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Abstract

A new control algorithm is applied to control deflection of a tab mounted at the trailing edge of a hielicopter rotor
blade. The goal of control is to obtain prescribed blade motion and it is shown by numerical simulation thar the

algorithm is effective in controlling blade torsion.

Notation

A(t) - state matrix of linearized system,
A=[Anm(D], m, n=1, N

B(t) - contro! matrix of linearized system,
B(t=[Bu ()], m=1,..N

¢ - aerofoil chord

C, - aerofoil lift coefficient

C,, - aerofoil moment coefficient

C(k) - state matrix of discrete system,
Clo)=[Canl. m, n=1,..N

d(k) -~ vector of discrete external disturbance,
d=[d,], n=1,.,N

Bk} - control matrix of discrete system,
D=[Dn ], n=1,. N

ek} - difference between required and actual values

-of states
f(t,x) - right hand sides of nonlinear system,
f(t,x)=[f,), n=1,.. N
G(k) - matrix of control gain,
G={Gl, n=1,..,2N, m=1,. N
i - number of period
I - identity matrix
k - time step number, 0<k<M
M - mumber of time steps
Ma - Mach number of undisturbed flow
N - pumber of states
R(t,x) - vector of higher order terms,
R, x)=[Ra(t,53), n=1,.. N
t-time
uy(k) - required control
w;(k) - actual control in i-th period
x{1) - vector of state variables, x{f)=[x.(1)], n=1,..,
x4(t) - vector of required values of states x{t)
eft) - aerofoil angle of incidence
5(t) - angle of tab deflection
g5~ bound value of disturbance d(k)
¢~ tolerance of system motion
A - control constant

Subscripts and indices
("} - estimated value

(") - generalised matrix inversion A'=(ATA)'AT
(- ) - differentiation with respect to time

N

Introduction.

The suppression of vibration is of continuing interest
in rotorcraft technelogy. Due to periodic excitation
inherent especially in forward flight, a rotorcraft is
subject to varying dvmamic and aerodynamic loads.
These variable loads act on main rotor, so attempts o
alleviate these lead te diminishing the vibration level of
the whole rotoreraft.

This provides the motivation for many different
studies concerning various rotor design concepts, passive
antivibration devices [1], active control of rotor pitch
(HHC, IBC concepts) {2] and gpplication of actively
controlled additional devices {3].

Recently the application of blade mounted frailing
edge tabs has stimulated the interest of many
researchers.

The use of blade trailing edge tabs for primary
control of rotorcraft has been successfully implemented
by Kaman Company in their products, most recently on
the K-Max helicopter, The use of tabs for primary
control was analytically investigated in [4].

Several analytical and experimental studies have
been carried out to obtain insight into different aspects
of the application of a trailing edge tab for additional
control. The use of tabs for vibration suppression was
investigated in [5], for reduction of the effects of blade
vortex interaction in [6] and for rotor performance
optimisation in {71

This interest has been caused by prospects of
providing the driving mechanism for tabs through smart
structure technology [8]. Tabs driven by piezoelectric
benders were tasted experimentally in [9] on a rotor
model in hover.

Physical phenomena involved in applications of the
"smart tab” are aeroelastic including both dynamic i.e.
(inertia and elastic loads}, and aerodynamic phenomena.

To achieve the required gecal a proper control
strategy should be applied to the system. Up till now the
open loop systems have been considered [10] or control
algorithms of mainly LQC or LGC type in the frequency
domain {i1] have been utilised. Ajso some heuristic
approaches [71 in the time domain have been tested.

The objective of this study is to investigate the
possibility of the application of a time domain ,learning
algorithm” for controlling a tab mounted at the trailing
edge of a blade to diminish the rotor vibration level.

I-15-1



Properties of the chosen control algorithm are
evaluated by computer simulation using an individual
blade model adapted to the needs of this study by adding
a trailing edge tab. The acrodynamic loads at the tab are
caleulated using static aercdynamic coefficients obtained
from experimental data as functions of aerofoil angle of
attack and tab deflection.

The vibration reduction considered here is expressed
as the requirement for the blade to perform assumed
motion. In the computaticnal examples the particular
goal of controlling deflection of the trailing edge tab is
o remove one or several harmonics from the blade
steady motion.

The algorithm demonstrates its efficiency in this
aeroservoelastic case, allowing that tab size is adequate
to influence the blade motion.

Background of the contrsl method.

In rotorcraft aeroservoelastic problems, the plant to
be controlled is periedic with respect to time. There have
been atterpts to develop control algorithms for such
tvpes of plant in rotorcraft research, and similar activity
has been performed in the robotics area, although the
plant considered in this field seem 1o be more easity
handled.

The control algerithm applied during this study is a
modification  of that developed in ({12,131, The
background of the method is presented here for
completeness,

The discrete, linear, system periodic with respect to
tine with scalar control u(k) is considered:

x(k +1) = Ck)x(k) + D(R)ulk) +d(k) (1)

where k=1,2,.. M.
Matrices C(k) and D(k} are periodic with respect 1o
time, t.e. for all k

C.(ky=C k), D, (k)=D, (k) (2)

In the above, subscript 1 describes the number of the
period.

