
157
GLOBAL SOLUTION OF OPTIMIZATION PROBLEMS IN SUPPORT OF CERTIFICATION AND

FORMULATION OF OPERATIONAL PROCEDURES FOR ROTORCRAFT VEHICLES

C.L. Bottasso, F. Luraghi, G. Maisano

Politecnico di Milano, Dipartimento di Ingegneria Aerospaziale,
Via La Masa 34, 20156, Milano, Italy

carlo.bottasso@polimi.it, luraghi@aero.polimi.it, maisano@aero.polimi.it

ABSTRACT

In this paper we present a procedure for the global solution of trajectory optimization and parameter estimation
problems for rotorcraft vehicles using evolutionary algorithms. Our approach makes use of a repair heuristic to
handle problem constraints, that is based on a sequential quadratic programming method. This way, no specialized
evolutionary operators or ad hoc modifications of the objective function need to be considered. The performance
of the proposed procedure is assessed with applications dealing with the flight testing for system identification of
a rotorcraft unmanned aerial vehicle, and with the determination of the Category A take-off decision point for a
medium-size helicopter.

1 INTRODUCTION

The software program STOP (System Identification and
Trajectory Optimization Program) was developed at the
Dipartimento di Ingegneria Aerospaziale of the Politec-
nico di Milano and conceived as a tool to be used in
support of certification and formulation of operational
procedures for rotorcraft vehicles. STOP has the ability
to treat both trajectory optimization problems [13, 15],
also referred to in the following as Maneuver Optimal
Control Problems (MOCPs), and Parameter Estimation
Problems (PEPs) [14] under a common framework. In
fact, it can be shown that both can be formulated as two-
point boundary value constrained optimization problems
defined over a temporal domain of known or unknown
duration; moreover, both can be discretized in time us-
ing the same techniques, thereby obtaining a constrained
Non-Linear Programming (NLP) problem that is for-
mally identical in the two cases [11].

In rotorcraft flight mechanics, problems such as, for
instance, continued and rejected take-off procedures fol-
lowing an engine failure (Category A certification [1]),
optimal auto-rotation, landing procedures after tail-rotor
loss, and the analytical, i.e. non-piloted, simulation of
ADS-33 mission task elements [2], can be profitably
studied with the help of trajectory optimization. In all
these cases, the analyst is interested in computing an ex-
tremal maneuver for a given vehicle model; one looks
for a solution that minimizes a cost function while sat-
isfying given constraints that translate various require-
ments including the boundaries of the performance en-
velope of the vehicle. Clearly, the quality of the re-
sults strongly depends on the fidelity of the model to
the actual vehicle. If flight-test data are available, pa-

rameter estimation techniques can be used to tune the
model parameters, thereby enhancing the ability of the
model to represent the actual vehicle behavior. In this
circumstance, the analyst is interested in finding the val-
ues of the parameters in the given mathematical model
such that the model-computed response best matches (in
a statistical sense) the experimentally observed one.

Some of the features of STOP have already been dis-
cussed in a series of previous publications by the au-
thors [13, 14, 11]. In this work, we describe the inter-
facing of STOP with Evolutionary Algorithms (EAs) [5]
for the global solution of MOCPs and PEPs.

It was found in [20, 16] that trajectory optimization
problems might lead to NLP problems that are non-
convex and hence with multiple solutions. In this case,
gradient-based methods are likely to converge to lo-
cal optimal solutions. Designed to solve non-convex
problems, EAs borrow their working principle from the
mechanisms that govern the process of natural evolution
of biological organisms. By the application of genetic
operators (selection, crossover, mutation), a population
of possible solutions (individuals) is let evolve through
successive generations so as to promote the individuals
that better meet the design requirements. Since EAs
are unconstrained optimization methods, their success-
ful application to the solution of constrained problems
requires the use of suitable constraint-handling tech-
niques; a comprehensive survey of the different tech-
niques that have been used to handle constraints in EAs
is given in [17].

