
43rd European Rotorcraft Forum

September 12-15, Milan, Italy, 2017

Paper 520

Real Time Wake Computations using Lattice Boltzmann Method on Many
Integrated Core Processors

Mark A. Woodgate

Mark.Woodgate@glasgow.ac.uk

CFD Laboratory, School of Engineering

James Watt South Building

University of Glasgow, G12 8QQ, U.K.

Rene Steijl

Rene.Steijl@glasgow.ac.uk

CFD Laboratory, School of Engineering

James Watt South Building

University of Glasgow, G12 8QQ, U.K.

George N. Barakos

George.Barakos@glasgow.ac.uk

CFD Laboratory, School of Engineering

James Watt South Building

University of Glasgow, G12 8QQ, U.K.

Abstract

This paper puts forward an efficient Lattice Boltzmann method for use as a wake simulator suitable for

real-time environments. The method is limited to low speed incompressible flow but is very efficient and

can be used to compute flows “on the fly”. In particular, many-core machines allow for the method to be

used with the need of very expensive parallel clusters. Results are shown here for flows around

cylinders and simple ship shapes.

1 INTRODUCTION
Computational Fluid Dynamic (CFD) methods have

become increasingly sophisticated and accurate

over the past 20 years, however they are orders or

magnitude too slow for real time flow computation

and so, analytical models, simplified aerodynamic

models, and linearized CFD-based reduced order

models are still used if real time estimates are nec-

essary.

There are a number of methods to represent

vortical wakes in real time flight simulations. The

first is to use an analytical model or a set of veloc-

ity vectors in tabular form. A second method for real

time simulation is obtained by reducing the com-

putational cost of the calculation by using a low

fidelity free wake model such as shown by Horn

et al. [1] who performed a parametric study of the

wake parameters to achieve real time execution

with minimal differences from a spatially and tem-

porally converged response, which at the time did

not achieve real time execution. Lastly, a method

suggested by Spence et al. [2] used an implicit

Copyright Statement c© The authors confirm that they, and/or their company or organisation, hold copyright on all of the

original material included in this paper. The authors also confirm that they have obtained permission, from the copyright

holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of

this paper as part of the ERF2017 proceedings or as individual offprints from the proceedings and for inclusion in a freely

accessible web-based repository.

1



large eddy simulation (ILES) to build a database

which is accessed in real time. This was achieved

through the use of a data compression schemes

via mesh simplification, and the use of kd-trees for

fast data queries. Recent developments have in-

cluded the use of the free vortex wake method on

graphic cards in order to achieve real-time capa-

bility [3] and the use of dynamic inflow model ex-

tracts the inflow velocities from a real-time Lattice-

Boltzmann fluid simulation and passes them to a

blade element based flight dynamics code to cap-

ture the rotorcraft motion [4]

In recent years the numbers of cores in both

Central Processing Units (CPUs) and Graphic Pro-

cessing Units (GPUs) have been increasing rapidly

and currently stand at a few thousand cores for a

high end commodity GPU. INTELs second genera-

tion Many Integrated Core Architecture (MIC) uses

between 64 and 72 Airmont (Atom) cores with four

threads per cores and so has a core count between

CPUs and GPUs. The Intel Xeon Phi is currently

installed on 7 of the top 20 fastest HPC systems

according to the 49th Top500 List of June 2017.

Out of these, 5 are the second generation Knights

Landing units.

This increasing number of cores makes run-

ning real time simulations much more feasible but

the employed schemes will have to take advantage

of such a large number of processors by carefully

choosing algorithms that decompose into a large

number of semi-independent operations as well as

being able to exploit the underlying core architec-

ture to the full. In the last 20 years the lattice Boltz-

mann method (LBM) has emerged as an alterna-

tive to the more traditional methods for simulat-

ing fluid flow. The LBM was developed as an ex-

tension to lattice gas automata [5, 6] and reviews

of the developments since then can be found in

[7, 8]. The LBM method has good parallelism with

some benchmark running on 214 processor cores

but the discrete probability distribution functions re-

quire more memory for their storage than the hy-

drodynamic variables of the Navier-Stokes equa-

tions (19 real valued quantities per node against 7

for 3D flows). Some versions of the LBM also in-

volve only a very limited amount of floating points

operations per computational node resulting in the

method being limited by memory bandwidth rather

than arithmetic performance when computed by

using general-purpose processors.