The periodic and bounded disturbance d(k) for all k
and i fulfils the condition

ld,.. (k) =d. (k)] < e, (3)

where g4 is a prescribed constant.

The learning problem is stated as the requirement,
that the state vector x4k) is a realisable, periodic
trajectory. The sequence of control applied ui(k),i=1,2,..
shouid provide that, starting from some period of time,
the system trajectory x;(k) wiil satisfy the condition

k(i) —x, (b < &, S

where g 1$ assumed {olerance bound.
It was proved in [14], that the control defined as

w (K = (k) +
AD; (k)=D; ()€, ()] x [k + )] (k)Y ()
¢, (kY = x, (k) — x,(k)

fuifils the learning condition if, for initial error
¢, {0) =0, the estimate of mairix D(k) satisfles the

condition
1= 2D (DK < 1 (6)

If the external disturbance is pericdic, then
iic, (k)ﬁ =0, fori-»>oo (7

These expressions form the basis for application of
this algorithm to a nonlinear, continuous system.

Application to a nonlinear, continuous system.

The mathematical model of a helicopter rotor blade
can be expressed as a nonlinear system of ordinary
differential equations periodic with respect to time, with
scalar control u(t) corresponding to the angle of
deflection of the trailing edge tab

e ((,x,u) (8)

For assumed nominal tab control ugt) the desired
periodic sotution for this equation is Xy(t).
The system (8) is linearized about x4(t)

X = A(NX +BOu{) + RS, 3x,,u(), 1, (1),1) ©)

The matrices A(L), B(t) in (9) are defined as

A= [.4,,.1{%} . B= {B;}{%} (10)

and the quantity R(x, xg, u(t),us (1),t) contains the higher
order terms.

Approximating the time derivative by the forward
finite difference
o X+ an -x(h) an

At

and inserting it into the linearized equation (9) transfers
the linearized equation 1o the discrete time domain

x{t+ AN = [+ AOatjx + B(OAtu(t) +

ey
+R(x, %, u ()1, (L)1) AL

and by substitution
t=kar, Clky =1+ A(kanat], DK) = BANAL,

13
d(k) = R(x(kAP), x, (kAL), u(kAL), u, (KAL), kAL, AL) )

equation (12} can be reformulated to the form (1).

The proposed application of the algerithm described
in the previous section to the noniinear case consists of:
I. Dividing the time period intc M steps by prescribing
the points of time £ =k, k=1,2,...,M and calculating at
these points:

1. The desired solution x4(k),

2. Matrices A(K), B{k) of the linearized, continuous

system (10),
3. Matrices C(k), D(k) according to (13),
4. The gain matrix Gk accarding to the formula
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Gk) = [D] (k)-D; (B)C, (1)) (14)
II.  Assaming the value of A, as the theory gives no
indication for selecting its value.

III. Starting from eg(k)=0 the motion of the system is
controlled in each period of time according to the
formulae

(kY= w (k) + 2 G % e, (k+ Do (k)Y

{15)
¢ (k)= x,(k)-x,(k)

In this approach the higher order terms R({t,xu)
rejected in linearization are treated as a disturbance
vector d(k) and matrices €(k) and D{k) as estimates of
the matrices of the discrete pericdic system.

Application of the algorithm to blade motion.

In this study the algorithm is applied to obtain the
required motion of a helicopter rotor blade with an
atterpt to suppress the prescribed harmonics of steady
moetion.

The sequence of caloulation during
simulation is:

i. Solve the nonlinear system (8) of blade equations of
motion for the prescribed number of rotor
revolutions. The biade motion during the last
rotation is blade steady motion x(k).

2. Perform a Fourier analysis of the steady motion x(k).

Reconstruct the blade required motion x4{t) using the

selected Fourier series coefficients from step 2.

4. Calculate the control gain matrix according o (14)
by linearizing the blade equations about the
reconstructed steady motion and assumed injtial
control.

5. Apply the learning algorithm to simulate controlied
blade motion for the assumed number of blade
rotations.

For the numerical simulation of helicopter rator blade

motion, a well tried and tested computer model of an

individual blade is utilised, which 1$ described fully in

[14].

numerical

L2

Blade model.

The motion of a single rotor blade of a helicopter in a
steady flight is studied. The angular velocity of the rotor
shaft is constant.

The medel applied for the blade modelling allows the
selection of different arrangements of the rotor hub and
the deflection modes of the blade.

In the general case the blade has a straight elastic
axis and is pretwisted about it. The blade stiffness loads
are obtained from a Houbolt-Brocks model. It can bend
lag-wise, flat-wise and twist about the elastic axis, The
blade cross sections have symmetry of elastic properties
about a chord and there is no section warping.. Viscous
structural damping of blade deformations is included.

The blade deflections are discretized by free vibration
modes.

The aerodynamic loads are calculated from a two-
dimensional, quasi-steady, nonlinear model based on a

table look-up procedure described in Appendix 1. The
induced velocity is calculated from the Glauert formula,

The vector of generalised coordinates of the blade
motion contains elastic degrees of f{reedom resulting
from discretization of blade deformations by normat
modes.

