, TiPa also acts as a postprocessor for 
the response variables provided by MBDyn analysis. Such tasks 
are designed to make TiPa simulation flexible in order to be 
coupled with the external Uncertainty Quantification software 
DAKOTA. 

2.1 Parametric Modeling 

The software requires the definition of a series of input variables 
to be manipulated by TiPa internal schemes in order to generate 
the desired geometries. These input parameters are accessible 
through textual (MATLAB format) input cards: 

1. the control card contains the parameters designed to 
control the current simulation, like 

• which assembly components to generate and 
analyze; 

• the model structure; 

• the air data for the aeroelastic assessment; 

• the postprocessing operations; 

2. the wing card stores the user defined information 
required to model the wing subsystem; 

3. the rotor card contains information about the rotor 
geometrical, aerodynamic and structural definition. 

As evidenced by the different input cards, TiPa handles the 
model generation dividing the tiltrotor entire assembly into two 
parts (or subsystems): the wing and the rotor/pylon. This allows 
to write the rotor equations of motion in the rotating frame, and 
apply the multiblade coordinates (MBC) transformation to the 
subsystem matrices. 

The wing subsystem definition and analysis is depicted 
graphically in Fig. 1. Please note that in the figure, the direct 
interaction between the user and the solver elements is 
represented with dashed lines, while all the other actions are 
represented by continuous lines. The TiPa preprocessor 
module is responsible for transforming the user defined data 
regarding the wing geometrical and structural parameters, 
contained in the wing card and regarding the requested analysis 
type and conditions, contained in the control card, into 
information compatible with MBDyn and printing the MBDyn 
input file. 

 

Figure 1: TiPa wing and rotor submodels analyses flowcharts. 

The input file is then provided to MBDyn to execute the user 
defined requested simulation. TiPa makes extensive use of 
MBDyn eigenanalysis [8], since its output files store information 
about the modelled multibody system equations. The extraction 
of the wing subsystem matrices and modal parameters is 
devolved to the TiPa postprocessor module. 
A similar procedure is followed to generate the rotor submodel 
(Cf. Fig. 1). As an optional post-processing step, the user can 
enable the MBC transformer module, that applies multiblade 
coordinate transformation (MBC) to the system matrices. As 
results, the MBDyn rotor subsystem is now described through 
the non-rotating frames DOFs. The user can select to directly 
combine the two subsystems and obtain a complete model of 
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the tiltrotor wing–pylon–rotor structure. In this case, both the 
wing and the rotor submodels are written in the non-rotating 
frame (Cf. Figs. 2,6). 

 

Figure 2: TiPa conventional tiltrotor model generation and analysis. 

2.2 Substructuring 

The MBDyn wing and rotor models can combined aposteriori, 
after the respective eigenanalyses have been performed, 
through a substructuring process. Within TiPa, the technique is 
based on a generalization of the CraigBampton (C-B) approach 
(ref. [9]). The generation of the wing and rotor substructures is 
assigned to two independent algorithms. In Fig. 3, the routines 
are represented by the blocks called WING/ROTOR C-B model 
generator respectively. 

In general, substructuring approached are based on the 
identification of the internal and boundary portion of each 
submodel, by splitting the model degrees of freedom (DOFs). The 
Craig-Bampton process applies a partial modal reduction to each 
substructure leaving their boundary DOFs untouched. 
The C-B transformation is defined by the linear map 

 I 0 
(1) TCBR 

where: 
• ΦL are the normal modes of each substructure in 

constrained configuration (fixed boundary DOFs) 

• ΦR, also called static shapes, are the shapes deriving from 
unit displacements of the boundary degrees of freedom 

Multibody application: MBDyn performs a direct eigenanalysis 
on the equations of motion written in DAE form [8]. Therefore, 
the resulting linearized system of equations is still written with 
respect to the redundant coordinate set q=p x λ T , in 
descriptor form: 

(2) Eq˙ =Aq 

Where p contains the (dynamic, i.e. having associated inertial 
properties) nodes momenta, x the nodes positions and 
orientations, and λ the Lagrange multipliers associated with 
algebraic constraints. 

The A and E matrices associated to the submodels can be used 

to easily identify ΦL, but not ΦR. This happens since the use of a 

formulation equivalent to the FEM one to generate the ΦR would 
require inverting matrix A, which can be structurally singular. 

