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S ARY

This paper investigates the effects of including the
flapping dynamics in a piloted simulation model.
Two questions are to be analyzed:

1) whether modeling the blade disc-tilt dynamics is
essential in a piloted simulation model and,

2) what is the effect on the piloted simulation of
different approximations in the analytical
expressions of the flapping angles.

As concerns the first question, time-domain
simulations are performed with fully coupled non-
linear body-flap models. First, a six degrees of
freedom (dof) non-linear body model is developed
and used to simulate two mission tasks (a
deceleration and a side-step manoeuvre} with two
helicopters - Puma SA330 articulated rotor
helicopter and Bol05 semi-rigid rotor helicopter -
chosen because of their different rotor
configuration. In order to study the influence of the
blade disc-tilt dynamics on the piloted simulation,
the six dof model is then extended, first including
only the low frequency regressing flapping mode
(resulting in the so called "eight dof model”) and
then including also the high frequency advancing
flapping mode (resulting in the so called "nine dof
model") in the piloted simulation model. With
respect to the regressing flapping mode, it is found
that this mode influences the simulation results of
the deceleration and side-step manoeuvres
performed with the Bol05 semi-rigid rotor
helicopter. This result confirms the predictions
made in a previous study [1] where, using the
analysis in the complex plane, it was also found
that a semi-rigid rotor helicopter does require a
coupled flap-body model for piloted simulation.
Simulating the two manoeuvres with the Puma
helicopter as well, it is found that the regressing
flap mode has no influence on the deceleration

manoeuvre but does influence the results of the
side-step manoeuvre. Therefore, the effects of the
flapping dynamics on the piloted simulation depend
not only on the rotor configuration but also on the
manoeuvre performed. As to the advancing flapping
mode, it is found that this mode neither influences
the simulation results of the deceleration manceuvre
performed with the Bol05 semi-rigid rotor
helicopter nor with the Puma articulated rotor
helicopter, confirming once again the predictions
made in [1]. Concerning the second question, using
three different approximations in the analytical
expressions of the steady-state flapping angles to
simulate the deceleration manocuvre with the
Bo105 shows that the high-order coupling terms in
the analytical expressions of the flapping angles do
influence the piloted simulation results. The paper
ends with some recommendations on how to
proceed further in order to predict when the
flapping dynamics should be included in the piloted
simulation model.

NOMENCLATURE

I, helicopter moment of inertia about body x-
axis [kg m*}

I helicopter moment of inertia about body y-
axis [kg m?]

I, helicopter moment of inertia about body z-
axis [kg m?]

1, helicopter product of inertia about body x
and z-axes [kg m’]

Iy inertia moment of the blade section [m’]

m helicopter mass [kg]

h hub position relative to z axis [m]

pp  helicopter roll angular velocity [rad/s] and
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its non-dimensional value [-]
g9 helicopter pitch angular velocity [rad/s]

and its non-dimensional value [-]

rr helicopter yaw angular velocity [rad/s] and
its non-dimensional value {-]

R rotor radius [m]

Ty current rotor radius [m]

u component of airspeed along body x-axis
[m/s]

v component of airspeed along body y-axis
[m/s]

w component of airspeed along body z-axis
[m/s]

v total helicopter velocity [m/s]

X position along Earth X-axis [m]

X s desired helicopter longitudinal position [m]

y position along Earth Y-axis [m]

Vs desired helicopter lateral position [m]

z position along Earth Z-axis [m]

o Euler pitch angle [rad]

Q. desired pitch angle [rad)

¥ heading angle [rad]

g desired heading angle [rad]

i) Euler roll angle [rad]

D, desired roll angle [rad]

c helicopter climb velocity [m/s]

Ches desired climb speed {m/s]

h helicopter altitude [m]

h,., desired altitude [m]

8, collective pitch [rad]

Q. lateral cyclic pitch [rad] 6,, >0 for pilot

stick to the right for the counter-clockwise
helicopter, and to the left for the
clockwise helicopter

0, longitudinal cyclic pitch [rad] 6,>0 for
stick forwards
O taitrotor collective [rad]
B(f)=aylf)-a, (cosy-b,(ising blade flapping angle{rad]
Q rotor rotational speed [rad/sec]

"2=1+K;J(Ib102) non-dimensional natural

frequency of the flap motion

Aq normalised uniform inflow velocity [-]
W azimuth angle [rad]
Y Lock number [- ]

1. INTRODUCTION

Simulators are nowadays an important tool in
training helicopter crews, accounting for 50% of
total training time. A high level of motion
simulation fidelity is therefore of paramount
importance. As the development of high-fidelity

mathematical models of helicopters continues, it is
often tempting for the simulation developer to
continue to add complexity to the model, without
analysing the necessity for this complexity.
Therefore, some guidelines relative to the necessary
detail of the piloted simulation model are still
needed, before starting the actual derivation of the
dynamic equations of motion.

