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1. Introduction 

This paper deals with a very general theory of unsteady compressible 
potential aerodynamics of helicopters in hover and forward flight. Numerical 
results for an isolated rotor in steady and unsteady incompressible flovrs 
are also presented. 

The formulation is very general (the only restriction is the assumption 
of potential aerodynamics) and is based upon the inte?,ral equation developed 
by Dr. Luigi Morino (Refs. 1 to 3; see also Section 3) for the exact nonlinear 
compressible three-dimensional unsteady velocity-potential equation for lifting 
bodies having arbitrary shapes and motions. For incompressible flm•s the 
formulation has been applied to rotor-fuselage helicopter configurations 
(~efs. 4 to 6), and to wincmills (tiQe-domain analysis of unsteady flows, 
Refs, 7 to 12). Unsteady compressible (subsonic and supersonic) flows have 
been considered for fixed-wing flexible aircrafts having arbitrary shapes and 
motions (Refs. 13 to 20); a very general purpose computer program, SOUSSA-P 
(Steady, Oscillatory and Unsteady, Subsonic and Supersonic Aerodynamics; 
Rroductionversion), has been completed (Refs. 2l and 22); time-domain nonlinear 
analysis is considered in Ref. 23. The integral equation of Ref. 1 is directly 
applicable to helicopters and is exact: nonlinear terms and moving shock 
waves are included in the formulation. The only approximations are due to the 
numerical implementation and are such that the error goes to zero as the 
number of unkno~·ms goes to infinity. It is important to note that, despite 
::he cot:~plete generality of the method, the resulting formulation is compUtation­
ally very efficient as demonstrated by the results presented in Refs. 1 to 23. 

An efficient and general flethod for unsteady, compressible potential 
aerodynamic analysis of helicopters in hover or forward flight is presented 
here. The availability of such a method (and corresponding computer program) 
would enhance considerably the present computational caoabilitv for an accurate 
evaluation of pressurB and flow fields. Such evaluation is required for instance 
for the problem of drag-reduction (badly needed because of the energy problem) as 
a prerequisite for the boundary-layer ana.lysis. Accurate pressure evaluation for 
compressible flow is also badly needed for flutter analysis (see Ref. 24). There­
fore the effects of compressibility is analyzed rigorously for a helicopter in 
forward flight. The formulation is presented here in Sections 3 and 4 after a 
brief review of the state of the art. Numerical results are presented in Section 5. 
2. Review of the state of the Art 

An excellent review on aerodynamic technology for advanced rotor craft 
was presented by Landgrebe, Moffitt and Clark in Refs. 25 and 26. Additional 
reviews are presented in Refs. 24, 27-30. Co~pressibility effects in particular 
are reviewed in Ref. 30. Therefore only works which are not reviewed in Refs. 
24 to 30 and which are relevant to the objectivP. and the motivation of the 
present work are included in this brief revimv, which is not to be considered, 
by any means, complete. 

Three items which are relevant to this paper and Hhich need a discussion 
deeper than the ones presented in Refs. 24 to 30 are advanced computational 
methods (lifting-line, lifting-surface and panel methods), compressibility and 
wake roll-up. These items are briefly examined in the following. 

Consider first the advanced computational methods. Two important 
ifting-line methods were published recently. The first one (Ref. 27) 
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''points out several errors in the usual lifting-line methods of rotor analysis 11
, 