Recently Khan, et al. [9] demonstrated the use

of the lattice Boltzmann method, implemented on

a graphic processor unit (GPU), running real time

simulations for indoor environments.

2 THE LATTICE BOLTZMANN

METHOD
The LBM uses a simplified kinetic model which

includes the essential microscopic effects to en-

capsulate the macroscopic averaged quantities of

the Navier-Stokes equations which is achieved by

solving the discrete-velocity Boltzmann equation. A

regular lattice is used for the domain and a par-

ticle distribution function represent the probability

of a particle having a given velocity at each lat-

tice point. The movement of the particles is re-

stricted to a subset of neighbouring lattice points.

The discrete collision rule is replaced by an approx-

imate collision operator with the Bhatnagar-Gross-

Krook (BGK) model being the most widely used

(see [7]). A common labelling for the lattices in the

LBM is DdQq, where d is the spatial dimension

and q are the number of microscopic velocities.

Some common three dimensional lattice construc-

tions for fluid flows are D3Q15, D3Q19 and D3Q27

as shown in figure 1. The D3Q19 model has been

chosen in this work to keep the computational cost

low while maintaining an isotropic lattice.

This is solved numerically by decomposing it

into a two step process. First the collision step

where

f t
i (x̄, t+ δt) = fi(x̄, t) +

1

τf
[feq

i (ρ, ū)− fi(x̄, t)]

= (1−
1

τf
)fi(x̄, t) +

1

τf
feq
i (ρ, ū).

(1)

where fi represents the particle distribution func-

tion which is the fraction of particles located at po-

sition x̄ at time t moving with the microscopic veloc-

ity ēi, and i are the discrete directions of momen-

tum which are the q chosen collocation points of

the velocity-discrete Boltzmann equation and de-

termine the basic structure of the numerical grid.

This is then followed by a streaming step where

the value of f t
i (x̄, t + δt) is shifted in space along

the lattice velocity ēi,

(2) fi(x̄+ cēiδt, t+ δt) = f t
i (x̄, t+ δt),

2



26

25

23

22 24

21

20

19

18

1715
14

12

13

11

10

16

9

8

7

6

5

4

3

2
1

000
1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 1: The common three dimensional lattices with the indices re-ordered to minimize the

traversal of memory and hence reduce the memory bandwidth requirements

where c is the lattice speed. The relaxation time τ
determines how fast the equilibrium position is ap-

proached and is also related to the kinematic vis-

cosity of the fluid. The equilibrium state feq
i (ρ, ū)

itself is a low Mach number approximation of the

Maxwell-Boltzmann equilibrium distribution func-

tion, where ρ is the the macroscopic value of the

density and ū is the value of the velocity.

The density ρ and the velocity ū are obtained

from the zeroth and first moments of the distribu-

tion functions

(3) ρ =
18
∑

i=0

fi, ρū =
18
∑

i=0

cēifi,

and the discrete velocity set ēi is defined as follows:

(4)

ēi =







































(0, 0, 0) i = 0 wi = 1/3
(±1, 0, 0) i = 1− 2 wi = 1/18
(0,±1, 0) i = 3− 4 wi = 1/18
(0, 0,±1) i = 5− 6 wi = 1/18
(±1,±1, 0) i = 7− 10 wi = 1/36
(±1, 0,±1) i = 11− 14 wi = 1/36
(0,±1,±1) i = 15− 18 wi = 1/36

.

The equilibrium state is calculated by

(5) feq
i (ρ, ū) = ρwi

(

1 +
3ēi̇̄u

c
+

9(ēi̇̄u)
2

2c2
−

3ū2

2c2

)

where the wi are the weight coefficients defined in

equation 4.

It can be shown through a Chapman-Enskog

expansion (see [10]) that the Navier-Stokes equa-

tions can be obtained from the lattice BGK model.

