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Abstract

This paper describes the analysis of the steady-state flap bending and twist deformation of an extremely
flexible rotor blade. An analytical model tailored towards unconventional blades experiencing very
large elastic twist angles is derived. In particular, the bifilar effect arising from the foreshortening
of the twisted blade is included. The full non-linear coupled equations of motion are solved using a
finite element method. Spanwise distribution of flap bending and twist of an 18-inch diameter rotor
with flexible blades rotating at 1200 RPM are predicted for various collective pitch angles, and are
correlated with experimental measurements. It is shown that the action of the restoring bifilar pitching
moments is significant and that omitting its effect leads to a 50% error in the computation of the blade
tip pitch angle. The bifilar effect introduces additional kinetic energy and strain energy terms, and it
is seen that the kinetic energy terms are predominant over the strain energy terms. Furthermore, it
is shown that conventional analyses derived for rotor blades with small angles of elastic twist cannot
predict the large deformation of blades with very low torsional frequencies, on the order of 1.5 per rev.

1 INTRODUCTION

Micro aerial vehicles (MAVs) have become increasingly
popular over the past decade as they are capable of ful-
filling mission requirements that conventional manned
vehicles or larger unmanned aerial vehicles cannot.1

Among the types of MAVs in development, rotary-
wing MAVs offer unique strengths related to their abil-
ity to take off and land vertically, hover, and fly at very
low advance ratios.2,3 These qualities make them per-
fectly suited to indoor surveillance or reconnaissance
missions. However, several challenges inherent to the
complexity of these missions must be addressed, be-
fore fully taking advantage of the benefits. Flying in
congested terrain increases the likelihood of blade im-
pact with obstacles. Additionally, the size of the rotor
limits the range of motion of the vehicle and its ability
to access confined spaces.

These observations motivated Sicard and
Sirohi to develop a morphing, damage tolerant rotor
for microhelicopters. In this concept, the rotor blades
are extremely flexible so that they can be rolled and
stowed inside the rotor hub, enabling variation of the
rotor diameter in flight. The full retractation of the
blades is also advantageous for storage and ground

∗jerome.sicard@utexas.edu
Presented at the European Rotorcraft 38th Forum, Amster-

dam, The Netherlands, September 4-7, 2012.

Figure 1: Morphing, damage tolerant flexible rotor
concept

transportation of the MAV. Furthermore, survival of
the vehicle upon collision of the rotor with an object is
permitted by the high compliance of the blade mate-
rial. In such an event, the rotor blade can experience
very large deformation, and still elastically recover its
original shape.

A schematic of the flexible rotor concept pro-
posed in this study is shown Fig. 1. The rotor blades
are fabricated using composite materials. The choice
of the shear modulus of the composite matrix allows
for large bending and torsional flexibility (Fig. 2(a)).
During flight, stiffening and passive stabilization is
achieved by appropriate tailoring of mass and stiffness
distributions spanwise. In the flexible blade design
shown in Fig. 2(b), this is achieved by securing a mass
at the tip of the blade, ahead of the leading-edge of
the airfoil.

Because of their relatively low bending and
torsional stiffness compared to rigid rotors, extremely



(a) Flexible rotor at rest, mounted on hover test stand

Tip mass

(b) Flexible blades rotating at 1500 RPM

Figure 2: 18 inch diameter rotor with extremely flexible blades4
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Figure 3: Extremely flexible blade BP (18 inch diam-
eter) rotating at 1500 RPM5

flexible blades inherently experience large spanwise
bending and twist deformations. In particular, a neg-
ative spanwise twist distribution induced by the cen-
trifugal and gravitational forces acting on the tip mass
was discovered in a previous study,4 and can be ob-
served in Fig. 2(b). This large negative twist resulted
in poor hover performance. To overcome this issue,
blade design parameters such as mass and position
of the tip body or blade material properties must be
modified. An experimental investigation5 showed that
part of the negative induced twist could be alleviated
by changing the orientation of the tip mass, and in-
troducing an index angle between the tip body minor
principal axis of inertia and the blade chord. This
blade design is shown rotating at 1500 RPM in Fig. 3.

In order to further improve the concept of an
extremely flexible rotor, we must be able to predict
the steady-state deformations of these unconventional

blades and relate the magnitude and variations of the
deformations to the design parameters. The objective
of this paper is to present an aeromechanics analy-
sis specifically developed to model rotor blades with
very low bending and torsional stiffnesses, experienc-
ing large bending and twist deformations.