A previous ERF paper [l] presented some
investigations taking place at Delft University of
Technology relative to the question of necessary
model approximation within the framework of the
new simulator (SIMONA) which is being built at
present. A formal method has been described which
can be used to determine the type and number of
the relevant degrees of freedom essential to be
included in a simulation model. The method
consisted mainly on an analysis in the gcomplex
plane of the relative position between the body and
rotor dynamics. The predictions made using this
procedure  were first exemplified for the
investigation of the coupled body-flapping motion.
The results in the complex plane showed that
coupling effects between flap and body motion
seem to be of importance in a piloted simulation
model for the hingeless helicopter BO 105.

The aim of the present paper is to investigate the
influence of the flapping dynamics on the body
motion in the time-domain, in order to validate the
mentioned predictions. The paper is divided in two
parts: the first part in which different body-flap
models are investigated in order to determine the
influence of the blade disc-tilt dynamics on the
piloted simulation model and the second part to
determine if different approximations of the
analytical expressions of the flapping angles have
any influence on the piloted simulation model.

2. PRELIMINARIES

This chapter gives a summary of the prediction
procedure reported earlier in [1]. The method can
be used as a criterion to reveal how many degrees
of freedom of rotor dynamics are necessary to be
included in a helicopter simulation model. The
procedure in essence involves the study of the
uncoupled body and rotor modes. The proposed
method goes through the following steps:

(1) regarding the helicopter as a summation of
mutually uncoupled subsystems, the equations of
motion for every uncoupled deflection mode are
derived,

(2) solving the formulated equations of motion, the
eigenmodes of the motion are obtained,

(3) the eigenvalues of the uncoupled motion of the
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subsystems are represented in the complex plane.
For the representation of the cigenvalues of the
rotating subsystems, the Coleman transformation is
used so that the new eigenfrequencies of the
rotating systems can be directly compared with the
eigenfrequencies of the non-rotating componenis.
{4) using the representation in the complex plane,
the "critical regions” are defined. A "critical region”
is defined as an area of the complex plane where
potential couplings between different modes occur-
within and between subsystems. The criterion for a
critical region is the relative position of the poles in
the complex plane, ie. if the poles in the complex
plane associated with the uncoupled motion of
different deflection modes are close together, one
may expect that these modes will couple together.
(5) Conclusions concerning the degrees of freedom
to be used in the structural model can now be
drawn on the basis of the results obtained. It is
only after having performed such a relatively
simple exploratory analysis, that one should
proceed and write out the fully coupled, non-linear

model that has been determined to be relevant in
the case considered.

Applying the described method to the rigid flapping
motion, it appeared that the semi-rigid rotor
sy stems do require some form of coupled flap-body
motion models, a result revealed also in literature
[9,10]. This paper investigates this result in the
time-domain, by considering two typical
manoeuvres, and investigating the effects of the tip-
path-plane dynamics on the simulation results.

3. SIX PEGREES OF FREEDOM BODY MODEL
FOR PIH.OTED FIIGHT SIMULATION

A general six degrees of freedom non-linear rigid
body model is first developed as a basic model to
be used for the piloted time-domain simulations.

3.1 Mgdel Description

In a typical six degrees of freedom model, the
helicopter motion is represented by three
translations and 3 rotations around the body axis-

system of unit vector {Eb}={ i J_ r }T (seefig.1).

tum right

Fip. 1 Helicopter Body- Axes System

The helicopter body is modeled dividing the
helicopter in its main components: rotor, fuselage,
tailrotor, horizontal stabilizer, vertical fin and
summing the contribution of each part to the
general system of forces and moments. The
following assumptions are made:

- agrodynamic forces and moments are calculated
using analytical blade element theory,

- rator flapping is modeled using analytical steady-
state flapping equations,

- the tailrotor is modeled as an actuator disc,

- the fuselage, horizontal and vertical tails are
modeled with linear aerodynamics,

- rotor inflow is assumed to be uniform.,

The helicopter body equations of motion are the
fundamental equations of dynamics written in the
body-axes system:

@yl m {E) +uvwm o] A 7)
=(F 1t F st Fp +F, ﬁ") {Eb}

GaI1{E) «@anlTll ol ()= g
(M Mgt M+ M+ M) {Bo}

where:
m Q0
[m}= O0m O mass matrix
0O 0m
I 0 -IL,
[J]= 0 I, 0 moment of inertia matrix
-1 0 I
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0 r -¢

[w,]= -r 0 p
g » 0
Fn! Ffui’ Fir Fro Froo

Mg, M., M,, M,,, M, are the external forces and
moments acting on the helicopter components.

For a complete derivation of the forces and
moments in the relations (1), (2), the reader is
referred to {2, 1]. Appendix A, equations
{A.1+A.6), gives the final form of the helicopter
equations of motion implemented in the six dof
mode] developed in this paper. In order to describe
the motion of the helicopter in an inertial system,
the Euler equations (A.7+A.9) and the equations of
the helicopter trajectory (A.10+A.12) need to be
added to the peneral equations of motion
(A.1+A.6). Relations (A.1+A.12) completely
describe the helicopter motion in an inertial system
of reference in the six degrees of freedom non-
linear body medel.