First by using a 2nd order Taylor series expansion

about the left hand side of equation 1 the particle

distribution function is split into equilibrium and non

equilibrium components. After using the Chapman-

Enskog expansion, which expands the non equilib-

rium part in a power series of the Knudsen number,

the Taylor series can be decomposed into differ-

ent orders of magnitude of the Knudsen number to

obtain the continuum equations which recover the

Navier-Stokes equation assuming the density vari-

ation is small.

2.1 High Reynolds Number Flows

The relaxation time τ is related to the viscosity of

the fluid by

(6) τ = 0.5 + 3νlb = 0.5 + ulb(N − 1)/Re

where νlb and ulb are the viscosity and speed in

lattice units with Reynolds number Re. However

as τ approaches 1/2 the scheme becomes unsta-

ble as the lattice viscosity is too low to dissipate

the shortest wavelengths. The Reynolds number

can be increased by several orders of magnitude

by use of the Entropic Lattice Boltzmann method

[11, 12] which allows the Lattice Boltzmann mod-

els to support a discrete H-theorem through the

use of a modified equilibrium distribution function

(7)

feq
i = ρwi

3
∑

α=1

(

2−
√

1 + u2α

)

(

2uα +
√

1 + 3 + u2α
1− uα

)eiα

The relaxation process is also modified with an ad-

justable parameter β at every simulation step by

means of the solution of the h-function monotonic-

ity constraint

(8) H(f) = H(f − β(f − feq))

which produces an unconditional stable numerical

scheme.

3



2.2 Turbulence Model

For turbulent flow calculations a Smagorinsky sub-

grid scale model [13] is used locally to modify the

fluid viscosity by adding a term νt which is depen-

dent on the magnitude of the strain rate tensor S.

(9) ν = ν0 + νt

In the smagorinsky model, the relaxation time τt is

calculated using the momentum flux tensor:

(10) Qαβ =
∑

i

eiαeiβ(fi − feq
i ),

and

(11) τt =
1

2

(

√

τ2
0
+ 4c−4

s C2

S(QαβQαβ)1/2 − τ0

)

where CS is the smagorinsky constant. This in-

creases the computational of the scheme, as well

as removing the single relaxation time, since it is

now both spatially and temporally varying depen-

dent on the gradients of the velocity, but it is still

local to the node.

Malaspinas [14] proposed a consistent way

of including sub-grid closure models in the BGK

Boltzmann equation for large eddy simulations of

turbulent flows. The derived the terms based on a

Hermite expansion of the velocity distribution func-

tion and showed a connection between the new

models and the current standard practice showing

that a single modified scalar relaxation time to ac-

count for the sub-grid viscosity is not consistent in

the compressible case.

2.3 Bounce-back boundary conditions

These boundary conditions are used to implement

both slip/symmetry and no-slip wall boundary con-

ditions. In this boundary condition when the dis-

tribution function streaming reaches the boundary

node it will scatter back into the fluid. The two

boundary types are implemented by changing the

direction in which the distribution function is scat-

tered.

ST
R

E
A

M
IN

G

AFTERBEFORE

Figure 2: The distribution function for a

boundary node for the full bounce-back

condition before and after streaming.

For the full bounce-back the incoming direc-

tions of the distribution function are reversed when

they hit a boundary node and this process does not

require the orientation of the boundary. So com-

plex geometries require no extra computation. The

streaming of the full bounce-back can be seen in

figure 2. It should be noted that this boundary con-

dition acts half way between nodes and not at the

boundary node. For a general geometry the lattice

points inside the solid need to be flagged as such.

Both a lattice and a STereoLithography (STL) file

of the geometry are needed, and a simple utility

code can be written to return all the lattice points

contained inside the geometry. An example of this

can be seen for the Simple Frigate Shape 2 (SFS2)

used by [15] in figure 4. Since the geometry has

been rotated by 15 degrees none of the surfaces

align with the lattice an so a ”staircase” formation

is obtained on every surface. At the current reso-

lution there are just enough points to resolve the

stack on the superstructure of the SFS2.

3 Knights Landing

The Knights Landing chip is etched in 14 nanome-

ter manufacturing processes with over 8 billion

transistors. The chip contains 36 tiles intercon-

nected by a two dimensional mesh. Each tile con-

sists of 2 Cores, 4 AVX512 512-bit Vector process-

ing units (VPUs) and 1MB 16-Way of L2 Cache,

which is coherent across all tiles, as shown in figure

3. Each of the computer nodes contains a 64-core

KNL processors (model 7210) running at 1.3Ghz.