2 STATE OF THE ART

A recent review on rotor loads prediction by Datta6

and a review on rotorcraft aeromechanics by Johnson7

underlined the main publications over the past few
decades that have contributed to the development of
structural dynamics modeling of rotor blades. The ini-
tial form of the partial differential equations of motion
for the coupled bending and torsion of twisted nonuni-
form beams was given by Houbolt and Brooks8 using a
linear analysis. As the significance of non-linear terms
in the aeroelasticity of rotary-wings was discovered,
non-linear equations of motion for combined flapwise
bending, chordwise bending, torsion, and extension of
twisted nonuniform rotor blades were derived indepen-
dently by several authors.9,10 These theories, accurate
to second order, were based on the restriction that
non-dimensional bending and torsion deflections were
small with respect to unity. Then, in the early 1980s,
Hodges11 and Bauchau12 addressed larger bending de-
flections, using a geometrically exact beam theory and
a multibody formulation respectively.

More recently, Sicard and Sirohi13 focused on
rotor blades with very low torsional natural frequen-
cies to derive the non-linear aeroelastic equations for
combined flapwise bending and twist. The analy-
sis was based on the extended Hamilton’s principle.
Throughout the derivation, special attention was given



to the terms associated with large twist angles. In par-
ticular, the elastic twist angle was considered to be of
the same order of magnitude as the control collective
pitch angle. In addition, terms related to the bifilar
(or trapeze) effect, usually neglected for rotor blades
with high torsional stiffness, were retained. This effect
induces a radial foreshortening displacement of each
cross section of a blade under pure torsion. Also, the
analysis included the contribution of the tip body ki-
netic and potential energies to the total energy of the
system. To resolve the non-linear coupled equations
of motion, the assumed-modes method was used. The
flapwise bending deflections and elastic twist angles
obtained by the simulation were compared to experi-
mental measurements obtained using an optical tech-
nique called stereoscopic Digital Image Correlation
(DIC).13 Predictions of spanwise blade twist showed
good agreement with measurements. In addition, the
aeroelastic model matched the slope of the flapwise
bending deformation near the root of the blade, but
over predicted the tip displacement.

3 PRESENT APPROACH

The present study extends the work of Sicard and
Sirohi13 and focuses on the development of a model
capable of predicting accurate steady-state deforma-
tions of extremely flexible rotor blades.

First, an alternative technique to find the so-
lution of the equations of motion, based on non-linear
Finite Element Method (FEM), is developed.

Then, the results of the analysis are correlated
with experimental data. The predicted deformation of
a flexible rotor blade are compared to measurements
obtained by DIC.13 Analytical spanwise distribution
of flapwise bending deflections and elastic twist angles
are validated by comparing them to the experimental
measurements for different collective pitch angles.

Finally, the importance of the additional
terms retained in the equations of motion of flexible
blades, which are neglected in conventional analyses
of rigid rotors, is evaluated. The contribution to the
total bending deflections and pitch angles of the terms
arising from the bifilar effect and the terms retained
for arbitrary large elastic twist angles is investigated.

4 ANALYTICAL MODEL

The steady-state equilibrium position of an extremely
flexible rotor blade with tip mass can be obtained
by retaining the time invariant terms in the extended

Figure 4: Finite element

Hamilton’s principle, written as

(1) (δT0 − δU − δVg + δWa)b + (δT0 − δVg)m = 0

where δT0, δU and δVg are the variations of time in-
variant kinetic energy, strain energy and gravitational
energy respectively. δWa is the virtual work done by
aerodynamic forces. The subscripts b and m indicate
the energies acting on the blade airfoil and the tip
mass respectively. The full derivation of the equation
of motion is shown in Ref. 13, and the final formulation
is given in Appendix A. The terms which differ from
conventional analyses that model blades with high tor-
sional rigidity are underlined. Terms underlined by
a wavy line are those arising from the bifilar effect.
The double underlined terms are retained under the
assumption that elastic twist angles are of the same
order of magnitude as dimensionless flap deflection.
Finally, the terms underlined by a dashline remain for
arbitrary non-symmetric blade cross sections. The so-
lution of the equation by FEM is presented hereafter.

