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ABSTRACT - A practical method is described for computing the unsteady lift on an airfoil 
due to arbitrary motion of a trailing-edge flap. The result for the incompressible case is obtained 
in state-space ( differentiai equation) form by means of Duhamel superposition and employing 
an exponential approximation to Wagner's indicia! lift function. For subsonic compressible flow, 
the indiciallift at smail values of time due to impulsive trailing--<ldge flap deflection is obtained 
from linear theory in conjunction with the aerodynamic reciprocal theorems. These exact results 
are used to help obtain complete exponential approximations for the indicia! response due to 
impulsive flap deflection. The final result for the unsteady lift due to an arbitrary flap deflection 
in subsonic flow is obtained in state-space form. Numerical results are shown illustrating the 
overall significance of both unsteady effects and compressibility effects on airfoils with unsteady 
trailing--<ldge flap motions in a simulated helicopter rotor environment. The effects of Mach 
number on the aerodynamic response were shown to be especially significant, and essentially 
manifest themselves as larger aerodynamic lags at higher Mach numbers. 
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Pitch axis location (semi--chords) 
Sonic velocity 
Coefficients of indicia! functions 
Semichord, c/2 
Exponents of indicia! functions 
Airfoil chord 
Theodorsen 's function 
Lift force coefficient 
Pressure coefficient 
Flap hinge location (semi-chords) 

Geometric constants for flap 
Plunge displacement, positive downward 
Reduced frequency, wcj2V 
Non-circulatory time constant 
Jviach number 
Non-dimensional pitch rate, &.cjV 

Subscripts and Superscripts 
(.) 9 Refers to airfoil pitch rate 
(.)a Refers to angle of attack 
(.), Refers to flap deflection angle 
(.)i Refers to flap deflection rate about hinge 
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INTRODUCTION 

Distance traveled in semi-chords, 2Vt/ c 
Time 
Non-dimensional time 
Basic non circulatory time constant, c/ a$ 
Free-stream velocity 
Gust upwash velocity 
Airfoil chord axis, origin at mid-chord 
State variable 
Angle of attack 
Compressibility factor, )1 - M 2 

Flap deflection angle 
Incremental quantity 
Fluid density 
Indicia} response function 
\Vagner and KUnsser functions, respectively 
Frequency 

Refers to circulatory component 
Refers to noncirculatory (impulsive) component 
Refers to flap component 

There have been several practical applications of a trailing-edge flap for gust alleviation or to help suppress 
flutter on fixcd-\'>'ing aircraft, e.g., [lJ. For helicopter rotors the usc of trailing-edge flaps on the blades hns, so 
far at least, found use only for 1/rev. cyclic pitch control, e.g., the Kaman servo-flap. However, with the advent 
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of smart materials/structures and high bandv.idth active control technologies, it is now becoming increasingly 
feasible to use compliant airfoil surfaces or trailing-edge mounted flaps on rotor blades as a means of indlvidual 
blade control (IBC). Coupled with real-time adaptive feedback strategies, actively controlling the blade lift 
distribution offers tremendous possibilities for improving helicopter rotor performance, as well as reducing 
blade loads and vibrations [2]. Potentially, there are several other benefits to be gained by actively optimizing 
blade lift. These include improved forward flight performam'€ by the active suppression of blade stall, reducing 
advancing blade transonic drag, reduced rotor noise by alleviating the intensity of blade/wake or blade/tip 
vortex interaction phenomena, and possibly impro\~ng the aircraft flight dynamics and maneuverability 

A practical concern of IBC, is the availability of suitable low mass high force actuators that can be mounted 
inside the rotating blade and used to drive the compliant aerodynamic surfaces at relatively high frequencies. 
Initial results from smart structures and materials research at the University of Maryland, has shovm that 
IBC is possible on a Froude-scale rotor by means of a small outboard trailing-edge flap controlled by piezo­
ceramic actuators [3]. Some objectives of this program are to use a smart-structures based IBC concept to 
explore methods of reducing rotor vibration, optimize rotor performance, and to improve the acoustic signature, 
especially in descents where strong interactions with discrete tip vortices prod.uce a form of impulsive rotor noise 
known as blade slap. 

Parallel theoretical studies of these problems using advanced rotor models require the use of a suitable time-­
domain aerodynamic theory for the flap. An unsteady aerodynamic theory is required for the problem, firstly 
because the flap actuation frequency could be many times the rotor rotational frequency, and secondly because 
high resolution acoustic predictions of overall rotor noise need be made. In addition 1 since the local effective 
reduced frequencies based on flap motion often exceed unity on an IBC rotor, incompressible assumptions are 
no longer adequate and compressible flow must be intrinsically assumed. Until now, there has been no available 
unsteady aerodynamic theory (in the form required for rotor calculations) for the effects of trailing-edge flap 
motions. The objective of this article is to describe the development of such a theory based on indicia! function 
concepts, and to present some illustrative results showing the general significance of unsteady effects associated 
with time--varying trailing-edge flap displacements in a simulated rotor environment. 