For numerical integration of equations of motion.
Gear's algorithm is used, which allows for solution of
"stiff equations”.

The scope of the numerical study concerns the
following aspects associated with the proposed control
algorithm:

1. Application of linear methodology to the nonlinear
case.

2. Simple form of continuous system discretization 10
the time domain.

3. Na rational indications for choosing parameter 2.

4. Rotor blade aeroeiastic behaviour which influences
controtiability of the system,

Insight into these aspects of the control can be gained
only by numerical simulation

Sample results of numerical caleulations.

The effectiveness of the control strategy depends both
on the plant properties and the control algorithm. As one
of the assumptions of the method comprises
controllability of the system, the tab mounted at the
blade should produce aerodynamic loads sufficient 1o
influence blade motion. The magnitude of these loads
depends on the blade dynamic properties and the
velocity of the helicopter flight.

A tab would most likely influence the blade twisting
moment, 50 this was the reason for selecting this blade
degree of freedom for investigation here.

From the available blade models, the hingeless blade
stiff in bending and elastic in torsion was selected to test
the control algorithm.

The base blade configuration selected for the study of
the properties of the control algerithm comprises the
blade deformable in twist attached to the shaft via a stiff
clement. It can be controlied in pitch about a feathering
bearing.

Numerical results are obtained using as the base data
that corresponding approximated the Westland Lynx
biade [153]). The main values of blade parameters are
given in Tabie 1.

Table I Blade data

rotor angular velocity 2 rad/s 34.0
air density kg/m® | 1.226

blade chord {(aerofoil+tab) nm 0.3695
rotor radius m 6.40

blade mass ke 57.2

blade length 17 3.61

natural frequency of twist | 1/0) 6.29

damping of aerofoil twist | %crit | 001

linear twist of the biade deg §from4.3
to -2.2
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The flight conditions concern an untrimmed rotor
having collective pitch of 10° and no cyclic control. The
flow velocity expressed as rotor advance ratio varies
from 0 to 0.35 in 0.05 intervals.

As the first result of numerical simulation it was
found that due to high fundamental torsional frequency
of the blade, a tab of chord 0.1c¢, which can influence
blade twisting deflection should elongate frem 23.3% 10
95% of the blade span.

The next important factor for control efficiency, the
control constant A can be adjusted by trial and errors. It
can be neither to large, which would make control too
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Fig.1. Required motion composed of selected harmonics

Two cases of blade required motion are considered.

In the first case shown in Fig.1, the required motion
is reconstructed from the Fourier coefficients of steady
motion up to the seventh order but without the third and
fourth harmonics.

aggressive nor too small which siows the lcarning
process.

In the case considered, the smatlest value of 7 which
was found to be effective was 0.05.

For the chosen tab chord and control parameter, the
sampile results of blade control are given in the figures
for helicopter advance ratios of 0.15 and 0.33. These
show the mation of the nonlincar systom afier 19
rotations (which is regarded as the blade steady motion)
the required motion for the case considered and the
controlled motion after 10 rotations of the algorithm

being applied.
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Fig.2. Required motion of constant values,

In the second case, Fig.2. the constant component of
steady motion was forced by the control algorithm.

Both of these cases are completely artificial and are
aimed at demonstrating the effectiveness of the control
algorithm, it is not intended that they represent real
flight situations. -
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. In both cases the control algorithm proved to be
effective, driving the blade twist to the vicinity of
required motion. The required tab deflections are within
the acceptabie limits, although the time dependence
varies with the type of the motion required.

Conclusions

A learning control algorithm taken from the fieid of
robotics has been modified and applied to the nonlinear
periodic model of a helicopter rotor blade. The
numerical simulations have shown that with an
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Appendix 1. Acrofeil static characteristics

The Prandtl-Glavert correction factor is applied to
accounting for influence of Mach number on acrofoil
characteristics

c, - C,.
N1 - Ma®
The static characteristics of an aerofoil with a tab are
based on the characteristics of an aerofoil without a tab,
which are modified to account for tab deflection. A table
look-up procedure is utilised here for obtaining the static
characteristics of an acrofoil.
To account for tab deflection, the lift coefficient is
calculated as
& CL
fa

C=C s+

éaiﬁ

According to [16] the correction A g L0 the angle
of attack has the form

A =10

The flap effectiveness factor © is calculated as

T:lwm,gr :Cosll(__i__])
i

Q.2 -

The correction factor v is approximated for the plain
tab and deflection angle less than 20° from Fig. A [17) by

the formula
7 = -0000435% +0.00056 + 085

The moment coefficient for an acrofoil with a tab is

calculated as
C.ms =C ACM&S

The correction for the tab is calculated from the
formula

¢
AC o = f[—") AC
c

0
AC Pl | i
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The function Af{cg/c) is approximated from Fig.B for
a flap ratio Iess than 20% by the formula
¢, i
S =03-%~0245
C

The drag coefficient is obtained from a table look-up
procedures of the data taken from Fig.C [18] as a
function of lift coefficients,
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