Published works that have investigated the use of EAs
for the solution of optimal control problems, rely on the
use of either penalty functions [25] or specialized ge-
netic operators [24, 22]. In the former case, one trans-
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forms a constrained problem into an unconstrained one
by penalizing with suitably high weights constraint vi-
olations in the objective function. Despite its simplic-
ity, the major drawback of such an approach is that it
requires fine tuning of the penalty parameters, which
might not be a trivial task when dealing with highly-
constrained search spaces. The latter approach, on the
other hand, is more involved: by taking advantage of
the knowledge of the constraint conditions imposed on
the problem at hand, ad hoc modifications of the genetic
operators are introduced in order to preserve the feasi-
bility of the solutions at all generations. However, this
leads to specialized computer codes, i.e. codes capable
of solving just one specific problem type. Clearly, this is
not desirable when one is interested in developing a tool
that can be applied to an ample variety of problems.

The approach proposed in this work makes use of a
split of the design variables: a first set (typically repre-
sented by model parameter, control policies and/or ini-
tial conditions) is handled by the global EA optimizer,
while a second set (typically involving state variables
but also possibly control inputs, see later on for de-
tails) is handled by a local optimizer using a Sequential
Quadratic Programming (SQP) method. When working
at the level of vehicle states, the SQP optimizer effec-
tively implements a repair heuristic on these quantities,
making them compatible with the problem constraints.
Since this can be a time consuming process, the SQP
method is typically run only for a limited number of it-
erations. When achieving a feasible solution within the
specified maximum number of iterations proves to be
difficult, the repair heuristic is given a limited authority
on the control time histories; however, the repaired indi-
vidual is never returned to the population (never replac-
ing approach [17]). Using a repair technique reduces the
search space of EA to feasible solutions only; hence, no
special operators or modifications of the objective func-
tion need to be considered. Hence, the resulting code
can be used to solve the different classes of problems
that find applicability in the general area of rotorcraft
flight mechanics.

The paper is organized as follows. Section 2 briefly
describes the formulation and solution of optimization
problems in rotorcraft flight mechanics, with particular
reference to the STOP code. After having formulated
MOCPs and PEPs as optimization problems using a sin-
gle common notation in Sections 2.1 and 2.2, we briefly
describe the architecture of STOP in Section 2.3. Next,
in Section 3 we illustrate the proposed methodology for
the use of EAs in the solution of maneuver optimal con-
trol problems. Finally, in Section 4 we present the appli-
cation of the global optimization version of STOP to the
solution of problems arising in the context of rotorcraft
flight mechanics.

2 OPTIMIZATION PROBLEMS IN ROTORCRAFT
FLIGHT MECHANICS

2.1 The Maneuver Optimal Control Problem

Consider a generic flight mechanics model M described
in terms of the following set of non-linear differential
equations

f(ẋ,x,u,p,w, t) = 0, (1a)

y = h(x), (1b)

where x is the state vector, which groups together the
structural dynamics (including states that describe rigid
and possibly flexible rotor(s), fuselage, engine, etc.) and
aerodynamics states (e.g. dynamic inflow variables), u
is the control input vector, p is a set of model parame-
ters, and w(t) models other exogenous inputs and dis-
turbances acting on the system (e.g., gusts and air tur-
bulence). Equations (1b) specify a set of outputs y,
which typically represent some vehicle states describ-
ing its gross motion, or other quantities useful for the
analysis of the vehicle dynamics. Finally, the nota-
tion ˙(·) = d(·)/dt indicates a derivative with respect to
time t.

A general MOCP [9, 10] for model M can be formu-
lated as:

min
x,y,u,T

JMOCP(y,u, T, Ti), (2a)

s.t.: f(ẋ,x,u,p∗,w∗, t) = 0, (2b)

y = h(x), (2c)

g(x,y,u, t, T, Ti) ≤ 0. (2d)

The problem is defined over the interval Ω = [T0, T ],
t ∈ Ω, where the final time T is typically unknown
and must be determined as part of the solution. Specific
events might be associated with unknown time instants
Ti, T0 < Ti < T (for example, the jettisoning of part of
the cargo or other instantaneous conditions).

In Equation (2a), JMOCP indicates the to-be-
minimized cost, which, depending on the problem at
hand, might account for maneuver duration, control ac-
tivity, fuel consumption, etc., or some other given func-
tion of interest that typically expresses an index of per-
formance of the vehicle.

The maneuver definition is completed by providing a
set of problem-dependent equality and inequality con-
straints (Equations (2d)) which translate the operating
envelope of the vehicle, the performance and procedu-
ral requirements as dictated by norms and regulations
(for example, certification rules), and all other necessary
maneuver-defining constraints. All such constraints are
typically expressed in terms of the outputs y. Finally,
equations (2d) also include initial and final conditions
on the vehicle states x.