.2 Modelin ic inflow in th
of freedom body model

In the 6 dof model developed in this paper, the
dynamic inflow is considered as a separate degree
of freedom. Two differential equations A.13 and
A.14 - one for the main rotor inflow and the other
for the tailrotor inflow - are added to the helicopter
equations of motion, so that the variation of the
inflow is calculated as a ‘quasi-dynamic infiow' [3].

.3 Modeling the pilot in the six T f
freedom model
To fly the helicopter with the 6 dof model
developed, a Stability Augmentation System (SAS)
has to be implemented. For the manoeuvres used as
example in this paper, four stabilization functions

are developed, each one for each helicopter's
control:

- Collective controls vertical speed
13

090 +K{Coes=OV* Koo [ (Cars=C)dlx 3)
1]

The desired vertical speed is controlled by an
"altitude hold" controller, feeding back the height
to the vertical speed:

Ces=K (B gy —h) {4)

- Longitudinal cyclic controls pitch attitude
¢
01,=Ke(0-8,)*K 3+ Ko [(8-0,)dr O
o

The desired pitch attitude is controlled by a
"longitudinal position hold” controller:

'
0 =K (X 4os) *Ku+K, ., f (g}t (6)
0
- Lateral cyclic controls roll attitude
t
01 =Ko(® 1oy~ @) +K P +Koy o [ (P -@)dr 7
0

The desired roll angle is controlled by a "lateral
position hold" controller:

]
¢M=Ky(Yd¢:_y) +KV+K, ., f Ozes—y)de ®)
4]
- Tailrotor collective controls heading angle
?
B0r=Ke(T - F)+K 1 +KYmrrf (Fus-F)dz O
0

The desired yaw angle is controlled fast and
smooth and does not need any proportional-
integration-differentiation (PID) controller.

The six dof model presented here is used to
investigate two mission tasks: a deceleration and a
side-step manoeuvre, simulated with two different
helicopters chosen mainly because of their different
rotor configuration: the Puma SA330 having an

articulated rotor and the Bol03 having a semi-rigid
rotor.

4. DECELERATION MANOEUVRE

A deceleration-to-stop manoeuvre was sirulated in
horizontal cruising flight at 50m/s the helicopter
has to be slowed down to hover within a distance
of 2 km from the starting point, above a given
point situated on the ground (see fig.2)

Fig. 2 Deceleration Manoeuvre
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1.1 Flving the decelerati ith 1
g7 ix g ¢ froed

This paragraph presents the way the two
exemplified helicopters, (Puma SA330, and Bo1035)
perform the deceleration manoeuvres with the 6 dof
non-linear model.

lerati '

Figure 3 presents the way the pilot performs the
manoeuvre with the two helicopters.

Pilot controls (deg)

TS K0 3 RotgeD 5
.,/ 0.5 Egm0l13 Kearngn 1.4
Ch B ~SEL Er+1 75 Koyl 29

3 K0 % Ecoa co0.4
[ T
2 H Ky= 04 Eva) 1
A, g I
1 - ?'-‘?x;h.,,\.---,---:---5--------_
% 50 a0 150 7 750
time{sec}

Fig. 3 Pilot controls in the deceleration
manoeuvre with Bol05, 6 dof model

The following pilot actions can be read from the
graphs:

With respect to the longitudinal cyclic: the pilot
flies forwards the first 110 seconds and then
gradually pulls back the stick in order to decelerate
to the hover. The tip path plane tilts back, resulting
in a tendency of the helicopter to climb. The
longitudinal stick variation is closely related to the
helicopter pitch attitude.

With respect to the collective, in the 110th second,
the collective is lowered from 7.2 degrees to 3.6
degrees (this is in fact a reaction to the helicopter's
climb tendency). After this, the collective is
gradually increased to the hover trim position of 8
degrees.

With respect to the lateral cyclic, some action can
be seen after 110 seconds when the stick is moved
to the right- this action is simultaneous with the
change in the roll angle to the left.

With respect to the pedal position, lowering the
collective in the 110th second, an input in the right
pedal is needed in order to correct the helicopter
yaw motion (an input in collective causes a yaw
rotation) . Then, as collective is increased in order
to transit to the hover, the left pedal is applied.
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Kt [t Kevwr coOL3
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Pilot controls{deg)
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Fig. 4 Pilot controls in the deceleration
manoeuvre with Puma SA330, 6 dof model

Looking at fig.4, the same actions of the pilot can
be observed when performing the deceleration
manoeuvre with the Puma. The only difference
consists in the lateral cyclic, Because the Puma
rotor rotates clockwise, the lateral cyclic is applied
opposite from that of the Bol05-i.e. first to the left
and then to the right. The gains used to simulate
these manoeuvres are shown in fig. 4.

5. SIDE-STEP MANOQEUVRE

This ADS-33 manoeuvre is described as consisting
of the following stages: starting from hover, a first
abrupt sidestep acceleration is carried out. After
reaching the maximum allowable lateral speed, an
abrupt deceleration back to hover is carried out.
After hovering for 5 sec, the manoeuvre is repeated
in the opposite direction.