Accordingly with the FEM approach, the ro-
tor blade is discretized into a finite number of beam
elements. Each beam element has seven degrees of
freedom, distributed over three nodes (Fig. 4), which
form the elemental generalized coordinates vector:

(2) δqi =
{
w1 w′

1 w2 w′
2 ϕ1 ϕ2 ϕ3

}T

Between the elements, there is continuity of displace-
ment and slope for the flap bending deflection, and
continuity of displacement for the elastic twist angles.
Using appropriate shape functions (Hermite cubic and
Lagrange quadratic polynomials for the bending and
twist degrees of freedom respectively), we can express
the variation of bending w(x) and twist ϕ(x) over one
element as a function of the generalized coordinates as
follows:

w(x) =
2∑

i=1

wiH
0
i (x) + w′

iH
1
i (x)(3)

ϕ(x) =
3∑

j=1

ϕjLj(x)(4)

or in a more compact form:

(5)

{
w(x)
ϕ(x)

}
=

[
H(x)
L(x)

]T
qi



Upon discretization, the steady-state formulation of
the extended Hamilton’s principle (Eq.(1)) becomes
(6)

N∑
i=1

(δT0i − δUi − δVgi + δWai)b + (δT0 − δVg)m = 0

or

(7)
N∑
i=1

δEi + (δT0 − δVg)m = 0

where N is the total number of elements and the sub-
script i indicates that the energy is produced by the ith

element. In terms of the generalized coordinates, the
variation of energy over one element can be written in
the following form:

(8) δEi = δqi
T (Kqi − F)i

The stiffness matrix K and forcing vector F are ob-
tained from both the linear and non-linear terms of
the equation of motion. The non-linear terms are
linearized by Taylor expansion about the equilibrium
position found at the previous iteration (Newton-
Raphson scheme), as follows:

(9) f(qn+1) = f(qn) +
∂f

∂q
|qn (qn+1 − qn)

The aerodynamic loads acting on each element are
derived from a model which relies on quasi-steady
aerodynamic assumptions. The lift and aerodynamic
pitching moment coefficients are obtained from a
lookup table for any given value of angle of attack.
In order to evaluate the angle of attack at any radial
position as a function of the collective pitch angle, the
elastic twist angle and the induced angle, a BEMT
model is used.

Summing over all the finite elements and the tip mass,
we get

(10) δqT (Kq− F) = 0

Note that the energy terms related to the tip mass
are treated as boundary conditions, and enter both in
the stiffness matrix and the force vector. Because the
virtual displacements δq are arbitrary, we finally have

(11) Kq = F

This system of equations is solved for the general co-
ordinates qi’s using Gauss elimination, from which we
can reconstruct the flap bending and pitch angle as
function of span. The flow chart of the algorithm is
summarized in Fig. 5.

Figure 5: Algorithm flow chart

5 RESULTS AND DISCUS-
SION

5.1 Correlation of the model with ex-
periment

In order to validate the analysis presented in this pa-
per, we compared experimental measurements of the
deformations of an extremely flexible rotor experienc-
ing large torsional deformations to the predicted re-
sults.

The parameters of the flexible blade used for
the comparison are given in Tables. 1 and 2. To assess
of the flexibility of this rotor, we can compare the nor-
malized stiffnesses with that of a conventional rigid



Table 1: Flexible blade parameters

Airfoil parameters Tip body

Radius Root cutout, Chord, Camber, Thickness, Linear density, Mass,

R, m x0, m c, m % of chord % of chord m0, kg/m g

0.229 0.059 0.023 7.5 1.39 0.013 2.03

Table 2: Flexible blade normalized stiffnesses

EIη
m0Ω2R4

EIξ
m0Ω2R4

GJ
m0Ω2R4

9.65 · 10−2 2.54 · 101 1.00 · 10−3

rotor blade. For example, the normalized torsional
stiffness of a blade of similar cross section, fabricated
in carbon fabric / epoxy composite material is equal
to 6.64.

Measured and simulated flap bending and tor-
sional deformations experienced by the rotor when
spun at 1200 RPM are shown for various collective
pitch angles in Fig. 6(a) and 6(b). We can observe
that there is very good correlation between the ex-
perimental and analytical results. The slope and am-
plitude of the measured bending deflections are well
matched by the analysis. In addition, predictions of
spanwise blade twist show very good agreement with
experimental data.

As a consequence, the present analytical
model is validated and can now be used to investi-
gate the aspects of refined modeling of unconventional
flexible blades.

5.2 IMPORTANCE OF REFINED
TORSION MODELING

In this section, the results given by the present anal-
ysis focused on rotor blades with very low torsional
natural frequencies are compared to those obtained by
more conventional analyses developed for stiffer rotors.
In particular, the importance of the bifilar effect in
the computation of twist deformations is investigated.
Secondly, an analysis developed for small elastic twist
angles is compared to the present model derived for
arbitrary large angles.