METHODOLOGY 

The problem described herein is formulated in the spirit of classical unsteady airfoil theory. The assumptions 
~tre basically that the unsteady problem is governed by the linearized partial di_fferential equation and linearized 
boundary conditions. \Ve will assume constant flow velocity, although the results can be extended to time­
varying free---streams and the procedures are outlined for incompressible flov.· in /4}. F'or conciseness in this article, 
we will address only the lift response, although results for the pitching moment have also been derived. As a 
precursor, the solution for the unsteady lift in the time-domain due to arbitrary flap motion in incompressible 
flow is obtained, followed by a solution for the subsonic compressible case. 

Incompressible Flow 

The unsteady lift on an airfoil with a harmonically oscillating flap in incompressible flow has been examined 
by Kilssncr and Schwarz [5] and others, but the most well known solution is that due to Theodorsen [6, 7]. 
The lift on a thin rigid airfoil undergoing oscillat-ory forcing in an incompressible flow of steady velocity V, and 
comprising non-steady displacements in plunge (h), angle of attack (a), and pitch rate (a) about some pitch 
axis a distance a semi-c~ords from the airfoil mid-chord axis. (see Fig. 1) can be written in coefficient form as 

( 1) 

The first group of terms are the noncirculatory or apparent rnass components and account for the inertia of the 
nuid. The second group of terms are the circulatory components, where C(k) is the well known Theodorsen 
function and accounts for the influence of the shed wake vorticity. 

\Vith the addition of a trailing-edge flap with hinge at a distance eb from the mid-chord, there are additional 
air loads that depend on the flap deflection angle, 6, and its time rate-of~change, 6. The additional lift coefficient 
is 

(2) 

where again, the first and second group of terms are the noncirculatory and circulatory loads, respectively. The 
coefficients F 1 , Ft, F 10 and P 11 are all geornetric terms, which depend only on the size of the flap relative to the 
airfoil chord and for a coordinate system locat.ed at mid-d1ord can be expressed as 

F 1 = ecos- 1 e -l(2 + e2 ),!!=e2 
3 

F1o = v''f=e2 + cos~ 1 e 

Finally, we can write 

F4 = e,!!=e2- cos- 1 e 
F 11 = (1- 2e) cos·-l e + (2- e),!!=e2 

( 3) 
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Figure 1: Nomenclature for airfoil and flap 

( 4) 

where o:q, is the quasi-steady airfoil angle of attack, and Dq, is the quasi-steady angle of attack due to the 
imposed flap deflection, i.e., 

c _ [ F108 bF11 i5] _ [ F108 Fu i5c] u,- --+-- - --+--
q " 21rV " 41'iV 

(5) 

Eq. 4 holds only for harmonic motion of the airfoil and/or the flap. 
For the case of arbitrary airfoil motion and/or arbitrary flap deflection in a steady flow of velocity V, the 

result for the unsteady lift can be obtained by means of Duhamel's superposition integral with the Wagner 
indicia! (step) response, and can be written as 

( 6) 

where ¢w is the Wagner function, and S (= Vt/b) is the aerodynamic time based on semi-chord lengths of 
airfoil travel. The Wagner function accotmts for the influence of the shed wake, and is known exactly in terms of 
Bessel functions [8, 9, 10]. In fact, the Theodorsen function and the Wagner function are related by means of a 
J:<burier transform pair. For practical evaluation of the Duhamel integral) the Wagner function can be expressed 
as an exponential approximation. Consider a second order indicia! response approximation, i.e., 

¢w(S) = 1 - A1 exp( -b1S)- A, exp( -b,S) (7) 

where A 1 +A, = 0.5. A non-linear least squares fit to the Wagner result using a constrained optimization 
algorithm gives A1 = 0.2048, A, = 0.2952, b1 = 0.0557 and b, = 0.333, with an error of less than 0.1% of the 
exact solution. Other fits to the Wagner function are given by R.T. Jones [11], W.P. Jones [12] and others 
[13, 14]. In the t (real time) domain we can '>'>Tite the indicia! response as 

¢w(t) = 1- A1 exp( -t/T1)- A, exp( -t/72) (8) 

where T1 = b/Vb1, T2 = b/Vb2 . The Laplace transform of the corresponding impulse response can be written 
as a ratio of polynomials as 

h(p) = (A,b, + A,b,)(V/b)p + b1b2(V/b)' 
p2 + (b, +b,)(V/b)p+b1b,(V/b)' 

From this form, the state-space equivalent of the Duhamel integral 

a,,(O)¢w(S) + ( 00
•' ¢w(S- a)da 

Jo da 

can be written in controllable canonical form as 

1 
-(b1 + b2)(V/b) l[ z,(t)l [0] 

z
2
(t) + l cxq,(t) 

and the output equation for the circulatory part of the lift coefncient due Lo arbitrary airfoil motion is 
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(12) 

Note that the second term on the right hand side arises because of the non-zero initial conditions of the Wagner 
function, i.e., A 1 + A2 = 0.5. These first order differential equations are in the form :i = Az + Bu with the 
output equations y = Cz + Du, where i = dzfdt; u = u,:, i = 1, 2, ... , mare forcing function(sL and they= yi, 
i = 1, 2, ... ,pare the airloads. z = z,, i = 1, 2, ... , n are the states of the system. The states contain all the 
hereditary information about the aerodynamic system. 

