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Abstract

This paper explores the potential use of smoothed particle hydrodynamics methods for helicopter ditching.The method appears
suitable for the task since it is mesh-free and can accommodate the interaction between a floating object and the free-surface of
water. Simple cases of objects dropped on water were first studied to establish confidence on the method and quantify the effect
of the numerical parameters of SPH including the boundary condition between the water and solid, the effect of the number and
type of smoothed particles as well as the generation of different sea-states for the ditching. Once confidence on the method was
established, experiments for the ditching of a model-scale helicopter were used for further validation. It appears that smoothed
particle hydrodynamics has good potential for use in ditching simulation, provided the parameters of the method can be carefully
selected.

1 INTRODUCTION

Ditching is defined to be an emergency surfacing on water,
deliberately executed, with the intent of abandoning the heli-
copter as soon as practical. After ditching the helicopter ei-
ther floats upright, floats inverted or sinks inverted. Between
2000 and 2003 the CAST project, Crashworthiness of Heli-
copter on Water: Design of Structures using Advanced Sim-
ulation Tools, assessed methods that could simulate ditching,
with Smoothed Particle Hydrodynamics (SPH) being one of
these. This work was continued in the GARTEUR HC/AG-
15, Improvement of SPH methods for application to heli-
copter ditching, and the follow on program Smart Aircraft in
Emergency Situations (SMAES). These included looking into
adding air entrapment, cavitation and suction force effects to
improve both analytical and numerical fluid dynamics mod-
els.

Water impact was first studied by von Karman [1] in
the late twenties where he developed a theoretical formula
for water impact and compared it to experimental data from
sea plane floats. The problem was idealised to the calcula-
tion of forces generated during a vertical impact of a wedge
shape onto water in two dimensions. Several years later Wag-
ner [2, 3] increased the fidelity of the model by taking into
account the free surface in the form of the local uprise. The
Wagner model was then extend into axisymmetric cases by
Chuang [4]. More recently Scolan and Korobkin [5,6] looked
at the energy distribution from the vertical impact of 3D ob-
jects on calm water.

An assessment of the models of Zhoa and Faltinsen [7],
the simplified generalised Wagner model and the modified
Logvinovich model proposed by Korobkin [8] has been car-

ried out by Tassin et. al. [9]. In all these analytical models the
body is assumed to be rigid and the fluids inertia dominates
the forces acting on it during the impact. The effects of vis-
cosity, surface tension, compressibility, gravity are neglected.
The flow is also assumed to be irrotational.

Regardless of the promising results obtained with these
models, the need to study the impact of complex shapes on
water requires a different approach that can accommodate
changes of the geometry as well as multiple surfaces im-
pacting the water at the same time. For this reason most of
the modern efforts are directed towards Computational Fluid
Dynamics methods that offer a general framework for ditch-
ing studies even if their computational cost is considerably
higher.

2 NUMERICAL METHOD

2.1 Smoothed Particle Hydrodynamics Overview

SPH is a mesh free method originally formulated by Lucy
[10], and Gingold and Monaghan [11] that solves a set of par-
tial differential equations both accurately and stably without
using any mesh connecting the particles. SPH is an inter-
polation method which approximates values and derivatives
of continuous variables using a set of discrete sample points.
These points are smoothed particles which have a position,
velocity and mass, and these are calculated as some weighted
average from all adjacent particles. This work builds on
the SPHyscis/DualSPHyscis solver [12, 13] that has been ex-
tended to include a rotor model since when ditching the heli-
copter can still have substantial lift from the main rotor.

SPH is a computational fluid dynamics method but takes
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a different approach to mainstream mesh based methods like
the Helicopter Multi-Block solver of Liverpool. In mesh
based methods the continuum domain is divided into discrete
small sub-domains called cells. The edges if these cells them
form a lattice which connects the mesh points together. The
governing equations are then discretised over these cells. Al-
though mesh based methods have been very successful they
are not well suited for all types of problems. The difficul-
ties occur when trying to keep the mesh compatible with the
physical continuum and hence problems with free surfaces,
deformable boundaries or moving interfaces all present com-
plications for mesh based schemes.

The outline of the basic SPH method is shown in figure
1. The fluid is treated as a set of particles each of which has
physical properties associated to them like mass, density, po-
sition and velocity. Next a neighbour list is constructed to
find the adjacent particles. This is done by cutting the com-
putational domain into boxes of size 2h. A list is then built
of all the particles which are in that box. For any given par-
ticle only the interaction between itself and adjacent particles
closer than 2h are to be considered so a particle can only inter-
act with particles in the same or adjacent boxes. All particles
in these 9 boxes are checked to find the ones within 2h. The
particles interaction can now be calculated and these forces
can be used to update the physical properties of each particle.

As stated above the SPH is an interpolation method. The
interpolation is based on the theory of integral interpolants
using kernels that approximate a delta function. The integral
interpolant reads:

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′ (1)

where f is a function of the three dimensional position vector
x, δ(x−x′) is the Dirac delta function and Ω is the volume of
the integral containing the point x. If the Dirac delta function
is replaced by a smoothing function W (x−x′, h) with width
h then equation 1 becomes

< f(x) >=

∫
Ω

f(x′)W (x− x′)dx′ (2)

The width h is a scaling factor that controls the smooth-
ness/roughness of the kernel whist using <>, that is the stan-
dard SPH convention. The smoothing function W is nor-
mally an even function which satisfies the following condi-
tions. Firstly, the integration of the smoothing function W
must be normalised to unity∫

Ω

W (x− x′)dx′ = 1. (3)

Secondly, in the limit as h → 0 it must equal the Dirac delta

lim
h→0

W (x− x′) = δ(x− x′) (4)

and lastly W should be compact

W (x− x′) = 0 |x− x′| > κh (5)

for some constant κ. This implies that only particles close to
the point x are used in the average.