Ay

=5
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‘ ﬁé\q.?g;?%:

R

Fig. 5 Side-step Manoeuvre
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Fig. 6 Pilot controls in the side-step manoeuvre
with Bo105, 6 dof model

Gains used:

Kg=1.72 Kq:-0.57 K. o=1.43
KQ:E.;'Z I(p=-0.57 Kear =143
K,=1.72 K=-0.57 Koo v=1.43
K =0.06 Koo =0.05
]{‘-_';—0.06 K,=0.09

Kys0.0]S K,=0.0225

Kh:O.()lS

with respect to lateral control, the lateral
acceleration is initiated by moving the stick to the
left. The acceleration is followed by a deceleration
when the pilot moves the stick to the right. After
hovering 3 sec the manoeuvre is repeated in the
other direction. The amount of lateral stick can be
correlated with the roll angle.

With respect to the longitudinal control: for the
acceleration the stick is pushed firmly forward and
then back in order to hover. In the deceleration
phase, the stick is pulled back and then slightly
pushed forward for the final hover.

With respect to the collective: in order to keep the
altitude constant, the collective has to be increased
first and then adjusted constantly.

With respect to the pedal: each movement in the
collective results in a yawing motion which is
corrected with the pedal.

Side-step manoeuvre: Puma

As for the side-step manoeuvre performed with the
Bo105, the same pilot actions can be seen in fig7
when the manoeuvre is simulated with Puma
helicopter. For the simulation in fig. 7, the same
gains as the one used above are used.
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3l
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Fig. 7 Pilot controls in the side-step manoeuvre
with Puma, 6 dof model

6. FLAPPING DYNAMICS

In order to determine the effects of flapping
dynamics on the two manoeuvres described above,
the flapping blade equation of motion in the
rotating system needs first to be derived. This can
be done by summing the moments due to the
aerodynamic forces acting on the blade, the
centrifugal force, Coriolis, inertia, and the restraint
forces about the flapping hinge. The following
assurnptions are made in deriving the flapping
motion:

- only rigid flap motion is considered,

- there is no elastic flapping, and no lag or pitch
degree of freedom,

- the rotor is modelled with spring restraint and no
flap hinge offset,

- the blade has constant chord and linear twist,

- the tip loss factor is assumed to be 1,

- the pitch-flap coupling is considered in the model
by increasing the effective natural frequency of the
flap motion [4, pp. 240},

- the effects of the aircraft motion on the blade
flapping are limited to those due to the angular roll,

pitch and yaw rate p, 4, r (the angular accelerations
arc neglected),

- a uniform inflow is considered,

- root cutout and tip loss is neglected {effect
reduced thrust)

- blade weight is neglected.

With these assumptions, the flapping eguation in
the rotating frame becomes:

. _ —. M,
%+p(v2~2;)=apws¢“2‘15m¢* oz (10

Tu

The aerodynamic moment M, is derived by
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integrating the lift force over the span:

R
Y 11
o 2-5{90,, U U\, dTy (11)

The tangential and perpendicular air velocity
relative to the shaft plane are:

U,wﬁsmq; +—cosqr+r,,,(1 -r) (12)

U ———Bcosq:~—ﬂs1n¢——~-r X
F ; ar ® (13)
X(Q°°31If +psinyg “'5)“10

Substituting these equations, the flapping equation
in the rotating frame is deduced.

The equation of blade flapping motion associated
with the rotating flapping angle is then transformed
in the non-rotating body axis- system. This can be
done in two ways:

- using the Coleman transformation [4] or,

- expressing the flapping angle in a first harmonic
Fourier series of coefficients varying in time {5].
Reference 6 demonstrates that these two methods
are equivalent, at least for a 3-and 4- bladed
helicopter (the new coordinates of the flap motion
in the non-rotating system cbtained using the
Coleman transformation correspond to the tip-path-
plane coordinates as expressed in a first harmonic
Fourier series used in the classical tip-path-plane
approximation).

Transforming the flapping equations of motion
from the rotating to the non-rotating frame, results
in three equations for disc-tilt dynamics
corresponding to relations A.15 +A.17 from the
appendix.

1. EXTENDING THE SIX_ DEGREES OF
FREEDOM MODEL TQ THE EIGHT DEGREES
OF FREEDOM MODEL

The six dof non-linear model is extended to an
eight dof model including the first order tip-path-
plane equations of motion A.18 + A.20. As
demonstrated in [1] this corresponds te taking into
account the low frequency regressing flapping
mode on top of the steady-state tip-path plane
solution. A formal tepresentation of the extension
of the six dof model to the eight dof model is:

I Body-Rotor!

Rotor'-Body | Rotor’-Roter’] |4y
by (14)

Body-Body Body-Rotor”

- r
dg
Rotor-Body | Rotor'-Rotor™| |a
|51

Relation (i4) shows that the eight dof model
includes a "body-to-rotor first-order disc-tilt
dynamics” coupling as well as a "rotor-to-body first
-order disc-tilt dynamics” coupling.