These offer a large amount of floating point perfor-

mance, (3TFlops peak using double precision) and

the hardware is a significant step forward from the

previous generation of Xeon Phis.

4



CORE

2 VPU2 VPU

CORE 1MB L2

HOME
AGENT

CACHING/

Figure 3: Schematic of a tile within a

KNL processor.

The code was evaluated on nodes configured

in cache mode with all 16GB of the on-chip Multi-

Channel DRAM (MCDRAM) used to cache the sys-

tem memory, and job sizes were small enough so

all the data could fit within the cache. The MC-

DRAM is a high bandwidth memory which fits well

with the needs of a LBM.

4 PERFORMANCE

The following section first presents the LBM paral-

lel performance on a 121×241×241 lattice contain-

ing 7 million lattice points with periodic boundary

condition in all three directions. The lattice used a

Cartesian partition of NXp×NYp×NZp equal sized

blocks. The total number of blocks equalled the to-

tal number of processors to maximize the parallel

performance.

The details of the current implementation of the

Helicopter Lattice Boltzmann Method (HLBM) code

can be found in [16]. Table 1 shows the parallel

performance of the HLBM code computed within

node of the Advanced Research Computing High

End Resource (ARCHER) which is the UK National

Supercomputing Service. There is a marked drop

off in parallel performance when running on more

that 4 cores per CPU - 8 cores in total. This is be-

cause the method is very memory bandwidth inten-

sive and general memory bandwidth has not kept

pace with the ever increasing number of cores on

CPUs.

Cores Time Efficiency

1 2.1249s N/A

2 1.0721s 99.1%

4 0.56952s 93.2%

8 0.34484s 77.0%

16 0.23538s 56.4%

24 0.21953s 41.3%

Table 1: Performance scaling of HLBM

within a node of two Intel 2.7GHz 12-

core E5-2697 v2 Processors

As stated earlier the HLBM code was evalu-

ated on KNL nodes configured in cache mode with

all 16GB of the on-chip Multi-Channel DRAM (MC-

DRAM) used to cache the system memory, and job

sizes were small enough so all the data could fit

within the cache. The MCDRAM is a high band-

width memory which fits well with the needs of a

LBM. The results can be seen in table 2 and al-

though the single core performance of a KNL pro-

cessor was three times slower, mainly due to the

lower clock speed, the parallel scaling was much

better at high number of cores. Hence 24 nodes

on an ARCHER computer node run the same as

32 on a KNL node. This results in the KNL nodes

being 80% faster when both nodes are full utilized.

Cores Time Efficiency

1 6.772s N/A

2 3.503s 96.6%

4 1.743s 97.1%

8 0.880s 96.2%

16 0.442s 95.6%

32 0.226s 93.6%

64 0.126s 84.0%

Table 2: Performance scaling of HLBM

within a 64-core KNL processor (model

7210) running at 1.3Ghz

It should be noted that the current version of HLBM

has extensive inner loops unrolling and hence

make no use of the 2 vector processing units (VPU)

per core. A listing which takes full advantage of the

VPUs might increase the single core performance

and is currently under investigation.

When the KNL nodes are configured in flat

mode the 16GBytes of local MCDRAM becomes

available for explicit use within the code instead

of caching the system memory. Since the memory

footprint of the test case is smaller than 16GBytes

is possible to run totally within the local MCDRAM

and this results in a similar run times as running

in cached mode. However if the system memory

is used instead of the local MCDRAM memory the

runtime is increased from 0.126 seconds to 0.2942
seconds which highlights the large detrimental on

the algorithm when using a slower memory sub

system.

Finally table 3 shows the performance of HLBM

when run across multiple nodes. For the Intel Xeon

nodes the performance across nodes shows linear

speedup because the number of lattice points per

process dropped from 288, 000 to just 4500 when

5



on 64. This means a much larger percentage of the

data could be stored in the cache which increases

the core performance. It has been found the HLMB

performs about twenty percent faster when running

on a small block size and this sequential perfor-

mance gain offsets the communication costs. The

scaling across the nodes is not quite as good for

the KNL nodes but us still above 90%.

