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Abstract 

The purpose of the analysis is to determine if inflow turbulence 
distortion may be a cause of eXperimentally observed changes in sound 
pressure levels when the rotor mean loading is varied. The effect of 
helicopter rotor mean aerodynamics on inflow turbulence is studied 
within the framework· of the turbulence rapid distortion theory as 
developed by Pearson [1] and Deissler (2]. The distorted inflow 
turbulence is related to the resultant noise by conventional broad­
band noise theory. A comparison of the diptortion model with experi­
mental data shows that the theoretical model is unable to totally 
explain observed increases in model rotor sound pressures with 
increased rotor mean thrust. Comparison of full scale rotor data 
with the theoretical model shows that a shear type distortion may 
explain decreasing sound pressure levels with increasing thrust. 
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Notation 

Description 

airfoil chord 

rotor mean loading, Cr is the thrust 
coefficient and a is the rotor solidity 

turbulence energy spectrum function 

turbulence wave number, i = l, 2, 3 

wave number vector 

magnitude of gust lift transfer function 

turbulence integral length scale in the 
longitudinal direction 

turbulence correlation tensor 

sound pressure spectrum for distorted 
inflow turbulence 

sound pressure spectrum for isotropic 
inflow turbulence 

duration of turbulence distortion 

turbulence intensity or root mean squared 
turbulence velocity 

longitudinal component of mean flow 
velocity 

Cartesian coordinates 

airfoil attached Cartesian coordinates 

(d)/ (o) s s 
pp pp 

mean shear tensor 

turbulence energy spectral density tensor 

turbulence upwash component of the energy 
spectral density tensor 
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Introduction 

The present work deals with the non-impulsive component of 
helicopter rotor noise known as low frequency broadband noise. A 
mechanism responsible for the generation of this type of noise is 
unsteady rotor blade forces induced by a turbulent velocity field. 
Previous theoretical work related the turbulent flow field to the 
radiated acoustics using unsteady aerodynamics and dipole source 
representation, e.g., Homicz and George [3], George and Kim [4], 
and Amiet [5]. In all these methods, the incident blade velocity 
fluctuation is expressed in terms of a component of ihflow turbulence 
energy spectral density tensor corresponding to transverse velocity 
fluctuations, i.e., ~vv· The majority of the analyses to date have 
utilized the isotropic spectrum formulae in their noise prediction 
schemes because of the unknown spectral nature of the turbulent flow 
field which the rotor blade encounters. The above cited analyses 
have been fairly successful, i.e., George and Chou [6]. However, 
they do not allow for rotor mean aerodynamic effects on the inflow 
turbulence. 

To relate the rotor mean aerodynamics to the modification of 
inflow turbulence, the concept and theory of turbulence distortion 
are necessary. The properties of an initially turbulent flow field 
(e.g., isotropic turbulence) can be altered by imposing mean flow 
variations and blockage on the flow. The distortion occurs through 
the stretching and rotating of vortex elements. 

The particular problem of interest 'is the effect of rotor mean 
thrust on the inflow turbulence and the broadband noise. Experiments 
have shown (Refs. 7,8,9) that rotor mean thrust variations signifi­
cantly affect the observed sound pressure levels. 

There is, of course, the Gutin type contribution to the 
radiated noise by virtue of the mean loading changes. This contribu­
tion has been shown to vary as the square of the rotor steady loading 
(e.g., Ref. 10). In addition, the unsteady gust response of the blades 
is altered by t~e mean angle of attack (a) changes, but this is a 
second order (a ) effect on the lift. There are other explanations 
describing how the rotor mean loading effects the rotor acoustics 
(Ref. 8). However, the viewpoint taken here is that the inflow 
turbulence is altered by the rotor mean loading, leading to changes 
in the noise levels with changes in mean loading. 

For acoustic calculations, the effect of the rotor flow field 
on the inflow turbulence has been largely ignored. Paterson and 
Amiet [11] did try to account for turbulence length scale modification 
by a rotor in hover. Their model gives the same turbulence upwash 
velocity intensity in both the isotropic and distorted cases, but the 
length scale of the distorted turbulence is increased by streamtube 
contraction. 
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Classical turbulence distortion theory and broadband noise 
theory were combined in Ref. 12 in an attempt to explain rotor thrust 
related changes in broadband noise levels. The calculation of the 
amount of distortion was entirely empirical. Comparison of the 
theoretical results with model rotor experimental data indicated that 
inflow turbulence distortion couldn't totally explain the broadband 
noise level variation with rotor mean thrust. 

In this paper, inflow turbulence distortion is again considered 
in an attempt to explain rotor mean thrust related changes in broadband 
noise. The amount of distortion is estimated by an order of magnitude 
analysis. The theoretical results will be compared to some model 
experimental data, Refs. 8 and 9, and some full scale data, Ref. 7. 