The approximation of the gradient of f is obtained by re-
placing f(x) with ∇ · f(x) in equation 2

< ∇ · f(x) > =

∫
Ω

[∇ · f(x′)]W (x− x′)dx′

=

∫
Ω

∇ · [f(x′)W (x− x′)]dx′

−
∫
Ω

f(x′) · ∇W (x− x′)]dx′

=

∫
S

f(x′)W (x− x′) · ndS

−
∫
Ω

f(x′) · ∇W (x− x′)]dx′

(6)

using the divergence theorem where S is the surface of the
domain of integration Ω. If Ω lies within the problem domain
and since the function W has compact support the surface in-
tegral is zero. However, if Ω overlaps the problem domain for
example close to the fluid body boundary the function W is
truncated and so non zero.

If the infinitesimal volume dx′ is replaced with the vol-
ume of the particle ∆Vj that has corresponding mass mj then

mj = ∆Vjρj (7)

for each of the N particles in the support domain Ω then the
numerical approximation to equation 2 is:

< f(x) > =

∫
Ω

f(x′)W (x− x′)dx′

≈
N∑
j

f(xj)W (x− x′)∆Vj

=

N∑
j

mj

ρj
f(xj)W (x− x′).

(8)

The effectiveness of the SPH method depends on the
choice of the weighting function. Kernels are expressed as
a function of a non dimensional distance between particles
given by q = r/h where r is the distance between particles,
and h controls the number of particles that the interactions are
calculated over. There are a huge number of possible func-
tions and some of the more common are outlined below and
are shown in figure 2.

The Gaussian

W (r, h) = αd exp(−q2) (9)

The Quadratic

W (r, h) = αd

[
3

16
q2 − 3

4
q +

3

4

]
0 ≤ q ≤ 2 (10)

The Cubic spline

W (r, h) = αd


1− 3

2
q2 +

3

4
q3 0 ≤ q ≤ 1

1

4
(2− q)3 1 ≤ q ≤ 2

0 q ≥ 2

(11)

The Quintic

W (r, h) = αd

[
1− q

2

]4
(2q + 1) 0 ≤ q ≤ 2 (12)
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2.2 SPH for the Navier-Stokes Equations

The continuity equation in Lagrangian form is written as

Dρ

Dt
= −ρ∇.u. (13)

There are two commonly used SPH continuity formulations
used in computations which are derived by applying different
approximation rules.
Considering equation 13, one can write:⟨

Dρ

Dt

⟩
= −⟨ρ∇ · v⟩

≈ − ⟨ρ⟩ ⟨∇ · v⟩
≈ − ⟨ρ⟩∇ · ⟨v⟩ (14)

with

(∇. ⟨v⟩)i =
∑
j

∆Vjvj · ∇iWij =
∑
j

mj

ρj
vj · ∇iWij (15)

and

⟨∇W ⟩i =
∑
j

mj

ρj
∇iWij . (16)

Substituting equations (15) and (16) into equation (14) gives

Dρi
Dt

= ρi
∑
j

mj

ρj
(vi−vj) ·∇iWij = ρi

∑
j

mj

ρj
vij ·∇iWij .

(17)
The second continuity equation can be derived by apply-

ing the approximation rule for the dot product as follows

⟨ρ∇ · v⟩i ≈
∑
j

(vj − vi) · ∇iWijmj (18)

and hence

Dρi
Dt

= ρi
∑
j

mj

ρi
(vi−vj) ·∇iWij = ρi

∑
j

mj

ρi
vij ·∇iWij .

(19)
It is easy to spot the difference between equation (17), that
represents the summation density approximation, and (19)
that represents the continuity density approximation.

The momentum equation in a continuum field, with no
body force, is

Dvα

Dt
=

1

ρ

∂σαβ

∂xβ
(20)

where σ is the total stress tensor made up of two parts, the
isotropic pressure p and the viscous stress τ

σαβ = −pδαβ + ταβ . (21)

For Newtonian fluids the viscous shear stress should be pro-
portional to the shear strain rate via the dynamic viscosity µ,
and consequently

ταβ = µ

(
∂vβ

∂xα
+

∂vα

∂xβ
− 2

3
(∇ · v)δαβ

)
. (22)

Below are the two most common ways in the literature to ap-
proximate the moment equation. First consider the equation⟨

ρ
Dv

Dt

⟩
i

= ⟨∇ · σ⟩i . (23)

As
ρi
Dvi
Dt

≈
∑
j

(σi + σj) · ∇iWij∆Vj (24)

then we have:

mi
Dvi
Dt

=
∑
j

∆Vi∆Vj (σi + σj) · ∇iWij =∑
j

mimj

ρiρj
(σi + σj) · ∇iWij . (25)

Secondly, using a different SPH gradient approximation⟨
Dv

Dt

⟩
i

=

⟨
1

ρ
∇ · σ

⟩
i

(26)

and as
Dvi
Dt

≈
∑
j

(
σi

ρ2i
+

σj

ρ2j

)
· ∇iWijmj (27)

then

mi
Dvi
Dt

=
∑
j

mimj

(
σi

ρ2i
+

σj

ρ2j

)
· ∇iWij . (28)

Both equations (25) and (28) are symmetric with respect to
the indices i and j which reduces the errors arising from the
particle inconsistency problem, see for example Monaghan
[14–16].