7.1 Flying the deceleration manoeuvre with _the
non-linear eight degrees of freedom model

The deceleration manoeuvre is now simulated first
with the Bol05 helicopter and then with the Puma
helicopter, using the eight dof non-linear model
presented above, in order to account for the effects
of the first order disc-tilt dynamics on the piloted
simulation model.

Deceleration manoceuvre: Bol03

Pilot controls (deg)

| B 075 Rael S ReorgyeD 3
Noe-0.5 Epm-0.05 Keornyp-0.5
77| g1 25 K025 Trormg=125
Eze0 08 Erore 0.
¥

time(sec)

Fig. 8 Pilot controls in the deceleration
manoeuvre, Bo105, 8 dof model
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Comparing fig 8 and fig 3 it is clear that the pilot
has difficulties in performing the manoeuvre with
the gains deducted in the six dof model.
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LEF Ko=.0.5 Keorgpe 14
Ap-- R e F LA
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2. .
|7 ; i e ]
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time(sec)

Fig. 9 Pilot controls in the deceleration
manoeuvre with Bo105, 8 dof model, new gains

Therefore, the gains are adjusted so that the pilot
can easier perform the manoeuvre. The results are
shown in fig.9. From this figure, it can be seen that
the pilot gives inputs with different amplitude,
justifying the conclusion that the flapping
influences the piloted simulation model of Bo105.

Deceleration manoguvre: Puma

T - o
3 o S R s
2 4 *7] Byr 15 Km0 5 Koo 25
8 3
23l
o2

1}-

Q-

-

.2 Wt :

33 50 100 200 250

tlme‘(stgtgsJD
Fig. 10 Pilot controls in deceleration manoeuvre
with Puma, 8 dof model

Comparing fig. 10 with fig 4 the differences
between the results of the 6 and 8 dof model are
hardly visible. This leads to the conclusion that the
flapping dynamics does not influence pilot controls
in case of the Puma helicopter.

Therefore, one may expect that a model including
the first order tip-path plane dynamics is needed for
the Bo103, as opposed to the Puma, where flapping

dynamics did not influence the pilot model.

1.2 Flying the side-step mangeuvre with the non-
linear eight degrees of freedom model

The second manoeuvre chosen as example in this
paper is now simulated using the eight dof model,

again first with the Bo105 and then with the Puma
helicopter.

Side-step manoeuyre: Bol05

=S

Pilot controls{deg)

B O M B @ @

(=]

t(s

Fig. 11 Pilot contrals in the side-step manoeuvre
with Bol05, 8 dof model

Gains used:

Kg=2.3 Ki=0.57 K., e=143
Ke=05 Kz=-057 K__ ,=1.43
Ke=1.23 K=057 K__ =143
K.=0.1 Koaw =005
K=-0.06 K=0.09

K,=006 K=0.0225

K,=0.08

As in the case of the deceleration manoeuvre with
the Bol05, the gains had to be changed in order to
simulate the side-step manoeuvre. The new gains
and the resulted pilot actions are given above.
Again, it can be seen that the first-order tip-path
plane influences the pilot model.

Side-step manoeuvre: Pumna

Comparing fig. 12 with fig 7, the gains can still be
kept to the values used in the 6 dof model, but the
inputs are now quite different in amplitude
comparing to those in the 6 dof model. It was also
tried to get results closer to the 6 dof model by
changing the gains, but the differences were even
bigger. Therefore, one can conclude that the first
order flapping dynamics influences the way a pilot
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flies the side-step manoeuvre with the Puma
helicopter.

16
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Fig. 12 Pilot controls in the side-step manoeuuvre
with Puma, 8 dof model

8. EXTENDING THE_ _SIX DEGREES OF
FREEDOM MODEL TO THE NINE DEGREES
F FREEDOM MODEL

The six dof model is extended to the nine dof
model in order to account for the influence of all
transient flapping blade motion. This is done by
including the complete flapping equations of
motion A.15+A.17,

These second- order differential equations are then
transformed into first order differential equations,
resulting in six degrees of freedom for the flapping
motion. The newly developed modei is the so-
called "nine dof model”.

This model considers, as far as the flapping motion
is concerned, on top of the steady state solution, the
first order tip-path-plane motion as in the eight dof
model and also the second order tip-path plane
motion.

The extension of the six dof model to the nine dof
model is formally represented in (15), showing that
there two levels of couplings now: firstly between
the body and the first-order disc-tilt dymamics,
identical to that of the eight dof model, and
secondly between the body and the second-order
disc-tilt dynamics, and vice-versa,

G
I Body-Rator? | Body-Rotor”|
0 I 0 |[1-
by
Rotor®-Body | Rotor™-Rotor! I o
5, (15)

Body-Body | Body-Rotor’ | Body-Rotor”

.| 0 0 I |r"
By
Rotor¥-Body | Rosor®-Rotor= I &.°

By

8.1 Flying the deceleration manoeuvre with the
non-linear nine degrees of freedom model

As a final step in the investigation of the influence
of the flapping dynamics on the helicopter piloted
simulation model, the deceleration manoeuvre is
simulated with the Bol03 helicopter including all
the transient flapping motions in the model as
given by the nine dof model.

