Optimal active twist input scenario for rotor performance improvement and vibration reduction

dc.contributor.author You, Y.
dc.contributor.author Dhadwal, M.K.
dc.contributor.author Jung, S.N.
dc.date.accessioned 2018-05-31T09:10:30Z
dc.date.available 2018-05-31T09:10:30Z
dc.date.issued 2015
dc.description.abstract In this paper, the best actuation scenario is sought using a multitude of active twist control inputs taking advantage of a global search algorithm to improve performance and reduce vibration of a helicopter rotor. The active twist schemes include a single harmonic, multiple harmonic, and three other segmented non-harmonic actuation cases. An advanced particle swarm assisted genetic algorithm (PSGA) is employed for the optimizer. In addition, a comprehensive rotorcraft analysis code CAMRAD II is used to reach the trim and to predict the rotor power and hub vibratory loads. A scale-down BO-105 model is used for the reference rotor and the actuator material is assumed to be embedded in the blade structure. The numerical simulation is carried out for low speed descent and high speed forward flight conditions. Among the active twist control inputs, the non-harmonic cases show the best performance gains in reducing the hub vibrations and power consumptions. The hub vibration is reduced by up to 75% while the rotor power is decreased by 2.8% as compared to the baseline uncontrolled rotor at the low speed descending flight condition. The resulting optimized actuation profiles for each of the active twist control cases are found denoted as a function of amplitudes and phases of the rotor response.
dc.identifier.other ERF2015_0149_paper
dc.identifier.uri http://hdl.handle.net/20.500.11881/3527
dc.language.iso en
dc.subject.other Dynamics
dc.title Optimal active twist input scenario for rotor performance improvement and vibration reduction
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
ERF2015_0149_paper.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Collections