5 RESULTS

For the real time flow around the cylinder, the lattice

size was set to 600 × 100 with a lattice spacing of

0.01, a lattice velocity of 0.1 and a Reynolds num-

ber of 1000. This means that 1000 time steps are

required to simulate a second of real time. With the

given lattice size, at least 60 Million lattice updates

a second are required which is possible within a

single ARCHER node. It should be noted that this

ignores data IO which is around 25% of the to-

tal run time due to 24 flow fields being outputted

per second for flow animation. The full cycle of the

shedding is shown in Figure 5. The inlet was free

steam, and the boundary layer starts to develop on

the upper and lower walls. Due to the vortex shed-

ding and the close proximity of the walls the vorti-

cal structures interact with the wall boundary layer.

The lattice spacing is enough to resolve the flow

features while the lattice speed is high, the equi-

librium function was truncated to second order and

so terms of the size lattice speed cubed have been

dropped.

A second real time test case is the flow around

the planform of the simple frigate shape 2 [15] a

larger domain was used being 1600 × 400 due to

the much larger object in the flow. The lattice spac-

ing was set to 1 with the lattice velocity equal to

0.1. The Reynolds number based on the length of

the frigate was 1500. Since the lattice velocity is

the same as in the cylinder case but the lattice it-

self is ten times larger a real time computation re-

quires 640 Million lattice updates a second. This

required 4 ARCHER KNL nodes to maintain this

performance. It should be noted that to convert the

flow field data into TECPLOT format, calculate the

vorticity and output the frame as a picture was of

the order of 20 seconds each meaning the post

processing of the complete flow field cannot even

keep up when running on a single core. Hence the

I/O needs to be reworked so firstly it is written in the

native format of the post processing tools to avoid

time consuming conversions between formats, and

secondly output a restricted subset of the domain.

The computation was run with wall above and

below the channel with inflow and outflow bound-

ary conditions. The results for the zero degree

headwind can be seen in figure 6 and clearly

shows an unsteady wake forming behind the ves-

sel. For the case with the frigate at 10 degrees

to the flow, shown in figure 7 the vortical struc-

tures are excited faster and so shedding is initiated

more quickly. There are many more vortical struc-

tures with a stream of vortices generated from the

leading edge and passing alongside the frigate. It

should be noted that the top and bottom walls are

close enough that they effect the trajectory of the

vortical structures aft of the vessel. Since only the

angle of the frigate was changed this does not ef-

fect the computational cost of the calculation.

For a three dimensional case the top and bot-

tom wall were change from no-slip to slip so as to

remove the boundary layer formation since at the

current Reynolds number of 650 most of the ves-

sel would have been contained within the bound-

ary layer. The inflow and outflow boundary condi-

tions where also replaced, with periodic conditions,

since the restriction they placed in the Reynolds

number caused the flow to become steady. This

also allows for a smaller τ to be used and hence a

higher Reynolds number. The third dimension also

had periodic boundaries. The last change that was

the lattice velocity was reduced to 0.07 since the

maximum speed in the two dimensional simulation

was around 0.15 which is probably too high for the

approximation for the equilibrium equation. This

does mean that 30% more time steps are needed

for each flow second, and so this adds 30% to the

computational resource required to obtain real time

computations.

The lattice size was 900 × 100 × 240, so the

require performance needed to obtain a real time

computation was of the order of 30800 million up-

dates a second. With the current performance of

just over 130 million updates per second for an

ARCHER node this means of the order of 240
nodes or some 5760 cores. And while these num-

bers are feasible they are not within the reach

for facilities currently linked flight simulators. For

KNL processors this would be brought down to

130 nodes with the current implementation with the

chance of better performance if the VPUs are uti-

lized.

Results are presented on the three cut planes

6



shown in figure 8. The first plane is parallel to the

boundary half way up the ship hull. The second cut

plane is 66% along the landing deck at the rear of

the vessel while the last plane is a cut through the

center line. The results at 15 degrees can be seen

in figures 9 for behind the vessel, figure 10 for the

cut through deck and figure 11 for a cut through the

center line of the vessel. The results shown many

more vortical structures on the starboard side due

to the wakes generated by both the bow and super-

structure of the vessel. Theses vortical structures

are then advected aft. Due to the low Reynolds

number and coarseness of the lattice, the flow field

above the deck is almost steady but does show a

pocket above the deck with very low vorticity levels.