Instead, the static shapes constituting the columns of ΦR, are 

generated independently from current analysis. To correctly 
generate such shapes, two considerations need to be made. 
Firstly, despite the q vector structure, only the nodal DOFs x 

must be properly tuned generate the correct ΦR matrix. This is 

true since the static shapes are defined in an equilibrium 
condition, hence the contribution provided by the λ components 
is null since they define internal forces. Secondly, each MBDyn 
node has twelve DOFs (3 positions, 3 orientation parameters, 3 
momenta and 3 momenta moments). So, since the number of 
static shapes is associated to the numbers of the boundary nodes 
DOFs, twelve shapes are needed. This is twice the number of 
those needed in a conventional FEM approach. This problem was 
solved by generating the six static shapes associated to unit 
perturbations of position and rotation DOFs and consequently 
reusing them by translating to the left momenta DOFs. 

The approaches used to define each subsystem shapes are 
slightly different. 

The wing model, it is possible to directly extract the FEM-like 
matrices describing its beam structure from MBDyn system 
matrices, that can be in turn used to generate the wing static 
shapes by performing static analyses corresponding to 
prescribed displacements and rotations of the wing tip node. 
These shapes are then redistributed to an MBDyn-like twelve 
DOFs node structure to complete the generation the wing 

portion of ΦR. 

The definition of the rotor static shapes requires more care. 
This time, the boundary node is represented by the node 
clamping the system to the ground. As consequence, 
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Φ contains proper rigid body motions, therefore they are 
generated directly defining the associated nodes’ displacements. 
Once again, the twelve shapes are generated in groups of six, 

repeating those generated for position and orientation 
perturbations to describe the motions associated to the 
interface momenta DOFs. 
Since the rotor behaviour is described in multiblade coordinates, 
the rotor rigid body motions need to be assessed with such 
coordinates as well. For this reason, the shapes are generated 
using the conventional MBDyn DOFs and are eventually 
transformed to the non-rotating frame coordinates with the 
MBC transformation matrix M: 

(3) q=(RtotPTmb)qmb =Mqmb 

where q is the MBDyn generalized coordinates vector and qmb is 
its MBC version. More details on the definition of the MBC 
transformation matrices can be found in App. A. Thanks to M, 
the rotor rigid body motions can be described in the non-rotating 

frame ΦR
mb: 

(4) ΦRmb =(M)−1 ΦR 

The normal modes contained in ΦL, described with respect to 

the multiblade coordinates, are directly obtained by the 
eigenanalysis performed on on the MBC system matrices 

Amb and Emb. 
The wing and rotor substructures are eventually assembled 

by the substructures assembler algorithm. 

3 DAKOTA AND TIPA 

A schematic representation of the DAKOTA/TiPa interaction is 

presented in Fig 4. The overall DAKOTA/TiPa assessment, based 
on the non-intrusive generalized Polynomial Chaos Expansion 
(gPCE) approach [10, 11], is divided into two phases: the 
definition of the TiPa analysis surrogate model, and the 
assessment of the model response stochastic content. The first 
has the purpose of providing a process representation much 
simpler to handle with respect to the original one. If the real 
system response is X(θ), the gPCE formulation provides an 

approximation Xe(θ) as an expansion of polynomial basis 

Φj(ξ(θ)) whose definition depends on the probabilistic 
definition of the input random variables ξ(θ). The deterministic 
coefficients cj are used to tune the representation: 

S 

(5) Xe(θ)= ∑ cjΦj(ξ(θ))≈ X(θ) 
j=0 

The detailed theoretical frame behind this formulation is beyond 
the scope of this paper. The interested reader is referred to the 
cited bibliography, and to the DAKOTA documentation. 
DAKOTA, as a first step, generates the polynomial basis j(ξ(θ)). 

The task, that can be regulated through DAKOTA 
Φ 

input file, is completed by a gPCE basis generator algorithm 
according to the user provided information about the nature of 
the process random input(s) ξ(θ). The coefficients cj are 
consequently tuned by DAKOTA with the iterative execution of 
TiPa. The process, that happens entirely inside a DAKOTA run, 
can be easily visualized in Fig. 4. The DAKOTA random input 
variable generator algorithm evinces a deterministic value of 
ξ(θ) according to the user defined input probabilistic 
distribution. The parameter is consequently provided to TiPa, 

 

Figure 3: TiPa alternative tiltrotor model generation and analysis. 
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which stores the received variable either in the wing or rotor 
card. The tiltrotor analysis block contains one between the two 
processes presented in Fig. 2 and Fig. 3. Since ξ(θ) affects the 
tiltrotor geometry or properties definition, each time such 
variable is provided to TiPa, the complete generation of a new 
model is required. 