Due to its simplicity, the artificial viscosity outlined in
Monaghan [17] is normally used. It provides the correct
amount of viscosity to convert kinetic energy into heat at
shocks and also helps to prevent unphysical penetration when
two particles become close. When this term is added to the
momentum equation of (28) the following equation is ob-
tained

Dui

Dt
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

+Πij

)
· ∇iWij (29)

where Πij is given by

Πij =


−αc̄ijµij + βµ2

ij

ρ̄ij
uij · rij < 0

0 uij · rij ≥ 0

(30)

where uij = ui − uj , rij = ri − rj ,

µij =
huij · rij
|rij |2 + ν2

, c̄ij =
1

2
(ci + cj), ρ̄ij =

1

2
(ρi + ρj).

The expression Πij contains a linear difference in the velocity
which produces both a shear and bulk viscosity. The quadratic
term is required to handle high Mach number shocks, and
hence we will be always setting β to zero. This viscosity has
a number of good features. Firstly it is invariant in Galilean
transformations, secondly it conserves total linear and angu-
lar momentum and finally it vanishes for rigid body rotations.
The parameter ν is to prevent the denominator going to zero
and is taken so that ν = 0.1h.

3



The laminar viscous stresses in the momentum equation
can be formulated as a hybrid of a standard SPH first deriva-
tive with a finite difference approximation for the first deriva-
tive.

(ν∇2u)i = ν
∑
j

4mjrij · ∇iWij

(ρi + ρj)(|rij |2 + ν2)
uij (31)

where ν is the kinetic viscosity. So the final momentum equa-
tion is

Dui

Dt
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
· ∇iWij+

ν
∑
j

4mjrij · ∇iWij

(ρi + ρj)(|rij |2 + ν2)
uij . (32)

By contrasting equations (31) and (30) it is possible to com-
pare the scaling of the kinetic viscosity to the parameter α.

The Sub-Particle Scale (SPS) model was first introduced
by Gotoh et al. [18, 19]. The conservation of momentum
equation can be written as:

Du

Dt
= −1

ρ
∇P + g + ν∇2u+

1

ρ
∇τ (33)

and here the laminar term is treated in equation (31) and τ
represents the SPS stress tensor. Boussinesq’s hypothesis for
the eddy viscosity states that the Reynolds stress tensor τij is
proportional to the trace-less mean strain rate tensor.

τij
ρ

= µt

{
2Sij −

2

3
kδij

}
− 2

3
Cl∆

2δij |Sij |2 (34)

where τij is the sub-particle stress tensor, µt is the turbulence
eddy viscosity, k the SPS turbulence kinetic energy, Cl is a
constant equal to 0.0066 and Sij the element of SPS strain
tensor. DualSPHyscis uses the implementation suggested in
[20]:

Dui

Dt
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
· ∇iWij

+ ν
∑
j

4mjrij · ∇iWij

(ρi + ρj)(|rij |2 + ν2)
uij

+
∑
j

mj

(
τi
ρ2i

+
τj
ρ2j

)
· ∇iWij . (35)

In Monaghan [21] the fluid in the SPH formulation was
treated as a weakly compressible and hence an equation of
state was used to determine the pressure in the fluid. The
idea behind using this artificial compressibility is to reduce
the prohibitively small time steps required to a reasonable
level by slowing the speed of sound in the fluid. This reduced
speed of sound should, however, be at least an order of mag-
nitude faster than the maximum fluid velocity which keeps
the density variations close. Monaghan applied the following
equation of state for water to model free surface flows:

p = B

[(
ρ

ρ0

)γ

− 1

]
(36)

where γ is a constant taken to be 7 in more circumstances,
ρ0 is the reference density, and B is a problem dependent pa-
rameter, which limits the maximum change in density. The
subtraction of 1 can remove the boundary effect for free sur-
faces and it can be seen that a small oscillation in the density
may result in a large variation of the pressure. In the current
code

B =
c20ρ0
γ

(37)

where c0 is the speed of sound at the reference density.
The particles are updated using the XSPH variant accord-

ing to Monaghan [22] which was introduced to stop SPH par-
ticles pass through each other. The idea Monaghan used was
that each particle is moved with an average of the velocities
of its neighbours. This reduces or even eliminates the num-
ber of particles passing through each other. The method is
non-dissipative and conserves linear and angular momentum.
This smoothing also has the further advantage of reducing lo-
cal disorder.

dri
dt

= ui + ϵ
∑
j

mj
2

ρi + ρj
ujiWij (38)

where ϵ is a user defined parameter usually taken to be 0.5.
Near the boundary and free surfaces, particles have a cut

down smoothing kernel due to the absence of neighbouring
particles. To correctly handle these conditions the kernel
function Wij or its gradient are modified. Two of the possible
methods are kernel correction and kernel gradient correction.
This is based on the work of Bonet and Lok [23] and Liu et
al. [24]. The kernel is changed to enable polynomial func-
tions of a given degree to be interpolated exactly. However
Bonet and Lok consider the linear correction is unsuitable for
computational purposes the constant correction

vi =
∑
j

mj

ρj
vjWij/

∑
j

mj

ρj
Wij (39)

Another option is to modify the kernel gradient used in the
equation of motion.