6 CONCLUSIONS

This paper presents the details of implementing

the LBM method efficiently on several parallel plat-

forms. The main algorithm was re-written to allow

for the maximum LB updates per second. Addi-

tional modification were put in place to allow for

the exploitation of modern CPU’s like the KNL sys-

tems. The proposed coding is both efficient and

easy to understand, and stems naturally out of a

straightforward LBM implementation. Real time ex-

ecution is possible on large computer clusters and

the use of KNL opens the gate for linking high

performance clusters with real-time wakes in flight

simulators.

Future work is currently directed towards fur-

thering the real-time flow capabilities using VPUs

and improving the the algorithm. As an investiga-

tion in using a Hybrid MPI/OpenMP code with dy-

namic thread scheduling to allow for a more bal-

anced work-load, is also planned.

7 ACKNOWLEDGMENTS

This work is funded under the Engineering and

Physical Sciences Research Council Embedded

CSE (EPSRC/eCSE) support grant eCSE05-04

which provides funding to develop software to run

on ARCHER and carried out in collaboration with

Dr. Gavin Pringle of the EPCC. The use of the

UK National Supercomputing Service ARCHER is

gratefully acknowledged.

8 REFERENCES
[1] Horn, J. F., Bridges, D. O., Wachspress, D. A.,

and Rani, S. L., “Implementation of a free-

vortex wake model in real-time simulation

of rotorcraft,” Journal of Aerospace Comput-

ing, Information, and Communication, Vol. 3,

No. 3, 2006, pp. 93–107.

[2] Spence, G. T., Moigne, A. L., Allerton, D. J.,

and Qin, N., “Wake vortex model for real-time

flight simulation based on Large Eddy Simula-

tion,” Journal of aircraft , Vol. 44, No. 2, 2007,

pp. 467–475.

[3] Rubenstein, G., Moy, D. M., Sridharan, A.,

and Chopra, I., “Python-based Framework for

Real-time Simulation using Comprehensive

Analysis,” Proceedings of the AHS Interna-

tional 72nd Annual Forum, West Palm Beach,

Florida, USA, May 2016.

[4] Bludau, J., Rauleder, J., Friedmann, L., and

Hajek, M., “Real-Time Simulation of Dynamic

Inflow Using Rotorcraft Flight Dynamics Cou-

pled With a Lattice-Boltzmann Based Fluid

Simulation,” 55th AIAA Aerospace Sciences

Meeting, Grapevine, Texas, 9-13 Jan 2017,

AIAA 2017-0050.

[5] Frisch, U., Hasslacher, B., and Pomeau, Y.,

“Lattice-Gas Automata for the Navier-Stokes

Equation,” Phys. Rev. Lett., Vol. 56, Apr 1986,

pp. 1505–1508.

[6] McNamara, G. R. and Zanetti, G., “Use of

the Boltzmann Equation to Simulate Lattice-

Gas Automata,” Phys. Rev. Lett., Vol. 61, Nov

1988, pp. 2332–2335.

[7] Chen, S. and Doolen, G. D., “Lattice Boltz-

mann method for fluid flows,” Annual review of

fluid mechanics, Vol. 30, No. 1, 1998, pp. 329–

364.

[8] Aidun, C. K. and Clausen, J. R., “Lattice-

Boltzmann method for complex flows,” An-

nual review of fluid mechanics, Vol. 42, 2010,

pp. 439–472.

[9] Khan, M. A. I., Delbosc, N., Noakes, C. J., and

Summers, J., “Real-time flow simulation of

indoor environments using lattice Boltzmann

method,” Building Simulation, Vol. 8, No. 4,

2015, pp. 405–414.

7



[10] Chapman, S. and Cowling, T. G., The math-

ematical theory of non-uniform gases: An ac-

count of the kinetic theory of viscosity, ther-

mal conduction, and diffusion in gases, Cam-

bridge University Press, 1991.