Once TiPa analysis is complete, the second interaction 
occurs. From the tiltrotor simulation some output variables are 
provided back to DAKOTA. These parameters represent the j-th 
loop responses and are collected by a random output variable 
collector algorithm. The responses the user wants DAKOTA to 
collect are defined through the software input file (see ref. [7]). 
In this application, they usually store information about the whirl 
flutter critical modes frequency estimates and damping factors. 
In case multiple response variables are considered, different 

response functions Xe(θ) are computed. 

 

Figure 4: Scheme of a DAKOTA/TiPa interaction. 

The j-th output variables are provided to a gPCE 
coefficients tuning scheme in order to identify the values of 
the expansion coefficients cj. The process, started with the 
random input variable generation, is repeated iteratively 
according to DAKOTA internal design as long as all the 
coefficients are computed. This loop is presented in Fig. 4 with 
blue arrows. 

Once the tuning is complete, the cycle ends and the 
surrogate model is entirely defined. This new model is used to 
compute the system output stochastic behaviour since it 
represents the relationship between the random input 
parameters ξ(θ) and an approximation of the random response 

Xe(θ) through a polynomial representation. The approximated 

definition is very convenient because, on one side, the expansion 
coefficients cj already provide statistic information about the real 
uncertain response X(θ) while, on the other, the new 
polynomial description allows the computationally inexpensive 
application of Monte Carlo-like sampling methods to assess the 
output probability and cumulative distribution functions as well 
as the input-output sensitivity indices. This process is 
represented in Fig. 4 in the block called UQ analysis. 

After this operation, the assessment is complete. DAKOTA 
saves the results in a series of output text files and stops its run. 
It is important to point out that during the entire process 
DAKOTA is not aware about the internal structure of TiPa. The 
two interactions happening through the interface between the 
two software are the only elements necessary to complete the 
assessment. This is the strong feature of the non-intrusive gPCE 
formulation. 

The process explained in the previous section shows a non-
negligible problem. During an UQ assessment, TiPa input cards 
are only accessible by DAKOTA. For this reason, as already 
mentioned, the user must tune the model design and simulation 
properties (excluding the random variables provided by 
DAKOTA) before the UQ software is executed. The problem lies 
in the fact that the information about the wind tunnel air 
properties (speed, density,...) are stored in the control card. 

Therefore, the whole process in controlled by a UNIX shell 
script, referred to as DAKOTA TiPa.sh in Fig. 5: the N desired 
airspeed values to test the aeroelastic model with are defined in 
the first part of the script. The tiltrotor model is still not 
accessible during the simulation: therefore, the model features 
must be tuned before the assessment starts. 

The DAKOTA/TiPa analysis executed in this process is the 
same one presented in section 3 and in Fig. 4 in the block with 
the reddish colour. Only one detail is different. TiPa, before 
starting its analysis, imports the i-th simulation airspeed data. 
The process can be easily visualized on the right side of the 
DAKOTA/TiPa block in Fig. 5. This allows the automatic update of 
MBDyn simulations airspeed values during external loop 
progress. Within the i-th loop, the flight speed remains constant. 
Once the DAKOTA/TiPa analysis is complete, the responses 
stochastic data are stored in the i-th output files. 

 

Figure 5: Scheme of a complete DAKOTA/TiPa aeroelastic assessment. 

The entire collection of DAKOTA simulations output files is 
eventually parsed by a MATLAB postprocessor which imports 
the interesting results in the numerical environment. 

The typical response variables analyzed are the frequencies 
(f) and the damping (ξ) associated to the system modes that may 
lead to the whirl flutter phenomenon development. In such 
cases, plotting the i-th loop DAKOTA responses characterizations 
over the i-th airspeed values provides a stochastic visualization 
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of the V- f and V-ξ diagrams. DAKOTA also outputs the 
responses’ Probability Density Functions (PDF), the Cumulative 
Distribution Functions (CDF) and the Sobol indices estimates, 
providing information about how each input parameter affects a 
given response function. 