Similarly, if we consider the arbitrary trailing--«!ge flap motion, the state-space equivalent of 

(13) 

can be written as 

1 ] [ Z3(t) ] [ 0 ] 
-(b1 + b2)(Vjb) z4(t) + 1 o,,(t) (14) 

and the output equation for the circulatory part of the lift coefficient due to arbitrary flap motion is 

(15) 

Note that the the A and C matrices are the same as for the angle of attack terms. This is because the circulatory 
lift lag is an intrinsic function of the fluid and does not depend on the airfoil boundary conditions. In all cases, 
the chord wise pressure variation due to the shed wake vorticity is still the same as the thin airfoil loading, and 
is unaffected by the mode of forcing, pitch axis location or flap deflection. In other words, the circulatory part 
of the indicia! response is the same for all modes of forcing. 

The noncirculatory parts of the lift, which for an incompressible flow are proportional to the instantaneous 
displacements and involve no states, can be written as 

CL{t)= ~: [h+V<i-baii] + : 2 [-VF,S-bF16] (16) 

Therefore, the total lift due to independent arbitrary airfoil motion and flap deflection can be written as 

Cf(t) = Cfo (t) + ct, (t) + Ct(t) ( 17) 

In addition to the foregoing the airfoil operates in an arbitrary gust field, and it is important to consider 
this part of the lift response. Denoting the the downwash velocity by w9 , the unsteady lift in the time domain 
can be found by using Duhamel superp06ition with the Kussner gust entry function, ,P(S), i.e., 

[
w (0) 1 rs dw ] 

Cf(t) = 2,; +,P(S) + V Jo ~' 1/J(S- a)da (18) 

Like the V-lagner function, the Kiissner gust entry function is also known exactly in terms of Bessel functions 
[10]. However, for practical calculations it is convenient to approximate the Kiissner function using 

,P(S) = 1 - A3 exp( -bc,S)- A 4 exp( -b4S) ( 1 9) 

where A3 + A4 = l. A non-linear least squares fit to Klissners' exact result can be made using a constrained 
optimization giving A3 = 0.5792,A4 = 0.4208,/Jc, = 0.1393 and b4 = 1.802, with an error of less than 0.1%. In 
state-space form, we can write Eq. 18 as 

[ 
zs ( t) ] [ 
zs(t) 

1 ] [ Z5 ( t) ] [ 0 ] Wg ( t) 
-(63 + b4)(Vjb) zs(t) + l -y (20) 

and the output equation for the total lift coefficient due to the gust field is 

(21) 

The complete aerodynamic system for the airfoil in an incompres..sible now, therefore, consists of 6 aerody­
namic states. Although it is convenient for the present exposition to separate out the circulatory lift due to 
airfoil motion from that due to the flap motion, in a practical application their net effects can be combined 
so that only 2 statr..s are required for the circulatory loads instead of four. The resulting four state equations 
describing the lift for arbitrary airfoil motion and flap motion (two states), and the gust field (two states) can 
be integrated in time using any standard ODE solver. Also, note that on a thin airfoil in an incompressible 
flow the circulatory lift always acts at the 1/4--chord point, and there arc no additional states required for the 
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moment. In the real case however, the aerodynamic center x 0 , is not located at the 1/4-chord so that the 
pitching moment about the 1/4-chord must be be obtained from 

eM = ( Cf + Cfl ( ~ -X no) +non-circulatory terms (22) 

Compressible Flow 

There are no equivalent exact results analogous to Theodorsen's theory for the unsteady lift due to airfoil or 
flap motion in subsonic compressible flow. For the subsonic oscillatory case, the flow is governed by the Poisso 
integral equation for which there is no known exact analytical solution. However, some numerical solutions for 
an oscillating flap have been computed by Thrner and Rebinowitz [15]. 

Basically, in a compressible flow both the circulatory and the noncirculatory loads have a hereditary effect, 
and the latter are no longer proportional to the instantaneous displacements as in the incompressible case. We 
still seek a solution starting from the indicia! response, since it has been shown previously that this permits a 
generalization to arbitrary forcing by means of Duhamel superposition. However, while the initial (5 = 0) and 
final (5 = oo) values of the indicia! response are known exactly in subsonic flow, the intermediate behavior is 
known exactly only for very limited values of time. Also, it is known that no simple compressibility scaling 
applies to the incompressible indicial result, i.e., it is not possible of to scale the Wagner indicia! result as a 
function of Mach number. 

The initial airloading on an airfoil operating in a compressible flow in response to a step change in the 
boundary conditions is associated with the acoustic wave system created by the initial perturbation. The 
airloading at 5 = 0 can be computed directly using piston theory. For indicia! airfoil motion due to angle of 
attack and pitch rate about an axis a semi-chords downstream from mid-chord we obtain 

and for indicia! flap motion about a hinge point located e semi-chords downstream of mid-chord 

6C (5 = 0 M) = 2(1 -e) 66 and 
L~ ' .~f 

2 . 

