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ABSTRACT

Mathematical modeling of the elastic rotor blade in f£light me-
chanical investigations is based on the known stubstitute model
of rigid beam with phantom flapping ~ that is respective lagging
hinge in the vicinity of blade c¢lamping place. The elasticity

of blade is respesented eguivalently by installation of a spring
on the hinge. The blade model serves sufficiently for statements
on the first harmonic oscillations.

In case of dynamic investigations it is however necessary to
represent higher harmonic oscillation forms of blade. The ne-
cessary local deviations for this on the blade supplies the
solution of the partial differential equations of blade de-
flections.

These coupled differential equations for flapping, lagging and
torsion are derived by J. C. Huboldt and G. W. Brooks.

For the soclution of equations a variation formulation according
to Ritz with Hermite-polynomials as formulation functions is
drawn up. Based on this solution formulation, a calculation
program is set up on wnich blade oscillation forms and bending
procedures for various flight cases can be determined and dis-
cussed.

The study was carried out at the Institute for Flight Mecha-
nics and Flight Control at the Technical University of Munich
by order of the Federal Ministery for Research and Technology.
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1 ENTRODUCTION

The derived and coupled differential equations in {[1] are
the following form:
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The solution of this equation falls under the problems of ela-
sticity theory.

Mechanical problems of this kind however, frequently do not
permit any proper solution. This applies especially for the

so called boundary value problems, that is problems as such
where a differential equation or a system of differential
equations with specified boundary conditions is toc be solwved,
In such cases one frequently refers to approximation solutions
adapted to the boundary conditions. The proper methods to find
such approximation solutions, especially in boundary value
problems in elasticity theory, are based on variation calcu-
lations where the Ritz -~ or the Galerkin preocedure are the
most significant.

2 SIMPLIFICATION OF DIFFERENTIAL EQUATIONS

The now following method of solution is based on the variation
method by Ritz.

First of all to make the procedure clear the simplified un-
coupled flap- equaticn is derived.

For this the following neglections are made:

a) Not only the stiffness of blade EI, but alsoc the mass per
unit m* are assuned te be constant along the blade.

b) Only displacements in the z-direction are considered.
e . YE = BE = e = O
c} The center ¢f gravities-, tension - and elastic axes

coincide

— e = e = 0

4} Time intejration ensues in small time intervals, so that
the process can be regarded as guasistationary.
*

— Lz = g(x}

The differential eguation thus receives the form:

EIzE""- (TzE')' + m*EE = g(x) (2}
in which for centrifugal force holds:

T = m*mRozfx ax 3
T = %‘m*wRozxz

Thus it follows

Elz "™ - m*wRozsz' --% m*wRozxzzE" + WFEE = q(x) (4}



3 THE RITZ-PRQCEDURE

In the elasticity theory the elastic bending line
w = w (x)

is according to the Ritz-procedure generally approximated by

& = = 5
& (%) clwl(x) + czwz(x) + ...+ cnwn(x) Ciwi(X) (5)

The formulation functions wi(x) are arbitrary chosen functicns
which must be sufficient for the boundary conditions of system.

The parameters c, must be determined, that is with the assist-
ance of the already mentioned variation, which can be deduced
from the energy formulation due to Hamilton [2]

Slsw - vy + 6wl at = o (6)
af

From the kinetic energy U, the potential energy V and the
extericur work W follows for the virtual derivations

L
U = fa*zdéz dx ,

SV
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In this existing dynamic problem for the approximation function
according to eqn. (5) holds

L}
2(x,t) = 7% ¢, (&) z, (x) (8)
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From this formulation with the derivations 2, Z ... follows
the energy equation
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4

THE HERMITE-

POLYNOMIALS AS FORMULATION FUNCTIONS

Now formulation functions must be found sufficing the boundary

conditions.

In the foliowing tables and figures the various polynomials

are illustrated.

4th
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Table 1: Hermite- polynomials
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According to the degree of the based
one distinguishes
6th and 8th order.

bth order
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The Hermite- polynomials are deduced according
to ref, [3] from a boundary value consideration;
thus this requisition.
derivations of the beoundary values,

Her-
mite~ ‘polynomials of the 4th,

ng -
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Variable ¥ of the polynomial is hereby without any dimension.
Thus the later integrations result across the blade radius
in the interval [0,1] which will be of an advantage.

From the figures it can be seen that the approximation func-~

tion 2(x) from eqn. (8) originates from a superposition of
several polynomials. Every polynomial H., is hereby empbasized

. : i ; g
with the respective parameter <, corresponding to the specific
boundary derivation.

For first investigations we choose Hermite- polynomials of the
4th order. Since, as is well known, polyncomials are dimension-
less guantities, 1t is necessary to get energy €eguation (9)
intec a normalized form.

Neormalizing with total blade radius L follows in vectorial
representation.

4 A 4
a2 o= * 2 b T ~0= 2 2 - 2.4 T ———y =
4 - —— -
c JE dx + =% @*w, “Lic Jx 2 “dx iRl P - {xgg dx
1, gy WT Ao L34 L
.}. —— - — =
BT Twp, L7 B Jzfdx - = fglx)z dx = 0 (10)

in which for the vector ¢ of boundary derivaticns it is wvalid
that

i
Zyr 211

[}
Vectors Z, Z, Z are the Hermite- polynomials and their deri-
vations.