4 APPLICATIONS 

Two examples of DAKOTA/TiPa analyses are shown in the first 
part this section. The assessments have been performed on a 
simplification of the three bladed stiff in-plane version of the 
WRATS model, generated entirely with TiPa. Please note that 
such model represents a simpler version of the original WRATS 
test-bed. In this part, the tested tiltrotor is generated entirely in 
MBDyn through the conventional modelling approach. 

In the second part, instead, some insight about the 
alternative modeling approach described in Section 2.2) is 
presented. Despite the method showing some interesting and 
encouraging early results, its validation, at this stage of the 
development, is not complete yet. The state of the art, and the 
steps that led to the validation of most of the entire procedure, 
are presented along with the description of the path to complete 
the assessment of the process in future research campaigns. 

4.1 The WRATS model 

The tiltrotor model used as reference is the three bladed stiff in-
plane version of the WRATS test-bed model (Cf. Fig. 6) [12, 6]. 

To obtain the most consistent analysis conditions, the entire 
range of simulations was executed with the rotor in windmill 
condition: the zero torque trim case. 

 

Figure 6: Tiltrotor multibody model in MBDyn. 

The tests were entirely executed with the rotor angular 
speed set to 742 RPM which, according to the data used, 
represents the reference angular speed in airplane mode for the 
WRATS test-bed. 

4.2 UQ parameters tuning 

The gPCE method relies on the definition of a surrogate model to 
execute the Uncertainty Quantification assessments. For this 
reason, the accuracy of the analysis results strongly depend on 
the quality of the defined approximated model. Its precision is 
regulated by the order of the polynomial approximation used to 
generate it. For this reason, some investigations were executed 
to identify the optimal number of polynomial coefficients to use 
in the definition of each iteration surrogate response models. 

To do so, a series of analysis were run to understand the 
stochastic variation of the WRATS isolated wing model first 
bending mode frequency under an uncertain mass distribution. 
This random parameter was chosen since it would have 
extensively affected the system response value. The tests were 
executed increasing the order of the Gaussian quadrature rule 
used to compute the multidimensional integration necessary 
evaluate the gPCE coefficient values. The number of evaluated 
gPCE coefficients matches, in this simple case, the quadrature 
order. 

PCE coeff. Mean value Variance Time [s] 

1 19.694080 0.0 25 

2 19.712230 0.488563 55 

3 19.712295 0.490745 77 

4 19.712296 0.490765 103 

5 19.712306 0.490784 143 
Table 1: Effects of gPCE order on reference analysis results. 

Table 1 shows how the gPCE order mostly affects the 
variance esteem of the random response rather than its mean 
value. Despite this, the average and variance evaluations 
converge rapidly as the polynomial order is increased. 

It is now important to point out that DAKOTA does not rely 
on the gPCE coefficients values to compute the local and global 
sensitivity indices during each analysis. They are evaluated from 
the sampling methods assessments executed on the surrogate 
model. For this reason, no extra gPCE coefficients are required 
to obtain quality sensitivity indices. 

So, for the entire sets of analysis presented in the following 
sections, a fourth order polynomial expansion has been used 
during the assessments. This was considered to be an optimal 
solution both in terms of accuracy and in terms of efficiency 
since, in the following analysis, a limited number of random input 
and response variables was considered. In case a larger set of 
parameters are investigated, the use of a lower order polynomial 
expansion is suggested to maintain a reasonable execution time. 

4.3 DAKOTA/TiPa analysis results 

This section presents some examples of DAKOTA/TiPa analysis 
results. The assessments were performed using the conventional 
TiPa tiltrotor whirl flutter modelling approach, i.e. the 
parametric generation of the entire assembly within a single 
MBDyn model. 
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4.3.1 Single random input parameter propagation 

In this example, an uncertain distribution of the wing bending 
stiffness about the model Y-axis (aligned with the incoming wind 
speed direction) is assumed. The investigation aims at evaluating 
the system response statistical distribution when the bending 
stiffness properties are extracted from a cluster of values close 
to the nominal ones: the reference wing out of plane bending 

stiffness EJy is pre-multiplied by a normal distribution N(µ,σ2) 
with mean value µ = 1 and standard deviation σ= 0.05. 