and presents a higher-order lifting-line theory which takes into account all 
the unsteady, yawed effects encountered by helicopter blades. UnfJrtunately 
the theory does not include compressibility. Cor3pressibility is c.:msidered 1'-· 
in the second work (Ref. 28) which includes a lifting-line as well as a disk i 
method. ~fore advanced methods (lifting-surface theories) are presented in Refs. 
29 and 30. Both methods are of interest here. The first (Summa, Ref. 29) 
introduces a time-domain analysis, but is limited to incompressible flow. The 
second one (Rao and Schatzle, Ref. 30) introduces in a simplified form (local 
Prandtl-Glauert, chordwise transformation) the effect of compressibility for 
rotors in unsteady flow (in additio~ the importance of the correct geometry 
of the wake are clearly demonstrated in Ref. 30) • A lifting-surface theory was 
presented in Refs. 8 to 12 (along with a more complex panel method based upon 
Green's function method). The lifting-surface method (program WILSA*) is 
very similar to the ones of Ref. 29 and 30. Results obtained with \HLSA are 
very close to the results obtained by Rao and Schatzle30. Finally panel method 
designates a ne~v methodology recently introduced in aircraft aerodynamics. This 
methodology consists in the finite-element solution of integral equations (over 
the actual surface of the body**) for potential aerodynamics. Typically, the 
surface of the aircraft and its wake is covered with source-panels (doublet-, 
vortex- and pressure-panels are also used). The intensity of the source distri­
bution is obtained by imposing that the flow does not penetrate the surface of 
the body (a brief outline of panel aerodynamics is presented in Section 3). 
The most general formulation for panel aerodynamics is the Green's Function 
Hethod (Refs. 1 to 23; see also Sections 1 and 3). Other methods are briefly 
presented here. An early 11ork on the flow field around three-dimensional 
bodies by Hess and Smith (Ref. 31) uses constant strength source-elements to 
solve the problem of steady subsonic flow around nonlifting bodies. This 
method has been extended to lifting bodies (Refs. 32-34) by including doublet 
and vortex panels. Woodward's method for steady subsonic and supersonic flow 
(Refs. 35 and 36) is a different approach that uses lifting surface elements 

, 

for the representation of the body. Little work has been done in unsteady floll 
arounq complex configurations besides the work of Refs. 1 to 23: for oscillatory 
subsonic aerodynamics, extensions of the doublet-lattice method (Ref. 37) are 
obtained by either placing unsteady lifting surface elements on the surface of 
the body or by using the method of images combined with slender body theory 
(Ref. 38). In the supersonic range, complex configurations are analyzed in 
Refs~ 35, 39 and 40. The program \lliAERO (Ref. 41) is a modification of the 
program by Rubbert and Saaris (see Ref. 32), which in turn is based on the 
original program by Hess and Smith (Ref. 31). Applications of panel methods 
to helicopter aerodynamics include the work by Dvorak, Haskew and Woodward 
(Ref. 42) which present a method for calculating the complete pressure distri­
bution on a helicopter fuselage with separated flow (the method uses WBAERO 
for the potential flow solution; the boundary layer is calculated up to the 
separation line; separated flow is modeled by streamwise panels of uniform 
vorticity). Helicopter applications of panel methods are also given in the 
already-mentioned work by Soohoo, Horino, Noll and Ham4,5: Ref. 4 presents 
an extension of the Green's Function Hethod to actuator disks >lith application 
*Windmill Incompressible Lifting Surface Aerodynamics 
**Note the difference with respect to the lifting surface formulations, in 
which the integral equation is over the mean-surface of the configuration. 
Panel method here indicates only those methods in which the actual surface is 
used. 
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to tilting proprotor aircraft, whereas Ref. 5 presents an extension of the 
method to study the rotor-«ake effects on hub/pylon flo" separation. Both 
works indicate that the Green's Fucntion Hethod is very pmverful for appli­
cations to helicopter potential aerodynamics, with rotor/fuselage interference. 
The above remarks indicate that panel-aerodynamics methods are hecominK avail­
able for the analysis of the complete configuration. The availability of 
such methods (and corresponding computer programs) enhances considerably the 
present computational capability for an accurate evaluation of pressure 
and flow fields. This evaluation is becoming more and more important because 
of a recent change in pattern in the field of helicopter aerodynamics. Hind 
tunnel experiments are very costly whereas computers are becoming less and less 
expensive*. Therefore the use of computers is becoming more attractive for the 
aerodynamic analysis of helicopter configuraitons. For instance, items such 
as higher performance (lo«er drag, higher speed, higher lift, higher reliability) 
requires more theoretical analysis: in particular as mentioned above, reduction 
of drag (badly needed because of the too «ell kno~<n energy problem) requires a 
very accurate evaluation of the flow field including separation of the potential 
field as a prerequisite for the boundary-layer analysis (Ref. 42). Therefore 
panel-aerodynamics methods deserve further attention: in particular the effects 
of compressibility and «ake roll-up (examined in this paper) should be included 
in the panel method. (It should be noted that panel methods require an amount 
of computer time of the same order of magnitude as the lifting surface methods. 
This «as clearly illustrated by the comparison bet«een the lifting-surface 
program and the panel-method program, ~;hich is presented in Ref. 8.) 