Notice that the problem is formulated for fixed values
of the model parameters p = p∗, where the symbol (·)∗
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indicates a know assigned value. Similarly, if exogenous
inputs are present, these are also known, so that w(t) =
w∗(t).

2.2 The Parameter Estimation Problem

A general PEP for the parametric model M(p) can be
formulated as

min
x,y,p

JPEP(z − y), (3a)

s.t.: f(ẋ,x,u∗,p,w, t) = 0, (3b)

y = h(x), (3c)

g(p) ≤ 0, (3d)

where z are measurements of the outputs gathered at N
discrete sampling time instants tk during the experimen-
tal test,

z(tk) = y(tk) + v(tk). (4)

The available measures are affected by noise v with co-
variance Rk = E[vkv

T
k ], E[·] being the expected value

operator. The presence of measurement noise, together
with the possible presence of a process noise term w
for modeling disturbances acting on the system (e.g., air
turbulence), makes the problem of a stochastic nature.
Hence, the to-be-minimized cost function JPEP is typi-
cally a statistical measure of the match between quanti-
ties z and model outputs y.

A maximum likelihood estimator is obtained by
choosing

JPEP = det(R), (5)

where R = 1/N
∑N

k=1 ν(tk)ν(tk)
T , with ν(tk) =

z(tk) − y(tk). Alternatively, a weighted least squares
estimator is obtained if

JPEP =
1

2

N
∑

k=1

ν(tk)
TWν(tk), (6)

where W is a weight matrix. This method can be
seen as a particular case of the Maximum Likelihood
method for known measurement noise covariance ma-
trix, W = R−1 [18]. In the Filter Error Method [18],
the system states obtained by integrating model (3b) are
corrected by a Kalman filter, whose role is to stabilize
the integration around the measurements and to account
for the presence of process noise; details are omitted for
brevity, but the PEP can still be expressed in a form re-
sembling (3).

Inequality (3d) enforces possible constraints on the
model parameters. Such constraints ensure that the es-
timated parameters lie within acceptable bounds and do
not take at convergence values which are non-physical.

Notice that in this case the model inputs are known
and fixed to the values u(tk) = u∗(tk) measured during
the experimental test (values in between the sampling

instants may be interpolated, if necessary). Similarly,
the temporal domain Ω = [T0, T

∗] is also known.
We remark that rotorcraft vehicles are typically unsta-

ble, at least in certain flight conditions, and hence they
are usually artificially stabilized by means of a control
system. This fact has important consequences on the pa-
rameter estimation process and must be explicitly taken
into account when formulating estimation methods for
such vehicles; further details are given in [14].

2.3 STOP Architecture

The architecture of the STOP program is shown in Fig-
ure 1.

Figure 1: Architecture of the STOP code.

A graphical user interface supports the definition of
MOCPs and PEPs. The common thread between the so-
lution of the two classes of problems is the discretiza-
tion in the temporal domain. STOP implements the so-
called direct approach [7], which leads to a non-linear
constrained optimization problem that writes

min
π

JNLP(π), (7a)

s.t. a(π) = 0, (7b)

b(π) ≤ 0, (7c)

where π is a set of algebraic unknowns (design vari-
ables), and JNLP is a scalar objective function which
represents an approximation of the cost of Equation (2a)
or (3a). The equality constraints (7b) are generated by
the discretization of the equations of motion (2b) or (3b),
whereas the inequality constraints (7c) by the discretiza-
tion of Equations (2d) or (3d).

Three discretization techniques are available in
STOP, namely the direct transcription and multiple
shooting methods [13] and the recently developed hy-
brid single-multiple shooting [15]. In [11], the authors
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propose a classification of optimal areas of applicability
of these methods and, for each one of them, derive the
specific form of the vector of design variables.

Time marching can be based either on algorithms
available in external vehicle models, or with built-in ex-
plicit or implicit time solvers.

The vehicle models include an optional layer that
models the pilot, which is useful in certain MOCP appli-
cations for computing maneuvers considering pilot-in-
the-loop effects [12]. The vehicle itself can be simulated
using an internal model, or by external codes through
a generic interface which supports all necessary opera-
tions.