Stochastic V-f and V-ξ diagrams: the first outcomes of the 
analysis are the stochastic V-ξ and V- f diagrams (Fig. 7). They 
provide a visual representation of how the system random 
responses (the beam mode frequencies and damping) are 
assessed assuming uncertain input variables. The collection and 
investigation of the first bending mode properties as response 
variables is due to the fact that, in the original WRATS model, it 
is possible to investigate the aeroelastic stability of the system 
through the definition of this mode stability margin. 

 

Figure 7: Single input stochastic V-ξ and V- f diagrams. 

In both plots, the red squares are placed at the responses mean 
values computed at each airspeed condition, while the standard 
deviation is visualized through the error bars. 

In Fig. 7 two different damping trend are presented for 
speeds higher than 90 kn. The blue line represents the expected 
trend, as found in previously validated work on the modeling of 
the WRATS (Ref. [13]). The orange and black one, instead, 
represents the stability margin derived from its simplification 
used in the assessments. The real data is not presented for 
airspeeds lower than 90 kn since the two trends are almost 
identical. The representation of both curves, though, has the 
purpose of underlying the fact that the analysis presented in this 
section do not try to get any specific conclusion about the WRATS 
model design.They are simply presented to show the possible 
outcomes of the stochastic prediction tool. 

In this example, it is clear that the random input parameter 
is mostly affecting the beam mode eigenfrequency while leaving 
almost untouched the mode damping quantification. The latter 
actually shows an increasing trend in the variability of the 

response as the airspeed is increasing. To further highlight this 
aspect, sensitivity indices can be evaluated. 

 

Figure 8: Responses local sensitivity to random EJy. 

Local sensitivity: by definition [14], this parameter is the slope of 
the system response to input variation, evaluated through two 
couples of parameters: a reference input value and its associated 
system response, and a second input value computed as an 
increment of the reference one, with the related system 
response. Figure 8 shows the responses local sensitivity indices 
to the random wing EJy distribution. It is evident that there is an 
increase in the sensitivity of the beam mode eigenfrequency to 
the random input value as the airspeed increases, indicating that 
as the incoming wind speed rises, if the same perturbation in the 
system input is introduced, the evinced eigenfrequency value 
derived from the perturbed input tends to increase. The 
damping associated local sensitivity indices have a magnitude 
significantly lower than the frequency ones. The interesting 
feature of the damping local sensitivity trend, though, is 
represented by the change of sign of such sensitivity indices as 
the airspeed increases. This means that for the same positive 
increase of the input variable, the beam mode damping value is 
either increased (at about 30 kn) or decreased (at all the other 
tested speeds). This provides a very useful insight about the 
direction of the system response at different speeds. 
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The responses PDF and CDF curves: another feature provided by 
a DAKOTA/TiPa analysis is the assessment and identification of 
the responses stochastic curves. An example of such outputs is 
presented in Fig. 9 which shows the PDF and CDF curves 
representing the stochastic characterization of the beam mode 
eigenfrequency at 30 kn. The PDF curve representation is 
superimposed with the response mean value (dashed line) and 
its standard deviation (two diamonds). The response associated 
PDF curve maintains the input normal distribution shape with 
associated skeweness µ˜3 ≈ 0 and kurtosis µ˜4 =−2. 

 

Figure 9: Beam mode frequency PDF and CDF curves with random wing 
EJy. 

Analysis time: Table 2 shows a detail of the execution times of 
the package different modules. 

TiPa [s] DAKOTA [s] Total [s] 

3311 20 3331 
Table 2: Single random input propagation simulation times. 

DAKOTA execution refers to the actual time spent by the 
software generating the polynomial basis, tuning the expansion 
coefficients and executing the UQ analysis. This is pointed out 
since, as explained in section 3, most of the entire process 
actually happens inside DAKOTA environment. 

For each investigated speed, a surrogate model of the 
random input/output relationship is developed. A single 
complete TiPa/MBDyn tiltrotor assessment requires about 120 
s. For this reason, with the used fourth order approximation, four 
successive runs need to be executed to complete the 
approximated system representation. Once each surrogate 
model is ready, DAKOTA, draws 10000 samples from the 
stochastic input definition and executes a LHS (Latin Hypercube 
Sampling) UQ assessment on the polynomial representation of 
the system. This allows the evaluation of the response PDF, CDF 
and the sensitivity indices of the analysis. This final assessment 
is extremely fast. 