Next consider the effect of the compressibility of the air. The import­
ance of compressibility «as clearly demonstrated by Friedman and Yuan24 for the 
problem of aeroelastic stability (i.e. flutter and divergence) of rotor blades.' 
The «ork is based on simple aerodynamic strip-theories (Refs. 45 to 51). H01o1ever 
the same effect is expected from more sophisticated unsteady three-dimensional 
compressible theories. Compressibility effects are included in the lifting-line 
theory by Johansson28 and in the lifting-surface method by Rao and Schatzle30. 
Ho«ever the theory of Ref. 28 is limited to steady flo~;. The ~;ork of Ref. 30 
is more interesting and is based ~oona theory developed by Rao and Jones52: 
However the work is limited to rotors in hover and it is apparent, from the more 
general theory developed by Dr. Morinol-3, that the method used by Rao and 
Schatzle30 is not applicable to rotors in for«ard flight, since in this case 
the time delays, e , (from the dummy point of integration to the control point, 
see Section 3) are a complicated function of the motion of the rotor and cannot 
be obtained through the simple chord~;ise Prandtl-Glauert transformation used in 
Ref. 30. A possible alternative approach is the numerical solution of the differ­
ential equation using for instance finite differences (Caradonna et al., Refs. 
53-55): this methoo however is extremely time ~onsuming. Therefore the use of 
the correct integral equation proposed here (Section 3) appears to be considerably 
better (either for higher accuracy or for less computer time) than all the 
other existing methods. 

Finally consider briefly the third item, the wake roll-up. Analytical 
methods for 2redicting the geometry of the rotor wake «ere developed by 
Landgrebe56,~7 and by Cre«s, Hohenemser and Ormiston58. Landgrebe model was 
used by Rao and Schatzle30, in their lifting surface theory, tb shm; that 
*Chapman, Hark and Pirtle43,44 of NASA Ames Research Center estimate that 
wind-tunnel simulation will be replaced by computer simulation in about ten 
years, if the present trend in computers continues. 
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a considerable improvement in the comparison with the experimental results of 
Ref. 59 may be obtained simply by using the correct \.Jake geonh.'try. Autorr~atic 
generation of the wake is considered for instance by Scully60, 

3. Integral Equation 

The perturbation velocity potential ~ for a flow having free-Stream 
velocity uo-1 in the direction of the positive x-axis is given by 

V 2 '-f- c.t:," (o;Jt .;- v~ i:>fo:-c_)>'f = F (1) 

where F is the contribution of the nonlinear terms. Let the surface of the body 
be described in the general form 

$(x,'j,2,t)=O (2) 

Then the boundary conditions on the body are given by DS/Dt=O or 

r' ?'f /?n = \7'f .\7,3 /i\7Sj = _(C!S/1!1: -1- LIN J.S/h)/ )VS/ (3) 

In order to solve this problem it is convenient to transform it into an 
integral equation. Consider the Green function of the linearized equation of 
the subsonic potential 

C; =- S(l:- t, +0)/4nr~ (4) 
where S is the Dirac delta function and ,14 

r~ = t(<- ,,)z+ 1''2 [<~-~,)2+(2- <, )'J} (5) 

() ~ [M(.<-x,) •"~]/a~f32 (6) 
By using the classical Green theorem method one obtains (Refs. 1 to 3) 

4nE<f(P., <) =- #. [(vS·Vf-.i. £3'i)J.. ·-(v5.'V.!..-.!..., dS J ...C )'f](l ,;ohs" (7) 
9 c;• ,,: clt d c ~i' rp '\., ott ,;-U:- rf' . iVS j 

-if' t [vs ve - .!,_ JS (l.t;,oe l)Q [ (1) t J. ciG
0 

_ Jff rEF]".!.. c-~v 
~ \J . ,1__, c.U:. rJ x. ~ -~ rf3 J'V'.S/ _""' L' ~s 

where d/dt= <:> 1 ~i; .;. U,_, ?/'d >: and 

E=O inside 6 
E=~ on o 
E=l outside '0 

and [ t 
given by 

indicates evaluation at t=t -e. 
* 

Similarly, o 6 is the surface 

(8) 

(9) 

where (x,y,z) is the dummy point of integration on G
9 If initial conditions 

are prescribed Eq. (7) should be modified as indicated in Appendix F of Ref. 3. 
For simplicity only the linear problem (F=O) is considered here. (The 

method of solution for the nonlinear problem is similar to the one of Ref. 23.) 
In this case, if the point is on the surface S=O, Eq. (7) yields an integra­
differential equation which may be used for evaluating the value of 'f on the 
surface. It may be noted that Eq. (7) is very general since it is valid even 
if the surface of the body is moving in time with respect to the frame of 
reference (helicopter blades, spinning missiles, etc.): 