∇̃ = Lj∇Wij (40)
Li = M−1

i (41)

Mi =
∑
j

mj

ρj
∇Wij ⊗ (ri − rj) (42)

It should be noted that when the particle i is way from the
boundaries and free surface that Mi is equal to the identity
matrix and hence no correction is made to the kernel gradi-
ent. However, when the particle to close the distribution of
particles around it does not remain symmetric and the cor-
rection kicks in. This correction is anisotropic since the off
diagonal terms of the Li involve both spatial coordinates.

In SPH while the simulations are realistic the pressure
field of the particles can exhibit large pressure oscillations.
Many approaches have been used to try and reduce the prob-
lem. These include correcting the kernel via equation (39)
and development of incompressible solvers. However its also
possible to apply a filter over the density of the particles and
then use this new smoothed value.
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The Shepard filter is a correction which is applied after a
user specified number of steps. The correction is as follows

ρnewi =
∑
j

ρjW̃ij
mj

ρj
=
∑
j

mjW̃ij (43)

where the kernel has been corrected using a zeroth-order cor-
rection of equation 39

W̃ij = Wij/
∑
j

mj

ρj
Wij . (44)

A first order correction called moving least squares (MLS)
was first developed by Dilts [25, 26]. Since it is first order a
linear variation of the density field can be exactly reproduced.

ρnewi =
∑
j

ρjW
MLS
ij

mj

ρj
=
∑
j

mjW
MLS
ij (45)

where the corrected kernel is called by

WMLS
ij = WMLS

ij (ri) = β(ri) · (ri − rj)Wij . (46)

2.3 Time Marching SPH

To perform time-marching simulations each particle is up-
dated using a global fixed time step ∆t. For clarity, consider
the following system of equation for density momentum and
position:

dρi
dt

= Di (47a)

dui

dt
= Fi (47b)

dri
dt

= Ui. (47c)

If Ui represents the the velocity contribution from particle i
only then Ui = ui. However it can also include the contribu-
tion of the neighbouring particles (via the XSPH correction).

The simplest method considered is the semi implicit Euler
scheme. The scheme is semi implicit since only the position
r is updated in an implicit manner.

ρn+1
i = ρni +∆tnDn

i (48a)

un+1
i = un +∆tnFn

i (48b)

rn+1
i = rni +∆tnUn+1

i (48c)

The leap-frog scheme gets it name by updating the posi-
tions r and the velocities u at interleaved points. The leap-
frog scheme is second order in time and is written as:

ρn+1
i = ρni +∆tnDn

i (49a)

u
n+1/2
i = un−1/2 +∆tnFn

i (49b)

rn+1
i = rni +∆tnU

n+1/2
i . (49c)

The initial velocity is given by

u
−1/2
i = u0

i −
1

2
∆t0F0

i . (50)

The velocity at time step n is required when computing the
forces at time step n and can be approximated using the mid-
point rule

un
i =

1

2

(
u
n−1/2
i + u

n+1/2
i

)
. (51)

The Verlet integration [27] is a very common time inte-
gration scheme used in molecular dynamics. The basic idea
is two expand two Taylor series for the position ri one for-
ward and one backward in time.

rn+1
i = rni + un

i ∆t+
1

2
Fn

i ∆t2 +
1

6
sni ∆t3 +O(∆t4)

(52a)

rn−1
i = rni − un

i ∆t+
1

2
Fn

i ∆t2 − 1

6
sni ∆t3 +O(∆t4)

(52b)

The scheme employed for this work is split into two parts.
Normally the variables are calculated using

un+1
i = un−1

i + 2∆tnFn
i (53a)

rn+1
i = rni +∆tnun

i + 0.5(∆tn)2Fn
i (53b)

ρn+1
i = ρn−1

i + 2∆tnDn
i (53c)

Since these equations are not couple every few iterations (10
to 40) the variables are calculated using the explicit Euler
scheme

un+1
i = un

i +∆tnFn
i (54a)

rn+1
i = rni +∆tnun

i + 0.5(∆tn)2Fn
i (54b)

ρn+1
i = ρni +∆tnDn

i (54c)

Symplectic time integration algorithm are designed for the
numerical solution of Hamliton’s equations and since these
conserve the Hamiltonian and are widely applied in molec-
ular dynamics where long term evolution is required. These
schemes are also reversible in the absence of friction or vis-
cous forces [28]

2.4 Moving Objects

In the application of SPH, there are two possible types of
objects interacting with the fluid. The first have pre defined
movement and the second objects that are moved by the fluid.
For the first type, the objects interact with the fluid in such a
way that the fluid is displaced by their movement, however,
the motion of the object is independent to the fluid that is is
moving thought. Objects of the second type have a two way
interaction. For their motion the equations of rigid body dy-
namics are required.
Using Newton’s second law the resulting force F acting on a
rigid body of mass m becomes

F = mu̇cg. (55)

