Conceptual design and optimisation of an advanced rotorcraft powerplant architecture

dc.contributor.author Fakhre, A.
dc.contributor.author Tzanidakis, K.
dc.contributor.author Goulos, I.
dc.contributor.author Pachidis, V.
dc.contributor.author D'Ippolito, R.
dc.date.accessioned 2018-05-31T09:10:36Z
dc.date.available 2018-05-31T09:10:36Z
dc.date.issued 2015
dc.description.abstract This paper demonstrates the application of an integrated rotorcraft multidisciplinary design and optimisation framework, deployed for the purpose of preliminary design and assessment of optimum regenerative powerplant configurations for rotorcraft. The proposed approach comprises a wide-range of individual modelling theories applicable to rotorcraft flight dynamics, gas turbine engine performance and weight estimation as well as a novel physics-based stirred reactor model, for the rapid estimation of various gas turbine gaseous emissions. A Single-Objective Particle Swarm Optimizer is coupled with the aforementioned rotorcraft multidisciplinary design framework. The overall methodology is deployed for the design space exploration and optimisation of a reference multipurpose twin-engine light civil rotorcraft, modelled after the Bo105 helicopter, employing two Rolls Royce Allison 250-C20B turbo shaft engines. Through the implementation of single-objective optimisation, notionally based optimum regenerative engine design configurations are acquired in terms of engine weight, mission fuel burn and mission gaseous emissions inventory, at constant technology level. The acquired optimum engine configurations are subsequently deployed for the design of conceptual regenerative rotorcraft configurations, targeting improved mission fuel economy, enhanced payload range capability as well as improvements in the rotorcraft overall environmental footprint, while maintaining the required airworthiness requirements. The proposed approach essentially constitutes an enabler in terms of focusing the multidisciplinary design of conceptual rotorcraft powerplants to realistic, three-dimensional operations and towards the realization of their associated engine design trade-offs at mission level.
dc.identifier.other ERF2015_0106_paper
dc.identifier.uri http://hdl.handle.net/20.500.11881/3614
dc.language.iso en
dc.subject.other Engines & Propulsion
dc.title Conceptual design and optimisation of an advanced rotorcraft powerplant architecture
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
ERF2015_0106_paper.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
Description:
Collections