60 . (5 = 0 M) = (1- e) 66c 
L, ' 2M v 

(23) 

(24) 

Note that these results are valid for any Mach number M, pitch axis location a, and flap hinge e, but only at 
the instant in time when the perturbation is applied. The final values of the indicia! response are given by the 
usual linearized steady state (circulatory) theory, so that for indicia! airfoil motion 

27r (1 ) 6CL,(S = co,M,a) = j3 "2- a 6q (25) 

and for indicia] flap motion 

and (26) 

The problem now is to define the intermediate behavior between S = and 5 = oo. The indicia! lift coefficients 
due to angle of attack a and pitch rate q (about some reference axis a) can be conveniently subdivided into a 
sum of noncirculatory and circulatory parts. They can be approximated by the general equations 

6CLo(5, M) = [}1 ¢~(5, M) + 2; ¢~(5, M)]6a 

6CL,(5, M, a)= [- ~;¢;(5, M, a)+ 
2
; G- a) 9~(5, M,a)] 6q 

(27) 

(28) 

Similarly, the indicia! lift coefficients due to impulsive fiap deflection (about some axis e) can be written as 

[
2(1 -e) , 2Fw ., l 

6CL,(5,M,e)= M ¢6 (S,M,c)+(39;(5,M,e) 66 (29) 

[
(1- cf .; F11 ., ]6i5c 

6C1"' (5, M, e)= 
2

M 9;(5, M, e)+ 
2
/J 9;(5, M, e) V (30) 

where the indicia! response functions¢~,¢~,¢~) 0~, ¢6, ¢~, ¢6, and¢~ all represent the intermediate behavior 
of the respective indicia! airloads between S = 0 and S = CXJ. 

The circulatory part of the indicia! response accounts for the influence of the shed wake vorticity. For a 
subsonic flow, it can be shown that the circulatory part of the indicia! response due to changes in angle of 
attack, ¢;, can be approximated by the exponential function 
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N 

¢~(S, M) = 1- LA; exp(-b;,62S) (31) 
i=l 

The poles of this function scale with {P, which has been previously justified from experiments [16, 17) and is 
simply a manifestation of the fact that the aerod011amic lag effects due to the shed wake become larger with 
increasing Mach number. The coefficients A; and b; can be derived from the aerodynamic response due to 
harmonic motion. Mazelsky [18, 19] derived ex-ponential forms of the indicia] response using theoretical results 
for the lift on an oscillating airfoil in subsonic compressible flow. Drischier [20] applied the same approach to 
find exponential approximations for the indicia] lift. obtained during the penetration of a sharp edge gust, which 
is also kno\\11 to be proportional to the circulation obtained during indicia] airfoil motion. More recently, the 
author [21] has obtained an optimized N = 2 exponential approximation for ¢<;, in the form of Eq. 31 using 
experimental measurements in the frequency domain at Mach numbers up to 0.8, where Ar = 0.918, br = 0.366, 
Az = 0.082, and bz = 0.102. 

We may note further that analogous to the incompressible case, in linearized subsonic flow the circulatory 
lift lag is an intrinsic function of the fluid and does not depend on the airfoil boundary conditions. This result 
was first examined in some detail by Mazelsky [19, 22] who used numerical results for the unsteady lift and 
moment response in the frequency domain to extract the separate indicia! responses due to angle of attack and 
pitch rate by means of reciprocal relationships. Jt was shovm that for a pitch rate imposed about the 3/4-<:hord, 
a nonimpulsive and finite time-dependent lift exists at S = 0 but approaches zero in a few semi-chord lengths 
of airfoil travel. This lift is entirely of noncirculatory origin, and is consistent with the incompressible result 
which shows that for a pitch rate imposed about the 3/4-<:hord, no circulatory lift is produced. In view of the 
foregoing, it immediately becomes clear that we may vaite 

¢~(S, M) = ¢;(s, M, a)= ¢6(S, M, e)= ¢i(S, M, e) (32) 

for linearized subsonic compressible flow as well as incompressible flow without any loss of rigor. 
During the time between the initial noncirculatory dominated loading until the final circulatory dominated 

loading is obtained, the flow adjustments are very complex and involves the creation of circulation as well as 
the propagation and reflection of wave-like pressure disturbances. Mazelsky [23j showL>d that the non circulatory 
lift in subsonic compressible flow decays very rapidly from the initial piston theory values. It has been shown 
pre\iously [17, 21], that for practical calculations the noncirculatory lift decay for indicia! airfoil motion can be 
closely approximated by exponential functions of the form 

6CL,(S,M) = 4 ·i I~ \f) - 4 . ( -S ) A 
M<:'a\"·· -">a- Mexp T~(AJ) u.o: (33) 

6C~(S,M,a) 
2(l-2a) ;, 2a ( -S ) 

M oq 1S, M, e)6q =- kf exp T~(M, e) 6q (34) 

Similarly, for indicia! flap motion we will assume (and later justify) exponential decays of the form 

2(1 -e) ; 2(1 -e) ( -S ) 
6CL(S,M,e) M o 1(S,M,e)66 ~ M exp r;(M,e) 66 (35) 

(1 - e)2 
; 6Sc (1 - ef ( -S ) 6Sc 

L>Ci,,(S,M,e) = 2M 9i(S,AI,e)V = 2M exp Ti(M,e) V (36) 

where T~(M), r;(M), r;(M) and Ti(M) are all Mach number dependent decay rates or time constants. A final 
problem then, is to obtain values for these noncirculatory time constants. Note that their proper evaluation 
critically defines the behavior of the indicia! responses at small values of time. 