5.2.1 Influence of the bifilar effect

The bifilar effect acting on a twisted beam with ax-
ial loading is responsible for a torsional moment that
tends to restore the beam to its untwisted position. In
the case of a rotating blade, the axial loading is the
centrifugal force. In order to quantify the magnitude

0 0.05 0.1 0.15 0.2 0.25
0

1

2

3

4

5

6

7

8

Spanwise location, m

F
la

p
 b

en
d
in

g
 d

ef
le

ct
io

n
, 
m

m

Experimental measurements

Predicted results

θ0 = 10 deg
θ0 = 14 deg
θ0 = 18 deg
θ0 = 25 deg

(a) Flap bending deflection

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

Spanwise location, m

P
it

ch
 a

n
g
le

, 
d
eg

Experimental measurements

Predicted results

θ0 = 10 deg
θ0 = 14 deg
θ0 = 18 deg
θ0 = 25 deg

(b) Pitch angle

Figure 6: Predicted and measured deformations of an
extremely flexible rotor blade, at 1200 RPM
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Figure 7: Influence of the bifilar effect on the deformations of an extremely flexible rotor blade, at 1200 RPM,
θ0 = 18 deg

of the bifilar moment compared to the other pitching
moments acting on an extremely flexible rotor blade,
each term related to the bifilar effect in the equations
of motion was removed, and the corresponding flap
bending and twist deformations were simulated. Fig-
ures. 7(a) and 7(b) show the contribution of the bifilar
term on the deformations of the flexible blade rotat-
ing at 1200 RPM. The spanwise distribution of twist
shows larger negative (nose-down) pitch angles for the
case where the bifilar moment is ignored. As the bifi-
lar moment is neglected, its effect of acting against the
negative propeller moment and negative aerodynamic
pitching moment disappears, and the resultant twist
along the blade is greater. The effect is also seen on
the flapwise bending curves: when the bifilar moment
is considered, the magnitude of the blade twist is de-
creased, hence the angle of attack at each section is
larger leading to higher lift and greater flapwise bend-
ing deflection.

In order to better understand the origin of the
bifilar effect, the contribution of each bifilar term in
the equation of motion was investigated. Four cases,
in which each bifilar term was separately included to
the equation of motion, were simulated. The terms
included in each case were:

1. kinetic energy bifilar term acting on the tip mass

2. kinetic energy bifilar term acting on the airfoil

3. strain energy bifilar term acting on the airfoil

4. kinetic energy bifilar terms acting on the tip mass
and the airfoil

From Fig. 8(a), corresponding to cases 3 and 4, it can
be seen that the main contribution to the bifilar mo-
ment comes from the kinetic terms. In addition, com-

paring cases 1 and 2 in Fig. 8(b), we see that the bifi-
lar restoring pitching moment acting on the tip mass
is larger than the one acting on the blade airfoil. Fi-
nally, it is shown that in order to obtain an accurate
prediction of the spanwise twist distribution of a flexi-
ble rotor blade, all the bifilar terms must be included.

5.2.2 Influence of the higher order twist terms

In conventional analyses derived for rigid rotor blades,
the elastic twist angles are considered to be of the same
order of magnitude as the non dimensional bending de-
flections. In an ordering scheme based on a parameter
ϵ, which is the order of the non dimensional flap de-
flection, we have

w

R
= O(ϵ)(12)

ϕ = O(ϵ)(13)

In the present analysis, the twist angles were assumed
to be arbitrary large or, in other words, of order 1.
This assumption led to additional terms in the equa-
tions of motion (twice underlined in Appendix. A).
The importance of these terms in the computation
of blade deformations of unconventional flexible rotor
was investigated by the following approach.