The general moment equation about the centre of gravity is
given by

G = ḣ (56)

there G is the resulting moment of the force F and h is the
resulting angular momentum of the body about the centre of
gravity. Now, considering the body has angular velocity ω
with components ωx, ωy , and ωz

ω = iωx + jωy + kωz (57)
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the velocity of a mass point of the rotating body becomes

V = Vcg + ω × r (58)

hence the angular momentum of a rigid body about the centre
of gravity is

h =

∫
r× (Vcg + ω × r) dm =∫

r×Vcg dm+

∫
r× (ω × r)dm =∫

r× (ω × r)dm. (59)

In addition,∫
r× (ω × r)dm =∫

(ω(r · r)− r(ω · r)) dm =∫
(ωr2 − r(ω · r))dm (60)

and by substituting r = ix + jy + kz and equation (60) into
equation (59),

h = ω

∫
(x2+y2+z2)dm−

∫
r(xωx+yωy+zωz)dm (61)

h =

 hx

hy

hz

 =

∫  (y2 + z2) −xy −xz
−xy (x2 + z2) −yz
−xz −yz (x2 + y2)

 dm,= Iω

(62)

where I is defined as the inertia matrix. The diagonal terms
Ixx, Iyy and Izz are the moments of inertia while the off diag-
onal terms −Ixy , −Ixz and −Iyz are the products of inertia.

When a reference frame is fixed to the body (xb, yb, zb)
the inertia matrix remains constant. However the frame of
reference now rotates with angular velocity ω. So in the body
frame of reference equations (55) and (56) become

F = m
∂Vcg

∂t
+mω ×Vcg (63)

and
G =

∂h

∂t
+ ω × h. (64)

If the forces and moments are transformed into the body
reference frame (xb, yb, zb) F = iFxb

+ jFyb
+ kFzb and

G = iGxb
+ jGyb

+ kGzb this yields

Fxb
= m (u̇+ ωyw − ωzv)

Fyb
= m (v̇ + ωzu− ωxw)

Fzb = m (ẇ + ωxv − ωyu)
(65)

and
Gxb

= ḣx + ωyhz − ωzhy

Gyb
= ḣy + ωzhx − ωxhz

Gzb = ḣz + ωxhy − ωyhx

(66)

Gxb
= Ixxω̇x + (Izz − Iyy)ωyωz − Ixy(ω̇y − ωxωz)
− Ixz(ω̇z − ωxωy)− Iyz(ω

2
y − ω2

z)
Gyb

= Iyyω̇y + (Ixx − Izz)ωxωz − Ixy(ω̇x − ωyωz)
− Ixz(ω

2
x − ω2

z)− Iyz(ω̇z − ωxωy)
Gzb = Izzω̇z + (Iyy − Ixx)ωxωy − Ixy(ω

2
x − ω2

y)
− Ixz(ω̇x − ωyωz)− Iyz(ω̇y − ωxωz)

(67)

2.5 Particle Interactions

In general the support of the kernel function is compact and
only a finite number of particles are within this domain of this
support. Three possible way to calculate the nearest neigh-
bours, all-pair search, linked-list search algorithm and tree
search algorithm are discussed below. The all-pair search, or
brute force method, is a direct and simple method. For any
given particle i calculate the distance rij to each particle j. If
the distance rij is smaller than the dimension of the support
for i then the particles i and j interact. This search is carried
out on all N particles and so O(N2) operations are required.
Hence the all-pair search is only computationally efficient of
the total number of particles is very small.

The linked-list search algorithm works best for cases
where the support radius is constant across all particles. It was
shown by Monaghan and Gingold [29] that by using cells as a
bookkeeping device the computational cost of particles inter-
actions could be reduced. If all particles are assigned to bins
and identified through a linked-list the computational time is
reduced as only certain bins need to be checked. A temporary
mesh is overlaid on the problem domain. The mesh spacing is
selected to match the dimension of the support domain. Then
for the particle i, its nearest neighbouring particles can only
be in the same grid cell or the adjoining cells. Domínguez
et al. [30] compared the performance for the two different
methods to create list of neighbours namely the cell-linked
list (CLL) and the Verlet list (VL). The CLL method set up a
list linked to every cell and is the method shown in figure 1.
The VL method creates a linked list for each vertex. It is usu-
ally implemented by generating a simple linked list to contain
which particles are in each cell and a one dimensional array
describing which cell each particle is in. They also looked
into renumbering the particles so they are “close” in mem-
ory for better cache usage. They concluded that for parallel
computations VL was better.

The main drawback of the linked-list search algorithm is
when a variable smoothing length h is used. In this case the
mesh spacing used to define the bin may not be optimal for
every particle and hence the efficiency drops. This problem
is overcome by using a tree search algorithm. Order trees are
created according to particle position which are then searched
to find the nearest neighbour particles. The tree method recur-
sively splits the domain until only a single particle is in each
leaf. The search is performed by centring a cube on the par-
ticle and checking the overlap of this cube with the volume
represented by the node. Finally a check is required to see if
the particle is in the support domain. The complexity of a tree
search algorithm is order N logN .
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2.6 SPH Formulation

An open source version of an SPH solver is DualSPHysics
[12, 13, 31] that was also used in this work. A simple flow-
chard of the employed SPH method can be seen in figure 3.
The formulation for floating objects within DualSPHysics is
based the work of Monaghan et al. [32] and examples in the
literature have shown a good agreement between the SPH re-
sults and experimental data. However the method only con-
tains a very basic formulation which does not include the cor-
rect physics when floating objects interact with other objects
or solid walls and the friction forces are not taken into ac-
count. Further, the standard SPH method suffers from a lack
of stability and hence uses an artificial viscosity term πij or
by applying a density renormalisation. Both these fixes help
to increase the regularity of the pressure field within the com-
putational domain however as can been seen from figure 4
even with options used there are still defects in the pressure
field making the pressure calculation at a point a non trivial
task. Colagrossi [33] improved this pressure field via using a
second order accurate interpolation with moving least square
kernel.