4. Numerical Formulation 

Equation (7) is the basic equation for the analysis of unsteady compressible 
potential aerodynamics of helicopters. The contribution of the wake is discussed 
in Refs. 1 to 3 and is not repeated here. The contribution of the shock wave 
is similar and yields a source distribution over the surface of the shock wave. 
The approximate solution of Eq. (7) for arbitrary shapes may be obtained 
numerically. For simplicity only the numerical formulation for incompressible 
flow (used to obtain the results presented in Section 5) is presented here; the 
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numerical formulation for compressible flow is similar to the one of Ref. 23, 
and is a simple extension of the one presented here. 

Isolating the contribution of the wake and assuming P* to he on 6, Eq. (7) 
yields (for incompressible flow) 

:2 n <f ( P, t ) ~ -1f r '/' -'- - f .£ (-'- ) l d I B - J/ A 'f 2. ( -'- ) vi L " ( 10) 
' Za l Y dr1 r t 2-w .,:!,"! r ~ 

.,here z:, is the (closed) surface of the body 2"' is the (open) surface 
of the vortex-layer ~Jake emanating from the trailing edge.. In addition Ll f 
is the potential discontinuity on the wake and satisfies the equation 

(11) 

where 'f, and '{2 are the values of the potential on side 1 and 2 of the wake. 
Finally the normal ;msh 'f o o'{' /~n is knmm from the boundary conditions. 

Therefore, Eq. (10) is an integral equation relating the potential, '-f , to the 
normal wash, ~ This equation is the basis for the Green's function method 
used in Refs. 4 to 12. 

In order to obtain an efficient computational procedure, the integral 
equation is approximated by a system of delay equations in time. This is 
obtained by using a finite-element representation, i.e., by letting , , 

fCP, t)= ;'f •f;!t) Nj(P) ; '{(P,t): f, '/'j(ti N;(P) (l
2

) 

where J is the total number of nodes on the body and <f)t) anJ l')(l) are time­
dependent values of 'f and <f at the node Pj at the timet; furthermore, 
the Nj(P) are prescribed global shape functions, obtained by standard assembly 
of the element shape function. Similarly, the potential discontinuity on the 
wake is expressed as N 

Ai.f(P,t)~t, Af"(t)L"\1') (13) 

where N is the number of nodes on the wake, A<-f"(t) is the value of .6f 
, t the nth node Pn (H) on the Hake at time t, and Ln (P) is the global shape_ 
unction relative to the nth node of the wake. Note that according to Eq. (11) 

(TE') 
A cO" (t) ; ,6 IV (/; - T ) 

/,, l m("') "' (14) 
where m(n) identifies the trailing-edge point, p~TE), from which the vortex­
point, located at p(W) at time t, emanated at time t- -.:. (where -c. is the time 
necessary for the vortex-point to be convected from the trailing-edge point p~TE) 
to the ••ake-point p~Wl). Note that Ll'f'~Tc) =if,.- 'f,, , where hu and ht 
identify the upper and lower trailing-edge nodes on the body corresponding to the 
nth node on the trailing-edge. Hence it is possible to write 

L;.O(TE) = I :S. . 
1 ~(·) ;.. "J Cf, (15) 

where Snj=l (Snj=-1), if j identifies the upper (lower) trailing-edge point Pj 
on the body correspondinp, to the point p~H) on the wake, and Snj=O othenlise. 

Combining Eqs. (10) through (15), one obtains a system of delay equations 
relating cO to 'f· and 'f.'· 

1., ;r J J J' H "'S 

'fh(t) = ~. 7>,.l1:Jf.icJ + .L.c (tlcp.I+Jt I LFd<lS uJ U--r.) 
h J J J ;=! h~ J lhl J=' "'J -J~ w ere 

(16) 

:B . =::.!. J! N ..!. Jt: : C. = _,_ Jt, N 1-.(l) ,,!L \ ·, f =.!. JIL. 2 1'-')di..\ (17) 
hJ .2n if J r B :.~ h.J 211 JT o~ 2'1"'\ r e. hn .211 j ?11'"1 r w/ 

L 0 P,oP z: 11 ?,.'Ph Iw P,.P, 
These coefficients are ~valuated analytically for a general quadrilateral twLsted 
element (hyperboloidal elements) with zeroth order shape functions (Ref. 14). 
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Note that if the surface is moving these coefficients are in general time­
dependent. 