3 GLOBAL SOLUTION OF MOCPs and PEPs

In this section we develop a formulation that makes use
of EAs for the solution of problem (7) in the context of
MOCPs and PEPs.

When using EAs, the computational cost is propor-
tional to the population size. In general, if the popula-
tion size is too small, then EA might not be able to thor-
oughly explore the solution space; on the other hand,
increasing the population size generally enables EA to
obtain better results. However, it is clear that, the larger
the population size, the longer it takes EA to compute
each generation. As a rule-of-thumb, population size
is usually set to 5–10 times the number of design vari-
ables [5].

In light of these considerations, for the solution of
optimal control problems using EA in rotorcraft flight
mechanics, we favor the use of shooting methods over
direct transcription ones, since the latter tend to gener-
ate potentially large NLP problems [11]. However, even
in this case, we are faced with a problem of possibly
overwhelming computational cost. In fact, when using
shooting methods, the problem unknowns are defined as
the discrete values of the states at the interfaces between
shooting segments, the discrete values of the controls
within each segment, and possibly the final time. Thus,
one would need to consider extremely large populations
in order to cover all possible feasible values of the de-
sign variables.

Another challenging task in the framework of EAs is
the satisfaction of the gluing constraints on the states,
which ensure the continuity of their time history across
the boundaries of the shooting segments (see Figure 2),
and of all other problem constraints, since EAs can
tackle only unconstrained optimization problems.

To address these issues, we propose a procedure based
on a split of the design variables: EA is used to com-
pute an optimal solution in terms of the sole controls
and/or initial conditions, whereas the feasibility of the
computed solution is ensured through the use of a Re-
pair Heuristic (RH) [17].

Figure 2: Basic principle of the multiple shooting
method. The time domain Ω is partitioned as T0 ≡ t0 <
t1 < . . . < tm < . . . < tM ≡ T with Ωm = [tm, tm+1],
m = (0,M − 1), where each Ωm is a shooting segment.
Next, the vehicle equations of motion are marched for-
ward in time within each shooting segment Ωm, starting
from the initial conditions provided by the value of the
states xm at the left boundary of the segment. Segments
are then glued together by imposing the equality con-
straints xm − x̄m = 0,m = (1,M).

The solution of problem (7) proceeds as follows.
First, the temporal domain Ω = [T0, T ] is partitioned
intoN intervals T i = [ti, ti+1] of size hi, i = (0, N−1).
A computational grid T EA

h is associated with this parti-
tion. Since T is in general unknown, it is convenient
to consider a fixed time domain by introducing the map
s : Ω → [0, 1], s = (t − T0)/(T − T0), for all t ∈ Ω.
This yields the following expression for the step length
hi = (T − T0)(si+1 − si), i = (0, N − 1). Typically
we consider uniform grids and hence we simply have
hi = h = (T − T0)/N .

Next, for every individual in the population, depend-
ing on the problem at hand, the set of design variables
is chosen to include one or more of the following quan-
tities: all values of the controls at the nodes of T EA

h ,
the problem initial conditions (if free), possibly the final
time (if unknown). In order to limit the population size
we consider coarse temporal grids, i.e. with a reduced
number of nodes.

Remark 1 Evolution Strategies (ESs) [8] use a rep-
resentation (encoding) of the design variables as real
numbers. We have observed that in the case of MOCPs,
where very small variations in the controls or in the
maneuver duration typically result in small (negligi-
ble) variations in the objective function, such encod-
ing might lead to the premature stop of the algorithm
due to an excessively low diversity of the individu-
als in the population. We have found that this prob-
lem is somehow alleviated by decreasing the resolu-
tion with which EA explores the solution space, which
can be achieved by forcing the problem unknowns to
take only values specified at a small number of equidis-
tant points between their lower and upper bounds. For
the generic variable πi lying in the interval Iπi =
[πmin
i , πmax

i ], the set Πi of admissible values is con-
structed as Πi =

{

πmin
i + j∆πi, j = 0, . . . , L

}

, with
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L = (πmax
i − πmin

i )/∆πi, where ∆πi is the resolution
of the discretization of Iπi . This turns the original prob-
lem into a discrete combinatorial optimization problem.