These time constants can be evaluated with the aid of exact solutions for the indicia] response) which 
exist for limited values of time after the perturbation is applied. Lomax et al. [24] and Lomax [25] obtained 
theoretical results using a form of the wave--equation for the indicia! responses due to step changes in airfoil 
angle of attack and pitch rate. The mathematical calculations are somewhat complex, and solutions can be 
obtained onl;y for a short period of time after the start of the motion (less than one semi-chord length of airfoil 
travel)) but this is still sufficient to dcflne the initial behavior of the indicia\ response. 

The exact solution for the chordwise pressure on an airfoil undergoing a unit step change in angle of attack 
is 

., { 8 I t,-x 4 r _,(t,(l+A1)-2(c-x)) -·1(2x-t,(!-M))]} 6C (x,t 1)=1R +-_:__,)cos -cos 
P 1r(1 + M) \ Mt 1 + x nML \ 11(1- M) t,(1 + M) 

(37) 

for the period 0 S t 1 S c/(1 + M), where 1R refers to the real part, and x is measured from the leading edge. 
The resulting lift on the airfoil can be obtained from 
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(a) 

v 

Hinge 

"' 
Perturbation velocity d~ 
to flap angle, o 

I b) 

v 
I -~'·~ 

Perturbation velocity due ~ 
to flap deflection rate, d&'dt 

Figure 2: Perturbation velocity due to (a) flap angle, (b) flap rate 

and the result can be transformed to the S domain by making use of the fact that S = ZMt1. 

(38) 

The corresponding indicial responses due to the impulsive motion of a trailing--€dge flap can be obtained 
using Eq. 37, with the aid of the aerodynamic reciprocity relations described by Flax [26], and Heaslet and 
Spreiter (27]. As long as one is interested in the total lift and moment, it appears that this approach furnishes 
the only rigorous way of treating the indicia! flap problem exactly. However, the result has not appeared 
previously in the literature, 

Consider first, the indicia! lift due to flap deflection angle, 8, which produces a uniform perturbation velocity 
over the flap, as shown in Fig. 2(a). It can be shown by the aerodynamic reciprocal theorems that the lift in 
steady or indicial motion per unit angle of flap deflection is equal to the lift per unit angle of attack on the 
corresponding portion of a fiat plate airfoil moving in the reverse direction. Consider a flapped portion of one 
airfoil deflected at an angle 8, and the remainder of the airfoil is a flat plate with its surface parallel to the 
free-stream. Let a second airfoil be a flat plate airfoil at angle of attack a, so that 

The reciprocal theorem gives 

{ 
8 on the flap 

"'
1 = 0 elsewhere 

0:2 = const. (39) 

(40) 

where 6Cp is given by Eq. 37. It can be shown by integration that in the short time interval 0 < S S 
M(1- e)/(1 + M) the indicia! lift due to the flap deflection angle is given exactly by 

6C (S)= 2(1-e) [- (1-M)S] 8 
L, M 1 2M(1-e) 6 ( 41) 

A similar approach can be used to find the initial behavior of the indicia! response due to flap rate ii about 
the hinge. The local perturbation velocity due to this motion is linear, as shown in Fig. 2(b). By means of 
the reciprocal relations, we can show that the lift on one airfoil due to flap mte about the hinge is equal to the 
integml over the airfoil of the product of the perturbation in local angle of attack induced by the flap mte motion 
and the loading per unit angle of attack at the corresponding point of a second airfoil comprising a fiat plate 
moving in the reverse direction. Therefore we have 

(42) 

In the short time interval 0 S S S M(1 - e)/(1 + M), it can be shown by integration that the indicia] lift on 
the airfoil due to flap rate varies as 

2 . 
t;C (S) = _1_ [( _ )2 _ (1 - M)(1- e)S (2- M)S ]66c 

L, 2M 1 e M + 2M V (43) 

The reciprocal theorems can also be used to obtain results for the indicia! pitching moments, and the 
general procedure is closely analogous to that described above. Also, results can be obtained for leading-edge 
Oap cleOcctions. 

Typical results for the indicia! lift due impulsive flap deJection arc shown in Fig. 3 for M = 0.5. Note that 
these loads are quite different to the incompressible result for indicia! flap motion which exhibit an infinite pulse 
at 8 = 0, and thm·eaftcr build progressively from one-half of their final value ( c.f. Wagner function). Note that 
the 100% flap case corresponds to the rigid airfoil pitching about its leading edge (e = -1). 