3 RESULTS AND DISCUSSION

3.1 Simpler Cases

Simple flow cases were initially considered with SPH to allow
the tuning of the various method parameters and assess the ef-
fect of different boundary conditions on the obtained results.
SPH method, require careful use and systematic assessment
of their numerical parameters since otherwise the obtained re-
sults may violate the conservation laws and lead to solutions
with incorrect physics. Only some of the studies conducted in
the preparation of the SPH method for helicopter ditching are
presented in this work.

3.1.1 Effects of applying smoothing to an idealised problem

The effect of different filters to improve the smoothness of
the solution was first investigated. Figures 5 and 6 show the
effect of the Shepard and the moving Least-Squares filters on
the obtained particle density for the case of a cube dropped
on the surface of the water. The results suggest that for the
cases of ditching filtering of the solution may be necessary to
smooth out the pressure oscillations but global behaviour of
the object remain largely unchanged.

3.1.2 Effect of boundary condition on the solution to an ide-
alised problem

In addition to the solution smoothness, higher frequency os-
cillations may be present on the force and accelerations of
floating bodies as a result of the applied boundary condition
between the fluid particles and the particles attached to float-
ing objects. The dynamic boundary condition of Dalrymple
was first assessed. According to this condition, boundary par-
ticles are forced to satisfy the same equations as fluid parti-
cles. However, they do not move freely and so remain fixed
in position, unless their position changes due to some exter-
nal function, or rigidly under loading for floating objects. The

repulsive boundary condition can also be used. This condi-
tion uses a repulsion function to ensure that a fluid particle
can never cross a solid boundary. This is a much more in-
volved boundary condition which also requires the geometric
normals for every point on the boundary.

Figure 7 shows the results of a two dimensional cube drop.
As can be seen the Dalrymple boundary condition produces
a large oscillation in the velocity of the cube where the Re-
pulsive force boundary condition does not. This also leads to
a much higher deceleration in the initial phase of the impact
which smaller oscillations at later times. It is therefore better
for the Repulsive force boundary condition to be used, pro-
vided that the complex task of computing the surface normals
for each particle can be performed. This task is trivial for a
simple object with flat surfaces but can be harder for the case
of ditching a helicopter due to the complex fuselage surface
and its representation as a cloud of points with little or no
connectivity information.

3.1.3 Choice of lattice type for floating objects and the fluid

Different lattice types can be used to represent the boundary
and the fluid domain and the surface of floating object. This
leads to a total of four possible combinations. The two differ-
ent lattice types are shown in figure 8. The type first lattice
has just a single row of particles representing the object while
the type two lattice has a double row. For a given weight of
object the type two lattice particles will have half the mass of
the type one lattice. The type two lattice will also roll over
quicker since in effect the cube has had two of its corners
rounded off and hence the forces on either side of the square
will lead to a moment causing the object to roll. The reason
why a double layer of lattice is normally used for objects is
that it is much harder for the fluid particles to penetrate the
boundary walls.

A simple test case was used of dropping a 10× 10× 10m
cube into the middle of a 30m square tank containing water
15 meters deep. The density of the cube is half that of the
water and hence its equilibrium position will have half of the
cube sitting out of the water. The final height should be at
15.55 m due to the small size of the tank making the dis-
placed water increase the water level by about four percent.
Figure 9 shows the four different combinations of lattice. The
two cases where the fluid and boundary have the same type
of lattice give very consistent results but the final position of
the cube is about 1.5 m too high. The normal type two lat-
tice boundary, and type one lattice fluid in this case gave a
better final position at around 15m which is a little low. How-
ever the type one lattice boundary with a type two lattice fluid
did something very different. For the first four seconds it run
correctly even if it resulted with at a much higher position in
the water. However, after this time fluid particles start leak-
ing from the domain causing the height to drop. This is more
clearly seen in the velocities as this configuration is not con-
verging to zero.

Figure 10 shows the effect of increasing the number of
particles. For the type one lattice boundary and fluid the solu-
tion becomes more oscillatory. However, the final equilibrium
position was only 0.4m too high. The normal type two lat-
tice boundary and type one lattice fluid nearly hit the bottom
of the tank in this case, and also showed a drop in the centre
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of gravity equilibrium under particles refinement, drifting fur-
ther away from the correct answer. Extrapolating the results it
would appear that the type two lattice boundary and type one
lattice fluid will have an equilibrium position approximately
as if the cube was of the same density as that of the water. The
type one lattice boundary and fluid gave the correct behaviour
under particle refinement and the particles did not leak. It was
therefore used for helicopter ditching simulations.