The deformations of the flexible blade with
the parameters shown in Table 1 were predicted by
a model derived under the conventional small angle
of twist assumption. As a result, all the underlined
terms in the equation of motion shown in Appendix. A
were omitted, and the trigonometric functions were
linearized for small angles ϕ. It was found that under
these conditions, this model was unable to converge
and find an equilibrium position. Mathematically, this
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Figure 8: Term by term investigation of the influence
of the bifilar effect on the twist deformations of an
extremely flexible rotor blade, at 1200 RPM, θ0 = 18
deg

means that the solution was too singular to be approx-
imated by the solver. Physically, this shows that the
equation of motion with omitted terms was not repre-
sentative of the real behavior of an extremely flexible
rotor. In fact, it was verified that the model derived
for small angles of twist was actually able to converge
for normalized stiffnesses of:

EIη
m0Ω2R4

= 2.70 · 10−1(14)

EIξ
m0Ω2R4

= 7.12 · 101(15)

GJ

m0Ω2R4
= 2.66 · 101(16)

These values correspond to a blade of the same geom-
etry as the blade described in Table. 1, made in Alu-
minum. Consequently, this investigation shows that
the small angle of elastic twist assumption is valid for
the prediction of deformation of rigid rotor, but leads

to a singular problem for the computation of the de-
formations of extremely flexible blades.

6 CONCLUSION

The spanwise flap bending and twist distribution of
an extremely flexible rotor blade were predicted by an
analysis focused towards modeling large torsional de-
formations. Compared to typical analyses derived for
conventional rotors, the present model included ad-
ditional terms related to the presence of large twist
angles. Firstly, the magnitude of the elastic twist was
assumed to be of one order of magnitude greater than
the non dimensional flap bending deflection. Secondly,
the bifilar effect resulting from the foreshortening of
the twisted rotor blade was taken into account.

The non-linear coupled equations of motion
derived in this study were solved using a finite element
approach. Non-linear terms were linearized following
a Newton-Raphson scheme, and incorporated to the
stiffness matrix and force vector. The predictions of
the flap bending and twist deformations of a flexible
rotor blade rotating at 1200 RPM were correlated to
experimental measurements obtained by stereoscopic
DIC. The spanwise variations of the simulated bending
deflections and twist angles showed very good agree-
ment with the experimental data.

Then, an extensive investigation on the impor-
tance of the bifilar effect in the aeroelastic modeling
of blade with low torsional stiffness was conducted. It
was found that omitting the bifilar terms led to a 50%
error in the computation of the blade tip pitch angle.
It was also shown that among the terms arising from
the bifilar effect, kinetic energy terms were predomi-
nant over the strain energy terms.

Finally, in order to verify the large twist angle
assumption made for this analysis, a model derived
for small angle and neglecting all higher order twist
terms was developed. This model could not converge
or find steady-state equilibrium positions for a rotor
blade with normalized torsional stiffness of the order
of 1 ·10−3. This confirmed the necessity of considering
elastic twist angles as arbitrarily large.

Future plans involve the expansion of the
present aeroelastic model to the dynamic analysis of
extremely flexible rotors. The objective will be to an-
alytically identify stability boundaries, and correlate
the results with experimental observations.
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A Steady-state equilibrium equation for an extremely flexible blade
with tip mass

(δT0)b =

∫ R

x0

{
w′
∫ R

x

(
−m0Ω

2χ
)
dχ−m0Ω

2x

(
dη sin θ + dξ cos θ

)}
δw′

+

{
−m0Ω

2xw′
(
dη cos θ − dξ sin θ

)
−m0Ω

2
(
k2
mξ

− k2
mη

)
cos θ sin θ −m0Ω
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mηξ
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δϕ

+

{
c2

4
ϕ′

:::
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:::::
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EIξ sin
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+ EA
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8
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:::::::
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eη sin θ
:::::
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:::::

)}
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EB3
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8
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:::::::::

(
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:::::

− eξ sin θ
:::::

)}
δϕ

+

{
EB1

2
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ϕ′3

:::::::

+ EA
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4
w′′ϕ′
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(
eη sin θ
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+ eξ cos θ
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)

− EJ
c2

4
ϕ′3

:::::::

}
δϕ′

(δVg)b =g

∫ R

x0

m0δw

−
{
m0w

′
(
dη sin θ + dξ cos θ

)}
δw′

+

{
m0

(
1− w′2

2

)(
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δϕ

(δWa)b =

∫ R

x0

{
1
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}
δϕ
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(
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4
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::::::

)
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2

3(L1 + L2)
cos(θ − θind) sin(θ − θind) + ηT

L2 − L1

2
sin(2θ − θind)

}
δϕT

(δVg)m =mT gδwT

+mT gw
′
T

(
ηT sin θ +

L2 − L1

2
sin(θ − θind)

)
δw′

T

−mT g

(
1− w

′2
T

2

)(
ηT cos θ +

L2 − L1

2
cos(θ − θind)

)
δϕT

Note that θ(x) is the sum of the collective pitch and the elastic twist angle:

θ(x) = θ0 + ϕ(x)
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