From these exact results for the indicia! response in subsonic flow, the time constants for the non circulatory 
lift decay in Eqs. 33-36 can be approximated by equating the sum of the time derivatives of the assumed 
exponential forms of the noncirculatory and circulatory lift response at time zero (S = 0) to the corresponding 
time derivative of the exact solutions, i.e., 
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(a) (b) 
8 4 

ci 
[:! 7 -c 6 
'" ;g 5 

ci 
[:! 3.5 -c 3 
"' g 2.5 

~--::J Flap deflection rate, M=0.5 

-~--····· : ·:·,···~::~r::.::::r:::.:: .. 
· Initial value= (1-e) /2M ! ! 

a; 
4 0 

'-' 
<D 3 !:! 

a; 
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"' 1.5 2 

--100% flap 
------50% flap 
---25% flap 

.2 2 
""iii 
E 1 
0 z 0 

. _ ......... L ......... L ......... L ........ l ______ _j__ __ _ 
Flap deflection angle, M--0.5 

.2 1 
""iii 
E 0.5 
0 z 0 
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Figure 3: Indicia! lift computed using exact linear theory at M = 0.5 due to (a) flap deflection, 
and (b) flap rate 

deLl = 
J.S S=O 

'--....----' 
exact 

dCf I + dCi I 
dS S=O dS S=O 

'---v--' '----..----"' 
eire. non-eire 

( 44) 

Based on this approach, which is outlined for the airfoil angle of attack and pitch rate terms (i.e., the To and 
Tq terms) in (21L the noncirculatory time constants for the flap can be expres..sed in term..s of the coefficients of 
the approximating circulator:y· response as 

[ 

2 ] -1 

l'c(M, e) = "' ( 2~) T6 = "'(1 -e) (1- ;\f)+ F10ir 1 M 2 t;A;b; ( :J = J<6 (M, e) T; {45) 

[ 

2 ] -I 

T;(M, e) = "i ( 2~) Tj = "i (
1 ~ e)

2 

{1- M)(1- e)+ F11 7r-
1{J2 M 2 ~A;b; (:,) = I<;(M, e) T; {16) 

Note also that in the above representation, the actual values for the circulatory coefficients Ai and bi are 
nones...scntial since the noncirculatory time constants are always adjusted to give the correct initial behavior of 
the total indicia] lift response given by the exact linear theory. The constants K,s, and K{; are assumed here to 
be empirical parameters in the ranges 0. 70 S "', "i S 1.0. These constants are necessary to modify the initial 
behavior of the indicia! lift decay, which on the basis of correlation studies with test data has been found justified 
because of additional physical effects such as airfoil thickness, Joss of flap effectiveness and minor viscous effects. 
These effects, of course, arc not accounted for in the linear theory. • 

The results obtained from this process are shown for the indicia! lift due to angle of attack and pitch rate 
at M = 0.5 in fcigs. 4 and 5, respectively. In each case, the first graph shows the results at small values of time, 
and the second graph shows the subsequent build-up of the circulatory lift at greater values of time. Note the 
excellent agreement between the exponential approximations and the exact theory for smaller values of time. 
At later time, the solutions begin to differ becatLc;e of the fact that the present circulatory solution ha.s been 
partially derived from experimental results and not only the linear theory. 

Consider now the lift response due to arbitrary ftap deflection in subsonic compressible flow. Since the 
circulatory part of the indicia! response does not depend on the mode of forcing, the flap deflection angle 
and the pitch rate about the hinge can be combined into a single term, i.e., bqs> as shown previously for the 
incornprCS..''>ible case. The state-space (~qui valent of 

s 
5q,(0)¢6(S, A f)+ ( d8,, ¢6(S- a, M)do 

Jo da 

can be written in controllable canonical form a.<> 

·For the prC>.sent article we will a.ssume "'O = "'6 = 1. 
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1 ·][z,(t)l [0] 
-(b, + b2)(2Vjc)/32 z 2(t) . + 1 liq,(t) (48) 

with the output equation for the circulatory part of the unsteady lift due to the flap 

(49) 

where A,, b, etc. are for subsonic flow as given by Eq. 31. \'lhile the other circulatory parts due to airfoil motion 
can also be combined into the above two state equations, as for the incompressible case, the noncirculatory lift 
components have a time-history effect in subsonic flow and must be considered separately. The noncirculatory 
part of the unsteady lift due to arbitrary flap deflection, li(t), can be written as 

. 1 
z3(t) = li(t)- J{,T, Z3(t) C' (t) = 2( 1 - e) i (t) 

L, M 3 (50) 

Simil<trly, the noncirculatory lift clue to !lap rate about the hinge, 5(t), can be written as 

. (1- c) 2 b(t)c I 
z.,(t.) = 2 V - I<I'z,(t) 

6 ' 

(51) 

The remainder of the unsteady loads due to airfoil motion and due to encounters with an arbitrary gust 
field can be obtained in state-space form following the procedures outlined in Refs. [21] and [28], and can be 
easily appended to the equations describing the nap. 
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RESULTS AND DISCUSSION 

From the state equations given above, the response to a particular harmonic motion of the flap can be 
derived in closed form. While the algebraic manipulation is somewhat lengthy, it can be shown that for a 
prescribed harmonic forcing explicit expressions can be obtained for the lift on the airfoil as a function of 
flap frequency. This provides an independent check of the aerodynamic approximations independently of any 
numerical integration scheme. 