Inflow Turbulence Distortion Model 

In the construction of a single model of turbulence distortion 
due to the mean aerodynamics of a helicopter rotor, several assumptions 
are made. They are: changes in rotor mean thrust is accomplished by 
blade pitch (angle of attack) changes and the rotor centerline is 
parallel to the x

3 
axis; the dominant turbulence distortion is due to 

a homogeneous mean shear induced by blade incidence; and, the turbulence 
distortion is rapid enough so that turbulence inertia and viscous forces 
can be neglected. 

The first assumption is made so that the blade upwash turbulence 
spectrum ~vv is identically ~22 , where ~22 is the vertical velocity 
turbulence energy spectral density measure'd or calculated in a x1 , x?, x3 
Cartesian frame. In the general case, all nine components of the -
turbulence energy tensor, ~ij' are required to calculate, by tensor 
transformation rules, the blade upwash spectrum. 

The homogeneous mean motion induced by the blade incidence is 
assumed to be of the form, 

(1) 

where y
12 

is a constant which indicates the amount of shear. The 
qualification that the turbulence distortion be homogeneous facilitates 
the construction of a turbulence distortion theory (see Refs. 1 and 2) 
and is a necessary assumption if the resultant upwash spectrum is to be 
used in conventional noise prediction schemes. It can be shown that 
the turbulence distortion caused by a bluff body is inhomogeneous 
(Ref. 13) so the above assumption is artificial. 

The remaining assumptions are related to turbulence distortion 
theory itself. For the case of weak, homogeneous turbulence, subjected 
to a uniform mean velocity gradient in the x1 - x? plane, the upwash 
energy spectral dynamics are goverened by the linear partial differen­
tial equation, 

1 
3~22 a 4k 

~22 
2 

p22 (2) ---at - 3k2 
= 

'( 12kl 1 
k-
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where, 

k
1

, k
2

, k
3 

are wave numbers. For the derivation of this equation see 
Refs. l and 2. 

Equation (2) is valid provided the turbulence is weak, 

;-:z ;u < 1 
u' 

(3) 

and the distortion is rapid, 

L (4) 
rz u' 

~ 

where, v 12 is the intensity of the longitudinal component of the 
turbulenc~, U is the mean velocity of the flow, L is the turbulence 
integral length scale, and 6t is the duration of the distortion process. 
Equation (3) states that the turbulence must be weak so that the distor­
tion is a result of mean flow changes and not from the turbulence itself. 
Equation (4) states a condition for which the neglect of viscous decay 
effects on the turbulence is valid. The turbulence is distorted by the 
stretching (rotating) of vortex filaments and not by the nonlinear 
inertial or internal Viscous forces of the turbulence. 

Because of the nature of the governing partial differential 
equation and the solution technique (characteristics), imposing blade 
surface velocity boundary conditions don't give a well posed problem. 
The only auxiliary information needed to solve Eq. (2) is the initial 
condition for ¢z?· It is assumed at a time t the turbulence is 
isotropic, so (Ref. 14) 

0 

(5) 

where E(k) is the turbulence energy spectrum function. 

The solution to Eq. (2) is, 

E(k') (6) 

where the superscript (d) indicates the distorted turbulence spectrum, and 

k'z = k~ + Ck2 + y12Mk1 / + k;. 
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A simple order of magnitude analysis shows that, 

:'lt - c/U 

so, 

where a indicates the_amount of blade incidence, T is the blade 
thickness ratio, and U is the convection velocity. 

Calculation of Broadband ~oise Due to Distorted 
Inflow Turbulence 

To determine the effect of turbulence distortion on the low 
frequency broadband noise due to turbulence, the following parameter 
is computed, 

s<ct) 

B (k ) = __.l2L = 
x S (o) 

pp 

£Z dkydkzjK(kx,kz) [ 2~~) 
ff dk dk fK(k ,k )( Z~(o) 
-co yz xz VV 

(8) 

where jK[
2 

is the magnitude of an unsteady lift transfer function. The 
notation in Eq. (8) refers to a blade local (x,y,z) coordinate system. 
The superscript (o) refers to the undistorted case (isotropic inflow 
turbulence). 

The double integral of the product of the turbulence spectrum 
and unsteady lift transfer function is directly proportional to the 
radiated sound pressure power spectral density, S (e.g., see Ref. 3). 

pp 

To perform calculations, it is assumed that, 

(9) 

Constants of proportionality have been omitted. Equation (9) is part 
of o!ugridge' s [ 15] strip theory correction factor for a three-dimensional 
gust convected past a two-dimensional airfoil. For the initial 
turbulence an exponential correlation function is assumed so (Ref. 14), 

(10) 
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and, 

(ll) 

From Eqs. (6) and (10), 

I 

<!>(d) k'~ 
(k2 k2)(k'2 -2 -3 -

k4 
+ + L ) 

vv X X 
(12) 

? ? k2 ? 
r..Jhere' k- = ,- + + k:, ,, 

:< y ~ 

,2 ') 2 ) 

k k- + (k + k "(1 o-'t) + k-
X y X - z 

For calculation pueposes, the infinite integrals in Eq. (8) 
where transformed to a finite domain by trignometric substitutions, 
and then numerically evaluated. 