Of course the responses stochastic content is, in turn, not 
evaluated using the complete model but by means of an 
approximation of it. This can potentially affect the results 
reliability, and highlights the importance of the selection of the 
proper polynomial expansion order. 

4.3.2 Two random input parameters propagation 

In order to provide a reasonable comparison with the 
assessment presented in section 4.3.1, the wing beam EJy 

stiffness randomness is used in this investigation as well. The 
parameter maintains the same stochastic definition of the 
previous analysis. As new non-deterministic parameter, a 
random definition of the pylon mass value Mp is introduced in 
the formulation. The parameter stochastic distribution has been 
assumed to be well-described by a uniform distribution defined 
in the ±20% range centered about the nominal value. No 
particular physical meaning has to be assigned to the choice of 
such distribution: it has been selected to provide an example of 
the possibility to execute analysis with different shapes of the 
input variables PDF curves. 

 

Figure 10: Two inputs stochastic V-ξ and V- f diagrams. 

Stochastic V-f and V-ξ diagrams: The stochastic V- f and V-ξ 
associated to this assessment are presented in Fig. 10. Please 
note that the same concepts discussed in the description of Fig. 
7 beam mode damping trend are valid here. The model used in 
the analysis does not try to exactly emulate the WRATS 
behaviour, but it is meant to show the possible outcomes of 
some reference DAKOTA/TiPa analysis. The curves shows a 
similar trend compared to those presented in Fig. 7. When the 
second random variable is introduced, though, the responses 
standard deviation tends to increase with respect to the case in 
which only one appears. It is interesting to notice how, in this 
second analysis, the beam mode damping standard deviation 
increment as the airspeed rises is more evident compared to the 
previous case. 
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Figure 11: Responses local sensitivity to random Mp. 

Local sensitivity: Figure 11 shows the local sensitivity indices of 
the system responses to the variability in the Mp value. The 
represented trends shows that both responses tend to decrease 
in response to an increment in the mass value since the local 
sensitivity indices always have a negative value. This trend is 
maintained through all the tested airspeeds. 
The comparison between the damping local sensitivity indices 
represented in Fig. 8 and Fig. 11 shows that this parameter is 
more influenced by an increment in the Mp with respect to a 
variation of the EJy definition, since the sensitivity indices to the 
mass pylon value are one order of magnitude larger with respect 
to those related to the bending stiffness. 

 

Figure 12: Sobol indices associated to the system responses. 

Global sensitivity: When multiple random input parameters are 
defines, the DAKOTA/TiPa package can also be used to compute 
Sobol indices. They are used to execute global sensitivity 
analysis, since they provide a quantification of each random 
input variable contribution to the responses variance (ref [14, 
15]). This gives a deep insight about the actual role of each non-
deterministic parameter in the system overall behaviour. Each 
Sobol index value is between 0 and 1 and the sum of all the 
indices associated to a given analysis is always unitary. 

In Fig. 12, the values of the Sobol indices indicating the 
influence of each random parameter input on the variance of the 
beam mode eigenfrequency and damping at the tested airspeeds 
is shown. Please note that a third index is always estimated when 
two random variables are introduced in a system. This is meant 
to assess the contribution of the interaction between the two 
variables to the responses variance. In the presented analysis, as 
can be expected, very little interaction appears in the results and 
for this reason it is not reported. 

Sobol indices provide very useful insight on the influence 
each parameter has on the analyzed system response. During an 
aeroelastic analysis, the main purpose usually will be on which 
parameters affect the stability margin the most. From Fig. 12, it 
is clear that randomness of the pylon mass has a larger influence 
on the beam mode damping variability with respect to the wing 
stiffness. This, in this simple test, may be due to the two different 
and arbitrary definitions provided to the input variables 
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stochastic definitions. In a more realistic case, though, when two 
(or more) comparable sources of randomness are introduced in 
the model, the information provided by the Sobol indices can be 
very powerful and intuitive. 

The responses PDF and CDF curves: Figure 13 shows the PDF and 
CDF distributions of the beam mode eigenfrequency evaluated 
at 30 kn. By comparison with Fig. 9 PDF distribution, it is possible 
to identify how the new parameter affects the system stochastic 
response in the same tested airspeed condition. 