Deceleration mangeuvre: BolQ3

[ H B H 0F Collaclvr
H P IN oiLomit. eycle
o J—— SR SRR B pbinamit

Pilot controls {deg)
o o~ [e:)

I S— e e ]
LF Kpm 08 Xeorge L4
4t-- T KRR
] Eom Doy o 405
al.. - — T T 69
2 0002
ks
ka G T R T R
time{sac)

Fig. 13 Pilot controls in deceleration manoeuvre
with Bol05, 9 dof model

Comparing fig 13 and fig 8, one can observe that
there is no influence of the tip-path-plane flapping
accelerations on simulating the manoeuvre.
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Deceleration mangeuvre: Puma
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Fig. 14 Pilot controls in deceleration manoeuvre

with Puma, 9 dof model

For the Puma, one can already expect that using the
second-order tip-path plane equations of motion,
there is no difference in the way the pilot flies the
deceleration manoeuvre since it was already shown
that the first order flapping dynamics does not
influenced the piloted simulation.

9. INVESTIGATIONS IN THE COMPLEX
PLANE

Reference [1] presented an investigation in the
complex plane applied in order to determine the
necessary degrees of freedom in a piloted
simulation model. The method was then
exemplified for the rigid blade flapping. It was
found that the regressing mode of the BolQ5 was
much closer to the short period than the one found
for the Puma. This chapter investigates the way in
which the body short period moves relative to the
regressing flapping mode when simulating the
manoeuvres studied in the present paper.

9.1 Deceleration mangeuvre in "the complex
plane": Bo103

Analysing fig. 15 it can be seen that the short
period mode in the six dof model at V=30 m/s is
increased in damping and frequency. Changing the
gains values in the eight dof model, determines
only real values for the eigenvalues of the short
period mode. The eigenvalues of the regressing
flapping mode do not shift in the complex plane
because only the representation of the uncoupled
flapping motion has been used.
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Fig. 15 Body short period and regressing
flapping for the deceleration manoeuvre: Bo105

9.2 Deceleration manceuvie in_ "the complex
plane”: Puma

For the Puma helicopter, the gains used in the six
dof model could also be kept constant in the eight
and nine dof model. Looking at fig.16 it can be
seen that the short period mode in the six dof
model with the automatic pilot has only real
eigenvalues.
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Fig. 16 Body short period and regressing
flapping for the deceleration manoeuvre: Puma

9.3 Side-step mangeuvre "in the complex plane™

BolQS
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Fig. 17 Body short period and regressing
flapping for the side-step manoeuvre: Bo105

As for the deceleration manoeuvre, the eigenvalues
of the short period mode in the six dof model for
the side-step manoeuvre with the automatic pilot,
are complex values for velocities higher than
50m/s. Changing the gains in the eight dof model,

the eigenvalues of the short period mode become
real,

9.4 Side-step manoeuvre "in the complex plane:
Puma
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Fig. 18 Body shorn period and regressing
flapping for the side-step manoeuvre: Puma

In the case of the side-step manoeuvre with the
automatic pilot performed with Puma helicopter, the

eigenvalues of the short period mode are still
complex values, but their frequency is much low
that the values obtained without the automatic pilot.

10, INFLUENCE OF DIFFERENT
APPROXTIMATIONS FOR THE STEADY-STATE

APPIN ANGLE N YIN
MANQEUVRES

Considering the same assumptions in deriving the
flapping motion in the rotating frame as explained
in paragraph 6, the flapping blade equation of
motion is derived, this time without neglecting the
higher order terms appearing in the equations of
motion. The blade flapping equation of motion (10)
becomes:

%5 +B(v2-2r+r2-p2cas?y +2pgcosysing -
-g?siny)= 2pcosy-2gsiny -rpcosy +rgsing +
M,

a

LQ*

+

(16)
and the air velocities are now:

Up=Zosing+oosy 7, (1P % (17)

x(pCOSY -gsiny) ~h gsiny +h pcosy

_Hu v P _i iy
Ue QRﬁCOS‘lf nRﬂsmq; aR X
x(Ecosq: psiny —%)+AB _hgpcosy-hppsing

Substituting (17) and (18) in (11) and transforming
the equation of motion from the rotating plane to
the non-rotating frame results in the tip-path plane
equations flapping equations. The complete form of
these equations is given in {7, pp. 102-103L
Reference {7] presents also a way in which these
equations should be simplified {7, pp. 111].