Typical results for a oscillatory flap motion are shown in Fig. 6. The flap is 25% of the airfoil chord, i.e., 
e = 0.5. The results are presented as the first harmonic lift amplitude and phase angle versus the flap reduced 
frequency for various Mach numbers, and are compared with the incompressible case. It is clear that the effects 
of Mach number on the lift response are relatively large. In the limit as k ~ 0, the lift amplitude is given by 
the usual linearized steady flow value and the phase angle is zero. As k increases, the lift amplitude decreases 
progressively in the range up to k = 1. The corresponding phase angle initially exhibits a lag, which is due to 
the effects of the shed wake vorticity (circulatory component of response). For values of k greater than about 
0.4, the phase lag reaches a maximum and thereafter becomes progressively less, ultimately becoming a phase 
lead at k = 1 at the lower Mach numbers. Tlli.s result is due to the increasing influence of the non circulatory 
terms at higher reduced frequencies. The increasing phase lag effects in the lift response with increasing Mach 
number are particularly worthy of note. Note also the differences in the phase of the response compared to 
the incompressible case at higher reduced frequencies, even at low free-stream Mach numbers. Physically, this 
is because pressure perturbations propagate through the flow at the local speed of sound, and at higher flap 
frequencies the disturbances do not propagate sufficiently quickly relative to the flap motion for the flow to be 
considered as incompressible. 

Further results are shown in Fig. 7, which shows the frequency response for different sizes of trailing-edge 
flap at M = 0.5. The same general trends shown previously are apparent here. However, note that with the 
slightly larger flap (e = 0.75), the phase lead becomes apparent at a much lower reduced frequency. Conversely, 
with a smaller trailing-edge flap, the lift response is dominated by the circulatory response. 

In order to evaluate the theory using direct time integration, the state equations were integrated with respect 
to time using a standard ordinary differential equation solver. For these particular calculations, the integration 
was performed using the ODE solver DE/STEP given in Ref.[29], which is a general purpose Adams-Bashforth 
ODE solver with variable step size and variable order. Typical results for the incompressible case are shown in 
Fig. 8, both versus time and versus flap angle. Again, for all calculations the trailing-edge flap comprises 25% 
of chord, i.e., e = 0.5. When plotted versus time, the lift is sinusoidal of a somewhat lower amplitude and either 
leads or lags the flap forcing depending on the magnitude of the reduced frequency. When plotted versus flap 
angle, the lift exhibits a characteristic elliptical loop, essentially similar to that obtained on an airfoil oscillating 
in angle of attack. As the frequency incrca.ses, the slope of the major axis of the loop becomes less, corresponding 
to the reduction in lift amplitude shown in Fig. 6. I\ote that the loop is circumvented in a counterclockwise 
direction at low reduced frequencies, and de\'elops into a clockwise loop (phase lead) at higher frequencies as 
the noncirculatory terms begin to dominate. Qualitatively (but not quantitatively) similar results are obtained 
at all Mach numbers. 

As an application that exercises the full range of the unsteady aerodynamic model, including the trailing­
edge flap, consider a transient type problem such as an airfoil-vortex interaction. On a helicopter rotor there 
are a large number of vortical disturbances that lie in proximity to the blades. This is especially the case for 
the advancing side of the rotor when the helicopter is descending, where the blades may repeatedly encounter 
a number of close and almost parallel interactions with wake vortices. This blade vortex interaction (BVI) 
problem is a highly unsteady phenomenon, and is a significant source of higher harmonic rotor airloads 1 as well 
as obtrusive noise. Recent civil and military noise requirements have dictated a significant reduction in BVI 
noise. This objective is difficuiL to achieve, but it may be possible by the use of active trailing-edge flaps, to 
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Figure 8: Unsteady lift for a harmonic flap oscillation in incompressible flow 

either help modify the unsteady loads during BVI by means of appropriate flap deflection [30, 31], and/or by 
using the flap to locally change the rotor flapping response thereby increasing the vortex miss--<iistance. In 
either case, another fundamental aspect of the problem is the construction of a suitable feedback system. 

The BVI problem was studied for incompressible flow by Sears[32] using the sharp-edge gust entry lift 
function (Kiissner function) along with Duhamel superposition. For subsonic compressible flow, there have 
been many significant theoretical contributions to the BVI problem, e.g., Refs. [33] and [34] and the references 
contain therein. However, since transonic effects are often present, there has been considerably more progress 
in understanding this BVI problem in light of recent developments in CFD, see for example Refs. [35] and [36]. 
Consider two simple examples of a BVI encounter, with and without the application of a trailing edge flap 
during the encounter. The convecting vortex is of circulation strength t = f/cV = 0.2 and has an irrotational 
core. The vortex travels at a steady velocity at 0.26 chords below the airfoil. This is a standard case that 
has received considerable attention in the literature - see Ref. [36]. While passing the blade (airfoil) at this 
predetermined distance, the vortex produces a downwash while upstream of the airfoil that changes to an 
upwash as it moves downstream. This situation causes a dynamically changing angle of attack, and so rapidly 
changing aerodynamic loads are produced on the airfoil. 