3.1.4 Obtaining the correct equilibrium position with coarse
particle density

As discussed in the previous section, even when the masses of
the fluid and the body were correct the body did not have the
correct buoyancy. This was because the body displaced too
much fluid and hence ended to high in the water. Consider a
tank of 3 × 3 × 3m with 2m of fluid in it. The results can be
seen in table 1 for different particles sizes. As the particle size
is reduced the mass of the fluid in the container converged to
the modelled condition (18,000Kg). This is because particles
are not placed exactly on the tank walls. This means that for
he in the 0.1 particle case, instead of 30 × 30 × 20 particles
the SPH method is started with 29× 29× 19 = 15979. For a
particles size of 10cm there is a 11% error. This error scales
linearly with the particles size so at a 1cm scale the error has
been reduced to one percent.

Something similar happens when a fully submerged float-
ing body is added to the tank. Particles are now placed on
the faces of the cube. So for lattice type one, the number of
particles in the floating object is

6× (n− 1)2 + 12× (n− 1) + 8 (68)

where n is the size of the cube divided by the particle size.
The number of displaced fluid particles is

(n+ 1)3. (69)

For the buoyancy to be correct the amount of displaced fluid
has to equal 1000Kg which is n3 particles and hence the error
is

3n2 + 3n+ 1

n3
(70)

which again is order n−1. The results of this can be seen in ta-
ble 2. For a 10cm particles size a one meter cubed object will
displace 1331Kg of fluid and hence buoyancy would cause
the cube to move upwards. In this case the equilibrium posi-
tion would have about 25cm of cube height above the water
line. As the particle size is reduced this discrepancy is re-
duced linearly. The difference is slightly smaller for partially
submerged objects as shown in table 3 because the discrep-
ancy due to the upper surface has been removed.

3.1.5 Using complex geometries

Using simple geometric shapes like a cube is easy with ei-
ther lattice type onto the body. However, for complex general
cases, this is a non trivial problem. Consider for example an
approximate fuselage of the AW101 helicopter shown in fig-
ure 11. Four different particle resolutions, 20cm, 10cm, 5cm
and 2cm, were used to represent the fuselage and the results
can be seen in figures 12 and 13. The computer code written

to generate the surface is not discussed here but it is clear from
the pictures how the algorithm works. Firstly a grid of parti-
cles is set up with the correct spacing. If the point is greater
than half the particle resolution away from the surface then
the point is discarded else it is kept. This means that for any
give surface the particles may over- or under-approximate it
by half their resolution. This effect can be seen in the closeup
view near the radar dome and the bottom of the fuselage (bot-
tom of figure 12). For the 20cm resolution (black squares) the
points lie outside the radar dome and inside the bottom of the
fuselage making the effective height of the radar dome big-
ger whereas in the 10cm resolution case this is reversed. The
other drawback of this method is that surfaces with curvature
will be represented by straight line segments. Even the 2cm
resolution in the high curvature region of the radar dome has
a very pronounced “staircase” effect. At present, the surface
particle generation method can work with STL files produced
by standard CAD systems and can extract a representation
of any helicopter fuselage suitable for ditching computations
with the SPH method.

3.2 Demonstration of SPH for Helicopter Ditch-
ing

The representation of the AW159 fuselage in the format used
for ditching computations can be seen in figure 14. Based on
the discussion of the previous paragraph a resolution of 5cm
was used as a starting point, and the surface included 77 thou-
sand particles.
Validation of the SPH method was then carried out against
experiments, conducted at both the basins of DGA/TH (Val
de Reuil) and ECN (Nantes) for a scaled model of the AW159
fuselage. The experiments provided data for the motion of the
model as well as pressure and accelerometer readings from
a few points on the model. Figure 15 shows the employed
model as well as a still photograph of the model 0.2 seconds
after a drop on the surface of water at sea-state zero and with
the main rotor providing 67% of lift. This particular condition
has also been simulated using the SPH method.
Figure 16 shows the pressure on the fuselage at different
times. The pressure is scaled with the maximum value seen
during the run. It can be seen that the water line does not get
very far up the fuselage and hence most of the fuselage has
zero pressure on it. However as can be seen from Figure 17
the comparison with the vertical velocity between the experi-
mental data and the SPH simulation is good. The results show
that the velocity and acceleration are predicted fairly well if
the correct size of particles is used. The SPH results appear to
capture well the peaks of the vertical acceleration and velocity
with some noise present in the solution. The acceleration in
particular, is reasonably well predicted apart from the initial
impact for the 67% rotor model.
Figure 18 shows the AW159 fuselage drop at sea state 4 where
the regular waves are 4 meters high with a wave slope of 0.1.
The particle size was 1.5cm on the model scale which is larger
than ideal but still required 24 hours of CPU for 2.6 seconds
of real-time simulation. It can be seen in the figures that the
fuselage sits high in the water. This is due to the fact that
the rotor model is active during the whole of the computation
producing lift in the vertical direction meaning in effect that
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the fuselage only has about 1/3 of its correct weight. Another
reason for the high position is the larger particle size since the
iso surface of the fluid is this distance below the real surface.

Figure 19 shows the motion of the fuselage more clearly.
The main effect of the impact is in the Z direction while the
impact effect is reduced by a quarter for the X direction. The
initial vertical velocity looks very similar to a ditch into sea
state zero but the effects of the waves can be clearly seen.
The size of the waves is slightly low and the fuselage moves
slowly towards the beach over time. The roll rate is also in-
creasing but this can be due to the fact that the fuselage sits
relatively high in the water.