This chapter investigates the influence of three
analytical expressions (relations  A.2]-A23,
relations A.60-A.61 from [7] and relations A.49-
AS51 from {7]) on simulating the deceleration
manoeuvre with the Bol03. For simulation, the six
dof model is used. Fig.19 presents the longitudinal
flapping angle (relative to the control plane) of the
deceleration manoeuvre calculated using these three
analytical expressions. The case of flapping angle
without blade twist and flapping hinge offset is also
simulated.
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Fig. 19 Different approximations in the flapping
angles, deceleration manoeuvre with Bol05

From fig. 19 it can be seen that the same results are
obtained using formulas A.21-A.23 from this paper,
Appendix A, or the relations A49-A51, [7]
Retaining the high-order terms and coupling terms
in the simulation, it results in different results of
the longitudinal flapping angle during the
manoeuvre. This result leads to the conclusion that
the higher order terms in the analytical expressions
of the blade flapping angles influence the
simulation results and therefore caution should be
expressed in neglecting these terms in the piloted
simulation model. This conclusion becomes more
true when flying heavy manoeuvres which push the
helicopter to its flight limits.

11, CONCLUSION

11.1 Conclusions _with respect to the disc-tilt
dynamics

The paper investigated in the time-domain the
effects of the disc-tilt dynamics on the piloted
simulation model. Time-domain simulations are
performed with three models (a six dof body
mode!, an eight dof first-order disc-tilt dynamics
model and a nine dof second order disc-tilt
dynamics model) for two different helicopters
(Bol05 and Puma SA330) flying two mission tasks
(a deceleration and a side-step manoeuvre).

w With respect to the first-order disc-tilt dynamics
it appeared that:

- flying the deceleration manoeuvre with the Bol105
semi-rigid rotor helicopter, the regressing flapping
mode does influence the pilot simulation model,

- flying the deceleration manoeuvre with the Puma
articulated rotor helicopter, the regressing flapping
mode does not influence the pilot simulation model,
- flying the side-step manoeuvre with the Bol0s

semi-rigid rotor helicopter, the regressing flapping
mode does influence the pilot simulation model,

- flying the side-step manoeuvre with the Puma
articulated rotor helicopter, the regressing flapping
mode does influence the pilot simulation model,
These results suggest that the low frequency
regressing flapping mode should always be
included in the piloted simulation model when
analysing a semi-rigid rotor configuration. When
analysing an articulated rotor helicopter, the
inclusion of the low frequency regressing flapping
mode depends on the manoeuvre analyzed.

r With respect to the second-order disc-tilt
dynamics it followed that:

- flying the deceleration manoceuvre with the Bol05
semi-rigid rotor helicopter, the high frequency
advancing flapping mode dggs not influence the
pilot simulation model,

- flying the deceleration manoeuvre with the Puma
articulated rotor helicopter, the high frequency
advancing flapping mode does not influence the
pilot simulation model.

These results suggest that the high frequency
advancing flapping mode does not need to be
included in the model, for the semi-rigid rotor
helicopter nor for the articulated rotor helicopter.

11.2_Conclusions _with respect to the analvtical
expressions of the steady-state flapnine aneles

The paper showed also the influence on the piloted
simulation model of the high order terms and
couplings from the analytical expressions of the
steady-state flapping angles. Simulating the
deceleration manoeuvre using different
approximations in the flapping angles, it followed
that these terms are influencing the piloted model.
Therefore, although the high order terms are usually
neglected, caution should be expressed as to their
influence on the piloted simulation model.

12. RECOMMENDATIONS

The present investigation was carried out having as
final goal in mind to obtain a formal procedure
which is able to predict the necessary level of detail
in the piloted simulation model. As a first step, the
body-flap coupling was investigated. Some
recommendations on how to continue in the future
can be made.

- knowing that the uniform inflow leads to
significant errors in the lateral flap motion [4,pp.
205], time-domain simulations should be performed
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with model that include the non-uniform inflow,

- in order to be able to develop criteria in the
complex plane relative to the level of detail
necessary in the piloted simulation model, further
time-domain simulations should be performed with
other typical cases (different rotor paramecters,
aerodynamic models, different manoeuvres)
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APPENDIX A- EQUATIONS OF MOTION SIX DEGREES OF FREEDOM BODY MODEL

Appendix A gives the equations of motion of the six degrees of freedom non-linear piloted model developed in the
present papet.

Nomenclature
1, helicopter moment of inertia about body x-axis [kg m?]
I, helicopter moment of inertia about body y-axis [kg m?]
I helicopter moment of inertia about body z-axis [kg m’]
I, helicopter product of inertia about body x and z-axes [kg m’]
pb helicopter roll angular velocity [rad/s] and its non-dimensional value [-]
a.q helicopter pitch angular velocity [rad/s] and its non-dimensional value [-]
rrr helicopter yaw angular velocity [rad/s] and its non-dimensional value [-]
m helicopter mass [kg]
u component of airspeed along bedy x-axis [m/s]
v component of airspeed along body y-axis [m/s]
W component of airspeed along body z-axis [m/s]
v total helicopter velocity [m/s]
X position along Earth X-axis [m]
y position along Earth Y-axis [m]
zZ position along Earth Z-axis [m]}
u, =4f(QR) normalised velocity component along x-axis [-]
py=v/(ﬁR) normalised velocity component along y-axis [-]
pz=wj(ﬂR) normalised velocity component along z-axis [-]
() Euler pitch angle [rad]
¥ heading angle [rad]
li?) Euler roll angle [rad]
c helicopter climb velocity [m/s]
h helicopter altitude {m]
Rotor
a coning angle {rad]
a longitudina! flapping angle [rad}]; a >0 if the tip-path plane tilts backwards
b, lateral flapping angle [rad] b>0 for tilting to the right (y=90 deg)
p =a0-acosy-b;siny blade flapping angle [rad]
ok blade lift curve slope [rad™ ]
C,=0.011+0.4(x -a,} blade drag coefficient
C, thrust coefficient relative to the disc plane {-]
co thrust coefficient calculated with the blade-element theory