Equation (23) gives the value of '{'" at time t in terms of the values of 
'/1; , and '{'; at preceding times. Therefore Eq. (23) may be easily solved 
by a step-by-step procedure (for the details see Ref. 23). 

In the case of helicopter rotors in compressible flow) the system 
resulting from the finite-element solution of Eq. (7), with F=O,<wuld be 
similar to the one of Ref. 23 (which is a simple extension of Eq. (16)). In 
the case of helicopters however the coefficients are time-dependent. Finally 
note that the wake roll-ug can be evaluated step-by-step by using the method 
used by Suciu and Morinol . 
5. Results 

Extensive results have been obtained with the programs WILSA (Windmill 
Incompressible Lifting Surface Aerodynamics, Refs. 8-12), WICCA (\vlndmill 
Incompressible complex Configur;tion Aerodynamics, Refs. 8-12) and SHAPES 
(Subsonic Helicopter Aerodynamic Program with Effects of Separation, Refs. 5 
and 6). The programs-WICCA and SHAPES are similar and are based upon the 
theory presented in Section 4. The program WILSA is similar to WICCA and is 
based upon a lifting-surface formulation (limiting case of the formulation of 
Section 4 as the thickness goes to zero; see Ref. 8). A few basic results are 
presented first, followed by a brief outline of the results obtained thus far. 

Figures l and 2 present a comparison of the results obtained with WILSA 
and WICCA with the numerical results of Rao and Schatzle30 and the experimental 
data obtained by Bartsch59, for an isolated rotor in hover. The geometry of 
the rotor is defined by rotor radius R=l7.5', chord c=l.083', root radius 
r=2.33', collective pitch angle at blade roots, c<=l0.61°, and blade twist, 
0 =-5° (angle of attack decreasing along the span). The tip Mach number is 
M=.58. Classical wake (used in WILSA and WICCA) indicates a classical helicoi­
dal wake with the induced velocity ~ obtained from the thrus.t coefficients 
c, =2 e<'/Sl."R." with cT=.00186 (Ref. 30). Modified wake indicates a wake 
geometry derived by Landgrebe57 from experimental data. One blade is used for 
the results of Figure 1 note the excellent agreement among the three classical­
wake results (HILSA, WICCA and Rao and Schatzle30). Note also the increase in 
lift coefficient obtained by R~o and Schatzle by using the Landgrebe wake. 
This is important in analyzing Figure 2 (for a four blade rotor): WILSA is in 
excellent agreement with the classical-wake results of Rao and Schatzle30, 
whereas their modified wake results are in excellent·agreement with the experi~ 
ments: it seems apparent that the concentration of vorticity into tip-vortices 
(taken into account by the Landgrebe's wake) is responsible for the spike of the 
section lift distribution near the tip. Therefore the method presented here is 
considered to be in excellent agreement with existing results with the under­
standing that the use of the correct wake geometry would enhance considerably 
the agreement with the experimental results. 

Additional results which have been obtained using WICCA are presented in 
Refs. 8-12. In particular fully unsteady results in the time domain are pre­
sented in Refs. 9 and 12 for an isolated rotor. The results include transient 
response to a sudden change in collective pitch angle as well as time domain 
analysis for oscillatory flow (due for instance to windmill rotor in shear wind); 
the time-domain results are in excellent agreement with the frequency-domain 
results. 

Numerical results which have been obtained using SHAPES are presented in 
Ref. 5. This includes flow around a rotor-fuselage configuration including the 
effects of separation: the separation is modeJ.ed with an infinitesimally-thin 
vortex layer emanating from the (empirically determined) separation line. Vorti­
city in the separation region is concentrated into a single isolated·vortex: the 
intensity of the vortex is determined by imposing the condition that the tangent­
ial velocity changes sign at the separation line. The results are in excellent 
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agreement with the experimental results of Refs. 61 and 62. 
6. Comments 

First a general assessment of the method is presented, followed by a detailed 
analysis of the effect of compressibility, and concluding remards. 