Controls computed by EA are then projected onto a
finer grid T RH

h , associated with a partition of Ω into M
shooting segments and a suitable discretization of the
controls within each segment. This projection can be
expressed with the notation

u |T RH

h
= P(u |T EA

h
), (8)

where P (·) is an appropriate projection operator. The
time history of vehicle states that are compatible with
the given control policy and maneuver-defining con-
straints is found from the solution of the following NLP
problem:

min
θ

K(θ,u |T RH

h
), (9a)

s.t. g(θ,u |T RH

h
) = 0, (9b)

θ ∈ [θmin,θmax], (9c)

where the unknowns θ are the values of the states at the
interfaces between shooting segments. Objective func-
tion K represents a measure (in a given norm) of the vi-
olation of constraints (7b) and (7c) expressed in terms of
θ and u |T RH

h
, whereas Equation (9b) represents the glu-

ing constraints, which are evaluated by marching the ve-
hicle equations of motion forward in time under the ac-
tion of the controls u |T RH

h
. Problem (9) is solved using a

SQP method with Jacobians computed through centered
finite differencing by perturbation of the unknowns [6].

Finally, cost JNLP of Equation (7a) is evaluated us-
ing the computed time histories of the states and corre-
sponding outputs within each shooting segment.

Remark 2 Solving problem (9) might be a time con-
suming process and hence the SQP method is typically
run only for a limited number of iterations. When
achieving a feasible solution within the specified max-
imum number of iterations is difficult, RH is allowed a
limited authority on the inputs by modifying the given
control time history as

u |T RH

h
+∆u |T RH

h
, (10)

where ∆u |T RH

h
are bounded corrective terms, i.e.

∆u |T RH

h
∈ [∆umin,∆umax], that are computed as part

of the solution to problem (9). However, the repaired
individuals are never returned to the population (never
replacing approach [17]).

The solution of PEPs can be developed along similar
lines, although things are simpler in this case given the
fact that control inputs are known. Therefore, the global
optimizer operates at the level of the model parameters,
while the local optimizer is used for the satisfaction of
the gluing constraints at the interface between shooting
arcs.

4 NUMERICAL APPLICATIONS

In this section we present the application of STOP,
equipped with the proposed global optimization proce-
dure, to the solution of problems arising in the context
of rotorcraft flight mechanics applications.

Vehicle model equations are derived based on three-
dimensional rigid body dynamics. Rotor forces and mo-
ments are computed analytically by combining actuator
disk and blade element theory, considering a uniform
inflow [23]. The rotor attitude is evaluated by means
of quasi-steady flapping dynamics with a linear aerody-
namic damping correction. Look-up tables are used for
the quasi-steady aerodynamic coefficients of the vehicle
lifting surfaces, and simple corrections for compressibil-
ity effects and for the downwash angle at the tail due to
the main rotor are included in the model. Further details
on the model structure are given in [10, 21].

4.1 Design of Optimal Inputs for Parameter Estima-
tion of a Small Autonomous Helicopter

We consider the design of globally optimal input signals
for parameter estimation flight trials. This example is
chosen here because it combines the characteristics of a
MOCP with those of a PEP. In fact, in this case, the idea
is to formulate a MOCP that maximizes the identifiabil-
ity of a given set of parameters in the vehicle model.

Multistep inputs are commonly used input signals
during flight tests for parameter estimation. They consist
of a sequence of alternating positive and negative am-
plitude pulses with different duration. In this case, the
design problem consists in finding the optimal amplitude
and width of the pulses so that the information content in
the data from the experiment, as embodied in the Fisher
information matrix [19], is maximized. Therefore, for
this problem the EA optimization variables are repre-
sented by the control inputs, while the SQP optimizer
is used for compatibilizing the vehicle states. Solutions
are obtained with the self-adaptive EA implemented in
the commercial software OPTIMUS [3].

We consider a small-size RUAV; the test condition is a
forward level flight at a very low advance ratio, µ = 0.04
(V = 5m/s). Only the longitudinal dynamics of the ve-
hicle is considered. We start from the controls set to the
trim value and perturb the main rotor longitudinal cyclic,
while holding the others fixed. Control perturbations
are restricted to lie in the interval IA = [−1, 1] deg.
For such an experiment, the model parameters of princi-
pal interest are the main rotor aerodynamic parameters,
namely the rotor blade lift curve slope CLα and mean
drag coefficient CD.