 

Figure 13: Beam mode frequency PDF and CDF curves with random wing 
EJy and Mp. 

The change in the PDF properties can be assessed as well in 
through its shape defining parameters: the skewness µ˜3 = 
0.04195 and the kurtosis µ˜4 =−1.0461 

Analysis time: the DAKOTA/TiPa execution time is, in this 
analysis, extensively affected by the presence of the second 
random input variable. Table 3 shows the details about the 
simulation times. 

TiPa [s] DAKOTA [s] Total [s] 

8522 52 8574 sec 
Table 3: Two random inputs propagation simulation times. 

The analysis time is increased by both the fact that a larger 
number of TiPa executions is required (in order to tune the gPCE 
coefficients) and by the increased number of random input 
variables. 

4.4 The substructuring approach 

This section is designed to present the early results obtained with 
the substructuring approach. The procedure, at the time of 
writing, is still under development and only partial results are 
available. The state of the art of the procedure is here presented, 
alongside the outline of the future developments. 

4.4.1 Reference set-up 

In order to develop a consistent representation of the whirl 
flutter phenomenon, during each component substructuring 

process a precise set of constrained normal modes ΦL has been 

used in the construction of the Craig-Bampton matrices of each 
subsystem. The selected mode shapes used in the definition of 
the wing and rotor substructuring matrices are listed in Tab. 4. 

Wing normal modes Rotor normal modes 

1st bending OoP (Beam) Gimbal 
1st bending InP Cone 

2nd bending OoP 1st collective/cyclic Beam 
2nd bending InP 1st collective/cyclic Lead-Lag 

1st torsion . . . 
Table 4: Normal modes used in substructuring matrices. 

Where OoP means Out of Plane while InP means In Plane. The . . 
. are placed in Tab. 4 right column to point out that while the 
normal modes types and numbers used in the wing 
substructuring process has been maintained as constant during 
the whole process, since they are expected to be sufficient to 
model the motion cause by whirl flutter, the use of different 
shapes associated to the rotor subsystem have been 
investigated. 

The rotor substructure: The rotor substructure describes a free-
free element since only a single node is connected to the ground 
in the original constrained model. These degrees of freedom are 
freed by the introduced rigid body motion shapes necessary to 
generate the system associated C-B matrix. In order to verify the 
effectiveness of the used rigid body motion shapes, an 
equivalent model has been generated. 

To test the validity of the transformation, we first compared 
the MBDyn original clamped rotor with its free-free 
corresponding substructured model with a very large pylon mass 
(Mp) attached to its interface node to reintroduce the clamp and 
make the two systems comparable. This is meant to investigate 
the effectiveness of the introduced rigid body motions and 
possible modifications of the structural normal modes. Table 5 
shows comparison between the two system normal modes 
nondimensional eigenfrequencies in column two and three. The 
model were tested in vacuo at 742 RPM, the regime condition. 
Please note that both systems are described in multiblade 
coordinates. 

Table 5 shows a clear matching in the two system 
representations. This proves that the rigid body shapes 
generated and introduced in the system through the CB matrix 
do not alter the rotor flexible behavior. 



Page 11 of 13 

With the exact value of the pylon mass, the rotor 
substructured model eigenfrequencies slightly changes with 
respect to the clamped system ones. The modes shapes, as well, 
adapt to the free interface condition. As example of this, in Fig. 
14, the coning mode of the rotor substructure is presented. 
There, it is easy to identify the displacement of the mast and hub 
nodes with respect their initial position. This matches the 
expected behavior of the system with free interface. Among the 
eigenmodes associated to this substructured system some pure 
rigid body motions appear as well. 

 

Figure 15: Beam mode shape from tiltrotor substructured model. 

The thorough validation of the substructuring procedure 
with a complete free-free rotor model is left to future 
investigation. 

The full tiltrotor model The alternative approach proved to be 
effective in the reconstruction of the proper tiltrotor system 
mode shapes since they appear to be very similar to those 
associated to the entire MBDyn tiltrotor model. In Fig. 15, for 
instance, the beam mode shape of the tiltrotor generated with 
the C-B approach is represented. The shape was reconstructed 
starting from the eigenvectors associated to the substructured 
system matrices. However, more work is still to be done on the 
complete validation of the substructuring approach, as the 
complete aeroelastic behavior of the full tiltrotor system is still 
not matched with a sufficient level of confidence at the time of 
writing. 