The Green 1 s function method proposed here was assessed by Carrick63 in ltis 
3th Von Karman lecture. Therefore the follmving corrnnents are only in reference 

to the specific application considered here. First, there should be no question 
about the generality of the method. Second it is obviously muclt more efficient 
than the finite-difference time-domain solution of the complete potential flow 
field. In addition it should be noted that, despite the generality, the method 
is also very efficient, when compared to lifting-surface theories; this was clearly 
illustrated by the comparison of the programs WICCA (IVindmill Incompressible 
Complex Configuration Aerodynamics, based upon Green's function method) and WILSA 
(1-/indmill Incompressible Lifting Surface Aerodynamics based upon a lifting-surface 
theory similar to the one of Refs. 30 and 52): the more complex program IHCCA 
yields similar results and takes only slightly more computer time than WILSA 
(for incompressible steady floH ; for unsteady compressible flm<, the present 
method yields a much simpler integral equation than the lifting surface theory). 
Finally, the method uses the actual geometry of the surface and therefore takes 
into account the thickness effect and can be easily extended to complete rotor­
fuselage configuration. Therefore the present method satisfies simultaneously 
both requirements of generality and efficiency. 

Next consider the question of compressibility. Note that Eq. (7) is the 
exact integral equation for the non-linear compressible unsteady potential aero­
dynamic equation, Eq. (1). No simplifying assumption is used in deriving Eq. (7). 
In particular the compressibility effects are considered in an exact way. It 
may be worth examining the way in Hhich the compressibility effects appear in 
Eq. (7). In order to simplify the discussion consider the linear case for an 
aircraft having infinitesimal oscillations around a steady-s~ate configuration. 
In this case F=O; the surface ~· may be replaced by the time independent steady­
~tate surface and the term CJS/J~ is retained only in the boundary conditions. 
Then introducing the generalized Prandtl-Glauert transformation X= -><(fl L, Y, ~/ L, 
z ~ ;~(L, T = U., t:.jL (where Lis a characteristic length of the body) Eq. (7) 
reduces to 

4nE. w(P T)-- ,\f, II ~)8 ..!.- [<.P]e _2_(.1.) _ [~J0 ..!.. oo) d"' 
1 •' - 'jf (L <JN R I oN R o T R aN l '- (18) 

- L I . where N is the normal to the surface !: of the space X,Y ,Z, R= P-P* I whereas 
0 : u~ e I L and G=[M(X,-X)·R}M/iJ. By comparing Eq. (18) to Eq. (10) it is 
apparent that, first, the Prandtl-Glauert transformation is used in the direction 
of forward-flight with M=U~ /a~ : this term takes into account forward-flight 
effect (it does not exist for hover conditions, U~ =0). Second, a third integral 
containing~ appears in the equation: this term exists in the integral equation 
for the wave equation and takes into account the presence of the b~f/i7t 2 term 
in the differential equation. Third the functions are evaluated at delayed times 
T- G : this is also a consequence of the o2flo t" term in Eq. (1) , like item 2. 
Next consider the effects of the motion of the rotor: these are obtained by 
comparing Eq. (7) to Eq. (18) and may be summarized by saying that: (1) oS/31:­
appears in the equation; (2} the integrals are over Ga instead of €i and (3) 
d<i = dG 9 )'7',\ 9 /j\7S 0 ) is used in place of J<r • These three effects are important 
and have never been introduced in any integral equation used for the analysis of 
helicopter rotors. In particular the second item is very interesting and also 
peculiar of the present formulation: the surface •' can be interpreted from a 
physical point of view by stating that the dummy point of integration, P, has to 
be considered in the position it had at time t=t*- G ( e is the time necessary 
for the disturbance to travel from the point P to the control point P*). It 
;hould now be apparent that the local chordwise Prandtl-Glauert transformation 
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used in Ref. 30 is reasonably acceptable for a rotor in hover (on a strip­
theory intuitive approach), but not in fonvard flight: in this case the com­
pressibility manifests itself in a much more compicated way. 

In conclusion, a general method for the unsteady compressible potential 
aerodynamic analysis of helicopter rotor-fuselage configurations, in hover and 
forward flight, has been presented. Th~ method has been validated for incom­
pressible flows: steady-state results are included here, unsteady results 
(computer program WICCA) are presented in Refs. 9 and 12 and rotor-fuselage 
configurations with the effects of separation (computer program SHAPES) are 
considered in Ref. 5. The effects of compressibility have been discussed in 
detail; their inclusion in a general-purpose computer program are now underway~ 
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