[11] Chikatamarla, S., Ansumali, S., and Karlin, I.,

“Entropic lattice Boltzmann models for hydro-

dynamics in three dimensions,” Physical re-

view letters, Vol. 97, No. 1, 2006, pp. 010201.

[12] Karlin, I. V., Ferrante, A., and Öttinger, H. C.,

“Perfect entropy functions of the Lattice Boltz-

mann method,” Europhys. Lett., Vol. 47, 1999,

pp. 182–188.

[13] Yu, H., Girimaji, S. S., and Luo, L.-S., “{DNS}
and {LES} of decaying isotropic turbulence

with and without frame rotation using lattice

Boltzmann method,” Journal of Computational

Physics, Vol. 209, No. 2, 2005, pp. 599 – 616.

[14] Malaspinas, O. and Sagaut, P., “Consis-

tent subgrid scale modelling for lattice Boltz-

mann methods,” Journal of Fluid Mechanics,

Vol. 700, 2012, pp. 514–542.

[15] Crozon, C., Steijl, R., and Barakos, G. N., “Nu-

merical Study of Helicopter Rotors in a Ship

Airwake,” Journal of Aircraft , Vol. 51, No. 6,

2014, pp. 1813–1832.

[16] Woodgate, M. A., Barakos, G. N., Steijl, R.,

and Pringle, G. J., “Parallel Performance for a

Real Time Lattice Boltzmann Code,” 29th Par-

allel CFD Conference, Glasgow, Scotland, 15-

17 May 2017.

Number of Nodes Xeon Nodes (24 Cores) KNL Nodes (64 Cores)

1 0.21195s N/A 0.12835s N/A

2 0.10560s 104% 0.06350s 101%

4 0.05050s 108% 0.03305s 97%

8 0.02586s 106% 0.01729s 93%

64 0.00319s 107% N/A N/A

Table 3: Performance scaling of HLBM across both Intel Xeon and KNL cores

(a) STereoLithography file of SFS2.

(b) Flagged lattice points for SFS2 after rotation by 15 degrees.

Figure 4: Flagging of bounce-back lattice points for an STL geometry.

8



Vorticity x10
­2
: 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(a) Timestep = 65000

(b) Timestep = 65500

(c) Timestep = 66000

(d) Timestep = 66500

Figure 5: The vorticity magnitude for flow around a cylinder within a channel

9



Timestep = 1200 Timestep = 2400

Timestep = 3600 Timestep = 4800

Timestep = 6000 Timestep = 7200

Timestep = 8400 Timestep = 9600

Timestep = 10800 Timestep = 12000

Timestep = 13200 Timestep = 14400

Timestep = 15600 Timestep = 16800

Timestep = 18000 Timestep = 19200

Figure 6: The vorticity magnitude for flow around the planform of the SFS2 at zero degrees.

10



Timestep = 1200 Timestep = 2400

Timestep = 3600 Timestep = 4800

Timestep = 6000 Timestep = 7200

Timestep = 8400 Timestep = 9600

Timestep = 10800 Timestep = 12000

Timestep = 13200 Timestep = 14400

Timestep = 15600 Timestep = 16800

Timestep = 18000 Timestep = 19200

Figure 7: The vorticity magnitude for flow around the planform of the SFS2 at 10 degrees.

11



Figure 8: Position of the three cut planes with respect to the SFS2 geometry.

Vorticity x10
­2
: 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95

Timestep = 8000 Timestep = 8800

Timestep = 9600 Timestep = 10400

Timestep = 11200 Timestep = 12000

Figure 9: The vorticity magnitude for flow around the SFS2 at 15 degrees on the first cut

plane.

12



Vorticity x10
­2
: 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95

Timestep = 8000 Timestep = 8800

Timestep = 9600 Timestep = 10400

Timestep = 11200 Timestep = 12000

Figure 10: The vorticity magnitude for flow around the SFS2 at 15 degrees on the second

cut plane.

Vorticity x10
­2
: 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95

Timestep = 8000 Timestep = 8800

Timestep = 9600 Timestep = 10400

Timestep = 11200 Timestep = 12000

Figure 11: The vorticity magnitude for flow around the SFS2 at 15 degrees on the third cut

plane.

13