5 CONCLUSIONS 

The development of a stochastic parametric tiltrotor whirl flutter 
prediction tool is presented. The tool is based on the interaction 
of three elements: a parametric tiltrotor model generator called 
TiPa, the multibody generalpurpose aeroelastic solver MBDyn 
and the state of the art Uncertainty Quantification software 
DAKOTA. The interaction of the three has been designed to 
provide an effective investigation tool to support the current 
research in the field. TiPa has been developed specifically to 
provide a flexible interface to the modelling of an arbitrary 
configuration tiltrotor assembly. 

The parametric conception of TiPa proved to be an essential 
feature to introduce a forward propagating Uncertainty 
Quantification (UQ) method in the formulation, based on the 
non-intrusive generalized Polynomial Chaos Expansions (gPCE) 
technique, implemented in DAKOTA. Thanks to the introduction 
of the UQ techniques, it is possible to execute complete 
sensitivity analysis of the desired input parameters effects. 
Moreover, the system non-deterministic response to such 
variables is estimated through the definition of the stochastic V- 

f and V-ξ diagrams and the outputs PDF and CDF curves. 

TiPa provides two different modelling approaches to define 
the complete tiltrotor assembly. The first option is based on the 
definition of an entire wing/proprotor MBDyn model, while the 
other relies on the generation of two individual subsystems to be 
joined through a substructuring approach. The second method is 
aimed at providing a consistent representation of the rotor 
dynamics through an original adaptation of the multiblade 
coordinates (MBC) transformation, applied directly to the 
redundant coordinates of the multibody system, and an original 
application of the CraigBampton substructuring approach. 

Mode name MBDyn model Subst. w large Mp MBDyn rotating 

 [1/rev] [1/rev] [1/rev] 

Gimbal 
≈ 0 
1.98 

≈ 0 
1.99 

1 
1 

Cone 1.18 1.18 1.18 

1st coll L-L 1.63 1.63 1.63 

1st cyc L-L 
0.62 
2.62 

0.61 
2.61 

1.62 
1.62 

Table 5: Clamped MBDyn and substructured rotor modes comparison. 
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A Multiblade coordinate transformation 
for multibody systems 

Assuming that the k-th blade motion is described by a single and 
generic degree of freedom qk, that DOF can be rewritten as a 
linear combination of the system multiblade coordinates [16, 17] 
in the following form: 

(6) qk = q0+∑(qnc cosnψk +qns 

sinnψk)+qNb/2(−1)k 
n 

where an Nb blade rotor is assumed the blade azimuth angle ψk 

is 

2π 

(7) ψk =ψ+(k−1)  
Nb 

The change of coordinates is represented by the matrix T(ψ): 

(8) q=T(ψ)qmb 

The entire multibody system structural coordinates defined with 
respect to MBDyn global reference frame x can be grouped as: 

(9) x  

where x0 contains the non-recursive dofs, i.e. those not 
associated with the blades. The latter must be transformed in 
the local frame of each blade: 

(10) I 
Rbl(ψ1) 

 ...

 Rbl

where xk
bl and e

xk
bl are vectors storing all DOFs related to the k-

th blade defined with respect to global and local reference 
frames. Matrices Rbl(ψk) are block-diagonal, with 3x3 rotation 
matrices on the main diagonal 

cos(ψk) −sin(ψk) 0 

(11) Rk
z 
=sin(ψk) cos(ψk) 0

 

 0 0 1 

The formulation can be compressed in: 

(12) x=Rx(ψ)x e 

Similar considerations apply to Lagrange multipliers associated 
with blade joints: 

(13) λ=Rλ(ψ)λ˜
 

The MBDyn state vector q is described with respect to local 
blades reference frame through: 

 

Figure 14: Coning mode of the rotor substructure. 
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(14) q
 λ

 λ =Rtot(ψ)qe 

 0 R λ 
The overall transformation is given by 

(15) q=(RtotPTmb)qmb =Tqmb 

where P is a permutation matrix used to reorder the degrees of 

freedom in the shape q  . 
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