cg thrust coefficient calculated with the Glauert theory

Cy rotor drag force coefficient [-]

Cs rotor lateral force coefficient [-]

Cq rotor torque coefficient [-]

I, inertia moment of the blade section ( m*)

Ka flap hinge spring constant

my blade mass (kg)

e € flapping hinge offset [m] and its non-dimensional value [-]
N number of rotor blades [-]

R rotor radius [m]
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T=p(QRXxRAC,
H=p(QRA(R)Cy
S=p(QRY(xRAC,
Q=p(AR(=R*RC,

D=%V2.S‘Cd
y
_
(Voly), = = { dAx) dx

M, =p VZKM(VO% sy
(X Yoo Z1)

o

Y

Ao

Az-p A,

v2=1+K /(1,07
o
W

0.
8=04+0,, -8,. cosy-0,siny
193

Tailrotor
Cur
f,=1-38, J(4nRD)
R,
(Xys Ze)
Q.
k=1
U Wk QRA +qx, )
p =
= Q.R,
_ vrxpz,
TTTaR,
}"On'
Bor

Tw=p(Qan_)2(1rR:.)C, r

Vertical fin

(xt’m + Zgp )
Sﬁn

rotor thrust
rotor drag force
rotor lateral force

rotor torque

blade drag force

volume of a body equivalent to the fuselage having only circular sections [m’]

fuselage pitch moment [Nm]

position of the rotor hub relative to the body-axes system
rotor incidence [rad] relative to no-feathering plane
Lock number

normalised uniform inflow velocity {-]

non-dimensional natural frequency of the flap motion

rotor solidity (plenitude coefficient)

azimuth angle [rad)

collective pitch [rad]

lateral cyclic pitch [rad] 8, >0 for pilot stick to the right

longitudinal cyclic pitch [rad] 6,,>0 for stick forwards
blade twist [rad]

blade pitch angle [rad]
rotor rotational speed [rad/sec)

tailrotor thrust coefficient [-]
tailrotor fin blockage factor [-]

tailrotor radius [m)]

tailrotor position relative to the helicopter body-axis system
tailrotor speed {rad/sec]
main rotor downwash factor at tailrotor

normalized tailrotor velocity along x-axis [-]

normalized tailrotor velocity along z-axis {-]

normalized tailrotor uniform inflow velocity
tailrotor collective [rad]

tailrotor thrust

position of the vertical fin relative to the body-axes system
fin area [m*]

M 03.15




V, =Jul+(v=rxg, +pzs,)
fin ‘/ (P *Pep vertical fin velocity [my/s]

Bosa vertical fin incidence

B, =, + VPR | vertical fin incidence [mys]
fin Tt I

Lift, =25, vach vertical fin Lift f
!ﬁﬁn“Eﬁn "2xCinaP s ertical fin lift force

Horizontal stabilizer

(Regs Zs ) horizontal stabilizer position relative to the body-axes system
S, horizontal stabilizer area [m?]

VT

horizontal stabilizer velocity [m/s]

Olgye haorizontal stabilizer incidence
w+gx . o

a}u:mw+mm{ = fu] horizontal stabilizer incidence

Liﬁm“%SmV::Cﬁu“h horizontal stabilizer lift force

Body equations of motion

u=—gsme-——sul(a1 1_,,)cos(b +91,) wcos,(le-Ell.,,)+—sm(‘:11 Bh)sm(b +0 ) ——+rv—qw

¥ = gsinBsin®d +—£sin(b1 4-91E)+%<:o:~s(b1 +91c)+% ey pw

Li
W = geosBeos —-J'J;L:-‘@os(a1 —(;Jls)cos?.(ls'1 +01c)+ gsin(al —Bh)+-g-cos(a1~eh}sin(bl+a 16)-2“_'; —-gi‘l—pvmu

D =£(zﬁin(b1 +31c)+ykcos(a1 -Bk)cos(bl +61._,))—;—{yksiu(al —Bu)+}s—(zﬂccs(bl ““exc)"yn°°s'(“1 -Bbﬁin(b1 +Blc))+

"’——Z,,f tr

L ~(I -1 )qr+(F+pg)I
ﬁﬂn + Meanzsm(b1+elc)+ ( 3 y)q ( PQ) xr
I, I I

X
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