The downwash variation induced by the passing vortex was used in conjunction with the aerodynamic 
state equations to solve for the unsteady lift. The integration of the state equations was, again, performed 
using the Adams-Bash forth ODE solver DE/STEP. Fig. 9 shows results for the reference case, which essentially 
demonstrate the effects of compressibility on this problem. Results from an Euler code calculation are also 
shown, which help to validate the more approximate solution used here. Note that compressibility effects 
produce an attenuation in the peak-to-peak values of the lift. This is despite a higher overall lift curve slope 
at the higher ivlach numbers, which ba.._<;ed on incompressible (but unsteady) as...o;;;umptions will always produce 
a higher overall peak-to-peak lift. It is significant that when compressibility effects are properly introduced 
through the form of the indicia! (gust) function (Eq. 3!), the opposite effect is obtained, and the peak-to-peak 
lift during the interaction is reduced. This is mainly because in subsonic compressible flow the unsteady air loads 
take much longer to readjust to the rapidly changing effective angle of attack induced by the vortex. Similar 
results of the effects of compressibility for this t)ve of BVI problem are shown in the work of Adamczyk [37J. 
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Fig. 9 also shows the corresponding acoustic pressure. On a helicopter rotor, the acoustic pressure (or noise) 
propagated to an observer from such a blade-vortex encounter is related (in the compact source limit) to the 
timB rate-of--change of thB aerodynamic lift. The far field acoustic pressure is immediately available in the 
present form of solution since the time derivatives of the aerodynamic states are already computed by the ODE 
solver. Note that the acoustic pressure in Fig. 9 is unsealed since the distance or path of a reference point in 
the far-field is not specified. 

Fig. 10 shows results for the unsteady lift and corresponding acoustic pressure obtained during a BVI 
encounter, but with the rapid application of a trailing--edge flap during the interaction process. For simplicity, 
a prescribed flap displacement is considered in the form of a doublet with displacement amplitude 2.5 degrees 
applied over a period of 5 semi-chords of airfoil travel. t The general objective is to use the flap displacement 
to alter the time rate~of-c.hange of the aerodynamic loads, and therefore reduce/modify the acoustic signature 
due to the BVI phenomenon. It is unnecessary (or even undesirable) to completely destroy the lift during this 
proccs..c:;, since on a rotor this may adversely alter the blade loads and rotor flapping response over other parts 
of the rotor disk. It should also be remembered that the motion of the ftap introduces its own unsteady lift 
response due to nap displtt.cements and rate terms, and so the incremental change in lift produced by the flap 
relative to the reference case does not necessarily mimic the doublet input either in amplitude or in phase. 
Nevertheless, it can be seen from Fig. 10 that there is some overall reduction in the pcak-to·-peak lift through 
the application of the fhtp. 

Fig. 10 also shows that the influence of the vortex affects the lift relatively fer upstream, but the acoustic 
signature is affected only when the vortex is about two chord lengths upstream and downstream of the airfoil. 
The transient nature of the pressure spike obtained is essentially one source of helicopter rotor noise that 
ha.s become well known as "blade slap." It is clear from the example presented that the imposed flap motion 
certainly helps attenuate the peak-to-peak noise during the interaction, however, in no way should this result 
be considered optimum. In fact, the abruptness of this phenomenon and the necessity of modifying the time 

tIn practic:e, the actual flap displacement will be controlled by a closed-loop feedback system. 
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rate-of-change of the air loads (as opposed to the airloads directly) posses special problems in the design of a 
feedback controller for active noise reduction on rotors due trailing-edge flap deflections. 

CONCLUDING REMARKS 

This article has addressed the development of a practical method of computing the unsteaC!y lift due to 
arbitrary flap deflection in a subsonic compressible flow. The motivation has partly stemmed from a requirement 
to compute unsteady loads and acoustics within the confines of a comprehensive rotor analysis due to the active 
deflection of part-span trailing-edge flaps on the blades. In the present article, exact solutions for indicia! flap 
displacement and flap rate were obtained for small values of time from the indicia! airfoil case in conjunction 
with aerodynamic reciprocal relations. The results were then generalized to later values of time in terms 
of exponential approximations. These approximations were finally used to obtain state equation for the lift 
response due to arbitrary flap motions. By an extension of the present approach, the pitching moment can also 
be derived. 

Results have been presented that show the general effects of time-dependent trailing-edge flap motions 
on the unsteady lift response. For oscillatory flap forcing, the unsteady lift lags the flap motion at low flap 
reduced frequencies and begins to lead the flap forcing at higher frequencies. The effects of Mach number on the 
aerodynamic response were shown to be significant, and essentially manifest themselves as larger aerodynamic 
lags at higher Mach numbers. The differences between classical incompressible theory and compressible theory 
(albeit partial based on experiment) were sufficiently large to render the classical theory insufficient for the com­
bination of Mach numbers and reduced frequencies likely to be found on rotor blades with actively controlled 
trailing-edge flaps. Finally, an application of the method to a simulated blade-vortex encounter were made. 
It was shown that the unsteady lift and sound pressure produced by such interactions could be altered bene­
ficially by the application of appropriate flap displacements during the encounter. However, bearing in mind 
the three-dimensional compexity of the BVI phenomenon in an actual rotor environment, the active control of 
rotor loads and/or noise by means of trailing-edge flaps must remain the subject of further investigation. 
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