The interval IA is discretized with a resolution of
0.25 deg and the population size is set to 100. The com-
puted optimal input is shown in Figure 3. Table 1 gives
the results of the maximum likelihood estimation of the
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main rotor aerodynamic parameters for the optimal mul-
tistep input maneuver. Results are compared with those
for the DLR 1-1-2-3 input1, a widely known input form
that has been shown to be very effective for flight vehi-
cle parameter estimation [18]. The accuracy of the es-
timate of the blade lift curve slope is increased by 18%
with respect to the 1-1-2-3 value. Figure 4 compares the
Power Spectral Density (PSD) of the closed-loop swash-
plate deflection for the optimal multistep and 1-1-2-3 in-
puts. Notice how the optimal input better excites the low
frequencies, leading to experimental data with a higher
information content that yield more accurate parameter
estimates.
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Figure 3: Optimal longitudinal cyclic input.
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Figure 4: Power spectral density of closed-loop swash-
plate deflection. Solid line: optimal input. Dash-dotted
line: 1-1-2-3 input.

1We consider a 1-1-2-3 input sequence with a time step length
of 0.6 s and an amplitude of 1 deg. It was found in [21] that such
an input allows for the adequate excitation of the vehicle natural fre-
quencies.

4.2 Category A Continued Take-Off Maneuver for a
Medium-Size Helicopter

In this section we consider the take-off maneuver for a
ten ton twin-engine four-bladed helicopter model under
Category A certification requirements [1]. In order to
meet the certification requirements, the helicopter must
be able to safely take-off after an engine failure occur-
ring after the decision point has been reached. Such an
emergency maneuver was previously studied in [9, 10].

The goal here is to investigate which is the best ini-
tial condition in terms of climb velocity W , horizontal
velocity U and heading angle ψ that produces the min-
imum altitude take-off decision point. The presence of
heading implies a non-planar solution and it is also as-
sociated with the pilot visibility. In this case, the EA
optimization variables are represented by the initial con-
ditions, and the SQP optimizer deals with control in-
puts, vehicle states and maneuver duration. Solutions
are computed with the self-adaptive EA implemented in
the commercial software NEXUS [4].

We performed two different global optimization runs.
In the first case, the search region for the three EA vari-
ables is within the following ranges:

U ∈ [−2, 0] KTS, (11a)

W ∈ [−5, 0] KTS, (11b)

ψ ∈ [−45, 0] deg, (11c)

with a resolution of 1 KTS for the velocities and 5 deg
for the heading angle.

The optimization cost function accounts for the con-
trol input rates and the initial vertical position H (take-
off decision point altitude), i.e. it reads

JMOCP = −H +
1

T

∫

T
u̇ ·Wu̇ dt. (12)

The principal optimization constraints are: the minimum
rotor speed should not fall below 90% of the nominal
value, ground clearance should be at least 15 ft, mini-
mum pitch angle should not exceed -10 deg. The exit
conditions are: a climb velocity of 100 ft/min, rotor
speed at 100% of the nominal value and null angular ve-
locities. The starting guess is provided by a previously
calculated STOP solution with a heading of -45 deg and
null vertical and horizontal velocity components.

Results in terms of minimum altitude H vs. heading
ψ, vertical velocity W and backup speed U are plotted
in Figure 5, from top to bottom, respectively. Each point
in the graphs represents an individual in the population
generated by the EA solver. The optimal solution uses
the maximum available climb velocity, a null horizontal
speed (i.e., vertical climbing) and a heading of 35 deg.

This problem nicely illustrates the danger of remain-
ing trapped in a local minimum when using local op-
timizers. In fact, the same problem was solved again
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1-1-2-3 Optimal Multistep
Parameter Est. Value Std. Dev. Est. Value Std. Dev.
CLαMR

[rad−1] 5.62012 0.00576 5.61134 0.00472
CDMR

0.00974 0.00034 0.00973 0.00033

Table 1: Estimated value and standard deviation of main rotor aerodynamic parameters for 1-1-2-3 and optimal
longitudinal cyclic inputs.
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Figure 5: Category A continued take-off. Minimum al-
titude H vs. heading ψ (top), vertical velocity W (mid-
dle) and horizontal speed U (bottom).

using SQP, for U = 0 KTS, W = −5 KTS (the global
optimum values) and with an initial heading constrained
between 0 and -45 deg. The converged SQP solution has
an initial heading of -45 deg, which however exhibits a
higher associated take-off decision point. This means
that the EA solution is a lower minimum than the one
found by SQP.