4 CONCLUSIONS AND FUTURE WORK

In this paper SPH has been demonstrated for helicopter ditch-
ing. The method is mesh-free and in comparison to traditional
CFD methods appears to be easier to use due to the lack of the
mesh-generation step. On the other hand, the results of SPH
depend heavily on the use of appropriate particle resolution,
flow model parameters, and correct boundary conditions be-
tween the solid and fluid particles. Simple cases like the drop
of a cube on the surface of water were initially used for the
investigation of the effects of all the aforementioned parame-
ters.

Once the effect of the boundary conditions and flow
model parameters were quantified, the simulation of an
AW159 ditching was attempted. The case of a vertical drop
of the fuselage at sea-state zero was attempted and the results
showed an overall fair agreement with the measure mens re-
garding the velocity, acceleration and position of the fuselage
versus time. Further cases included a vertical drop on the crest
of a wave to demonstrate the potential of the method.

Overall, SPH was found satisfactory for the ditching task
even though some user experience and careful selection of
the model parameters were necessary. In the future, efforts
will be directed towards establishing a practical list of crite-
ria for the selection of the numerical parameters of the SPH
method so that routine analyses of helicopter ditching can be
performed.
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Table 1: Number of particles in 18 cubic meters of water.

Particle Number of fluid Mass of Total Mass Percentage
size(m) particles particle of fluid (kg) error
0.1 15979 1.000 15979 11.2
0.05 135759 0.125 16970 5.7
0.02 2197899 0.008 17583 2.3
0.01 17790799 0.001 17791 1.16

Table 2: Mass of displaced fluid for a fully submerged 1× 1× 1m object.

Particle Number of fluid Mass of Number of body Particles Mass Percentage
size (m) Particles in tank Particle Particles displaced (kg) displaced Error
0.1 15979 1.000 602 1331 1331 33.1
0.05 135759 0.125 2402 9261 1158 15.8
0.02 2197899 0.008 15002 132651 1061 6.1
0.01 17790799 0.001 60002 1030301 1030 3.0
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Table 3: Mass of displaced fluid for a partially (20%) submerged 1× 1× 1m object.

Particle Number of fluid Mass of Number of body Particles Mass Percentage
size (m) Particles in tank Particle Particles displaced displaced (kg) Error
0.1 15979 1.000 602 242 242 21.0
0.05 135759 0.125 2402 1764 221 10.5
0.02 2197899 0.008 15002 26010 208 4.0
0.01 17790799 0.001 60002 204020 204 2.0

(a) (b)

(c) (d)

(e) (f)

Figure 1: Overview of the SPH Method.
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Figure 2: Example of 4 commonly used kernels and there Gradients used in SPH methods.

Figure 3: Schematic of the SPH Code.

Figure 4: The non regular density field in an SPH computation for the case of a cube dropped on the surface of water.
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(a) (b)

(c) (d)

Figure 5: Effect of the Shepard filter on the smoothness of the solution.
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(a) (b)

(c) (d)

Figure 6: Effect of the moving least squares filter on the smoothness of the solution.
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Figure 7: Effect of the boundary condition on the Acceleration and velocity of the dropped cube.

Figure 8: Two different lattices for a square floating object.

Height above the bottom of the tank Vertical velocity of the cube

Figure 9: Effect of the four different methods on the height and vertical velocity of the centre of gravity of a cube.
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Figure 10: Effect of increasing the number of particles in the consistent lattice 1,1 and lattice 2,2 cases.

Approximate surface of the AW101 fuselage Mesh density in STL file

Figure 11: Surface and mesh of the STereoLithography of the AW101 fuselage shape used in the SPH simulations.
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20 cm particle resolution

10 cm particle resolution

5 cm particle resolution

2 cm particle resolution

Closeup of the radar dome with all resolutions

Figure 12: Effect of particle resolution on a section through the fuselage.
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20 cm particle resolution 10 cm particle resolution

5 cm particle resolution 2 cm particle resolution

Figure 13: Effect of particle resolution on the approximation of the fuselage shape near the middle of the AW101 fuselage.

Figure 14: Particles used to represent the AW159 fuselage.

(a) The Experimental model (b) Still of drop test at time 0.2 seconds

Figure 15: Vertical drop of the AW159 Fuselage with 69% lift into sea state zero.
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Time = 0.0 seconds Time = 0.1 seconds Time = 0.2 seconds

Time = 0.3 seconds Time = 0.4 seconds Time = 0.5 seconds

Time = 0.6 seconds Time = 0.7 seconds Time = 0.8 seconds

Time = 0.9 seconds Time = 1.0 seconds Time = 1.1 seconds

Figure 16: Pressure on the underside of the AW159 fuselage with 67% lift from the basic rotor model.
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Figure 17: Comparison between SPH and experimental data for a vertical AW159 Fuselage drop into sea state 0.
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Time = 2.7 Seconds

Time = 3.2 Seconds

Time = 3.7 Seconds

Time = 4.5 Seconds

Figure 18: A vertical drop into sea state 4 and different times with the fuselage hitting the crest of the wave.
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Figure 19: Vertical drop on sea state 4 and different times with the fuselage hitting the crest of the wave.
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