Comparison of Results with Experiment 

To compare this distortion model with experiment, model 
helicopter data (Refs. 8,9) and some ful! scale data (Ref. 7) are used. 
Pertinent data is listed in Table 1. For the model data (Ref. 9) the 
turbulence was initially nonisotropic and was generated by an airfoil 
placed upstream of the rotor. The model data (Ref. 8) is for wind 
tunnel ambient inflow turbulence conditions. The full scale data is 
for atmospheric turbulence conditions. For all the experimental cases 
the criteria expressed by Eqs. (J) and (4) are satisfied. 

Figures 1 and 2 show schematically how the observed sound 
pressure spectral density changes for different levels of rotor loading 
for a model rotor. Note that the peak sound pressure level occurs in 
the low frequency range and that for the increased loading cases, the 
spectra amplitudes are correspondingly increased except at the highest 
frequencies. 

For the experimental cases conducted in References 8 and 9 
the low frequency broadband noise peak SPL occurs at approximately 
200 Hz (k - 7). 

X 

Since the amount of distortion hasn 1 t been rigorously li.nked 
to the rotor blade incidence i.e., rotor mean aerodynamics. it is only 
possible to estimate the size of the terms indicated in Eq. 7. Typical 
numbers for y12~t are assumed to be l-2 based on the fact that the rotor 
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blade incidence changes were approximately 8 degrees from the low load 
to the high load cases for the model rotor. 

Figures 3 and 4 indicate how the distorted inflow turbulence 
changes the noise spectrum calculated with an isotropic inflow turbulence 
model. Recalling that a factor of two represents 3 dB and comparing 
Figs. 1 and 2 with Figs. 3 and 4, it is clear that the inflow distortion 
model can't totally account for the increases in peak SPL with rotor 
thrust. 

Figure 5 shows that under certain conditions, the peak SPL 
(which occurs at approximately k - 2) of the low frequency broadband 
noise of a full scale rotor (Ref~ 7), decreases with increasing thrust. 
Figure 6 shows that an inflow turbulence distortion which increase 
with thrust can explain the trend shown in Fig. 5. However, if 
turbulence induced noise is the dominant broadband noise source for 
a range of frequencies, then the reduction of noise levels at high k 
predicted by the distortion model isn't consistent with experimentalx 
spectra. 

Conclusions 

Conceptually, the idea of inflow turbulence distortion is an 
attractive one, since in real rotor flows the turbulence is constantly 
being distorted. The distortion model presented in this paper was not 
able to totally explain experimentally observed changes in sound 
pressure levels with rotor mean thrust. 'other, more robust ·phenomena 
occur when the rotor mean thrust changes, e.g., the blade flapping 
velocities and acceleration changes, rotor inflow velocity changes, 
and the Gutin type noise varies. 

The distortion model presented linked inflow turbulence modifica­
tion to the rotor mean aerodynamics, albeit in a simple fashion. What 
is needed is a model which rigorously links the amount of turbulence 
distortion to the rotor mean aerodynamics. This is required because 
clearly the distortion is not homogeneous, nor does it proceed by virtue 
of a lone mean velocity shear, as was assumed in the present model. 
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Table 1 

il.otor Data 

c!odel Helicopter Rotor Characteristics (Refs. 8, 9) 

Radius 

Chord 

~umber of Blades 

Section 

Twist 

Microphone Location 

0.635m 

0.0508m 

2 

~ACA 0012 

8 degrees 

l.lm above rotor, on axis (Ref. 8) 

1.3m above rotor, on axis (Ref. 9) 

Full Scale Rotor Characteristics (Ref. 7) 

Radius 

Chord 

Number of Blades 

Section 

Twist 

Microphone Location 

8.5m 

.417m 

2 

NACA 0012 

8 degrees 

11.5 degrees below disc at 
76m radius 
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Figure I Experiment data showing the effect of rotor 
mean loading on the sound pressure power 
spectral density for a model rotor, rpm= 810, 
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Figure 2 Effect of blade loading, no grid, square tip 

(Taken from ref. 8} 
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/3 2 

kx 
{a} L=l.9cm, C=5.1cm 

Figure 3 The effect of a shear type distortion 
on the parameter· /3 for the mode I 
rotor (ref. 9) 
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)'12 6 t = 4 ----

/31 

ro 0 

kx 

Figure 4 The effect of a shear type distortion 
on the parameter /3 for the model 
rotor (ref. 8) 
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Figure 5 Full-scale rotor data showing de­
creasing SPL for increasing 
thrust (data from ref. 7) 
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Figure 6 The effect of o shear type distortion 
for a full scale rotor, L=57cm, 
c =43cm 
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