To better illustrate the possible presence of local min-
ima in rotorcraft flight mechanics optimal control prob-
lems, the Category A optimization was repeated again.
The range of yaw angles was set to be between -45 deg
and 45 deg, with a resolution of 1 deg, while the veloc-
ity components were held fixed at their global optimum
values (U = 0 KTS, W = −5 KTS). Furthermore, the
heading angle was added to the cost function so as to
try to reduce it, since pilots typically prefer to work with
small yaw angles (which improve visibility), resulting in
the new cost

JMOCP = −H +
1

T

∫

T
(wψψ

2 + u̇ ·Wu̇) dt. (13)

The results, illustrated in Figure 6, show that there is
a global optimum at -43 deg and local optima at 23 and
31 deg; notice that such minima are present both in the
cost function (top plot) and in the take-off decision point
altitude (bottom plot). Some scatter of the points on the
plots are due to generous tolerances in the solution of the
SQP problems. We remark that any point in the plots is
an optimal solution for the local optimizer, which again
highlights the potential danger of being trapped in a lo-
cal minimum when using non-global optimization algo-
rithms.

5 CONCLUSIONS

In this paper we have presented a numerical procedure
for the global solution using evolution algorithms of tra-
jectory optimization problems in rotorcraft flight me-
chanics. Based on our experience, local minima are
usually not a major issue for many flight mechanics op-
timization problems, in the sense that one is typically
able to compute solutions of engineering interest by sim-
ply using gradient-based methods. However, as the ap-
plicability of such techniques to a variety of rotorcraft
flight mechanics problems is progressively expanded, it
becomes important to guarantee that one is not missing
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Figure 6: Category A continued take-off. Cost func-
tion (top) and take-off decition point altitude (bottom)
vs. initial heading angle ψ.

relevant and better solutions. Furthermore, a well per-
forming global optimizer reduces the need of generating
good quality initial guesses, which is sometimes hard
and is often a problem dependent issue.

The proposed approach makes use of a global EA
coupled to a repair heuristic which ensures the feasibil-
ity of the computed solution. Using a repair heuristic
reduces the EA search space to feasible solutions only;
hence, no special evolutionary operators or modifica-
tions of the objective function need to be considered.
This way, the resulting code can be used to solve differ-
ent classes of optimization problems, including optimal
control and parameter estimation ones.

Two application problems have been used for demon-
strating the proposed methodology. In the first, we have
designed a control input time sequence for identification
trials of a small unmanned helicopter, that improves the
commonly adopted 1-1-2-3 signal. In the second, we
have shown that Category A take offs can present multi-
ple local minima when the initial heading is considered.

The applications proposed in this work constitute pre-
liminary results, that however allow one to draw some
conclusions. In particular, they suggest that the cou-

pling of a global optimizer like EA with a local opti-
mizer based on SQP allows one to effectively explore the
space of solutions. Typically, for this to work one has to
avoid conflicts between the two optimizers, which there-
fore work on different sets of variables: a small set that
includes control inputs, model parameters, initial condi-
tions, etc., for the global optimizer, and the remaining
set for the local optimizer, which is in charge of satisfy-
ing all nonlinear constraints.

ACKNOWLEDGMENTS

The second author wishes to thank Prof. R. Celi for the
stimulating discussions on the use of evolutionary algo-
rithms for the solution of optimization problems, during
his stay at the Department of Aerospace Engineering of
the University of Maryland, College Park, MD, USA.

REFERENCES

[1] Advisory Circular 29-2C, Certification of Trans-
port Category Rotorcraft, Federal Aviation Ad-
ministration, Department of Transportation, USA,
1999.

[2] Handling Qualities Requirements for Military
Rotorcraft, Aeronautical Design Standard, U.S.
Army Aviation and Missile Command, Aviation
Engineering Directorate, Rept. ADS-33E-PRF,
Redstone Arsenal, AL, USA, 2000.

[3] OPTIMUS, Optimization Environment, Ver. 5.3.
Noesis Solutions, Belgium, 2007. http://www.
noesissolutions.com.

[4] NEXUS, iChrome Ltd. http://ichrome.eu/
nexus/overview.
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