Numerical integration of the with each cther multiplied vectors
# of the Hermite- polynomials, lead to constant matrices, the
s0 called Hermite~ integral matrices.

Hereby the following definitions apply:

4

POr e =,
JR%E 2% = H, ,}215. dx =1,
(11)
Jzldx = By,
}-'_ d = H ‘—q-
xzz dx = Beoy f;né,d; _ En



The insertion of the from egn., (11) derived integral matrices
is equivalent with the local integration. Thus the time va-
riant differential equation system of the 2Rd order remains:

+ + = E

E H H
= =22

% i - * - =
oo™ 7 By T gy €7 €lahy =0 (12)

One recognizes now the great advantage in the application of
Hermite- polynomials integrated numerically only once accor-
ding to egn. {(11). The matrices and vectors derived from this
integration can be used for further relevant problems at once.

Ffor the solution of differential equation system (12) it is
significant to transform on a system 15t order of general
form: [ref. 5]

2

=4y+hb (13)

With the introduction of a member é the system (12) is extended
in the following manner:
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Vector ¢ contains, as is well known, the degrees of freedom
- —— - |

EO' 2., 2., zi of system. On behalf of both boundary con-
ditions

the corresponding eguations of system (12) drop out, which is
egquivalent to eliminate both first rows and columns of the
integral matrices. We receive thus differential equation
system in component notation

S ~ T - -
z o] o 1 o 'z O
;I I 2 , 6t © (15}
tD - * *
2y K1 2 ©0° %y Uk,
_.zl\.J [ ¥y1 Ky O O] -EI‘J _zqik{‘
5 DETERMINATION OF EXTERICUR FORCE OF AIR DISTRIBUTION
The inhomogenous part g(x} in egn. (2) 1is equivalent to the

force of air distribution prevailing on blade. Because of the
different oncoming flow along fthe blade radius this force of

air distribution is a variable load distributed across distance.
Generally for the uplift generated by a profile

- b 2
Fp =5 P s

c.v
A A res

holds.

Since the force of air is wvariable on the blade radius, it
must be calculated in segments,.

=1 2
dFA =3 p tbldx (16)

Cc_ v
A res

Calculation of dFA thus divides with © and tgy known in the

determination of Vias and ¢,. Both parameters are dependenft on

blade radius x; that is why a simple integration of dEA is not



possible. The velocity determining the uplift Vyag will be cal-
culated from the momentary state of flight, in which

v = Vv

res res (YarPpp ¥

For the calculation of v.,  one needs the velocity components
Ver Vy, Vz in the co -~ revelving coordinate system with re-

ference to rotor. For this first of all from the given velo-
city components Vxgr VYygr Vzg in the geodetic¢ coordinate system
across the transformations matrix

cosfcosd + singsinBsiny sin¢gsinfBcosy - cosbsiny sinfcosé
= cos¢sing cos¢cosy -sing

cos@sindsing - sinfcosy sinBsiny + cosBsingcosy cosfcosd

the velocity components from the translational moticn of co-
ordinate system YT+ VyTs Vo with reference to helicopter, are
calculated to

vxT

v = =

Iy Vo Ton Yy - (17)
va

In this system the rate of revolution of total heliccpter
(pitching, rolling, yawing) are superimposed on the transla-
tZional wvelocity vp- Lf one describes this motion by an angular
velocity vector w, the thus resulting velocity vp is calculated
from

!R(Hﬁ = 3"59 (18)

where £P is the vector from center of rotaticon to the investi-
gated blade point.

For the velocity vector vy resulting from the superposition of
translaticnal and rotational velocity it then holds that

Eﬁ(fp) = Voot KR(EP) (19)

Velocity components Ver Vyr Vg, of cocrdinate system with re-

ference to rotor under consideration of mast installing angle «
are calculated from the components of vector vy with reference
to helicopter with transformation matrix
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In the coordinate system with reference to blade the part

v = X . {21)

supplied by rotation of rotor is added scalarly toc the y~com-
penent of w.

Flapping velocity'vssupplies a contribution to the component

v, of v. It reckons out stepwise from two temporal succeeding
bIlade derivations,'Since for every time interval for deterai-
ning the local blade derivations an initial flapping velocity
Vae is presupposed, the flapping velocity Vg must be determi-
ned iteratively.

Generally for the flapping velocity holds

Ziv1 T By
v, = e (22}
B Wi T ¥y

A share to the uplift give only both components Vy and v, .
For the resulting velocity Vv, ., it thus follows that

v (23)

The uplift coefficient cp depends on the effective angle of
incidence O ,g¢ which again depends on radius x and alsa on
the Mach-number.

The effective angle of incidence is made up of a set angle
cf incidence ¢a and a variably induced angle of inciden:e aj
For the induced angle of incidence ¢j holds:

o, = arctan ;E (24)



For the profile NACA 23012 exists a data sheet from "MBB“[Q
which contains the coefficients ¢, depending on angle of in-
cidence g for several Mach-numbers.

If both the actual effective angle of incidence O,y and the
actual Mach-number are not comprehended in the data sheet,
the cA-cogfficient is determined by a linear interpolation.

The values for v,.,g and <p received thus result, according

to egn. {(16), the uplift force dFa/dx relevant to blade ra-
dius. The execution of this calculation on plurality of blade
supporting points leads to the searched for line segument load
gq(x) that is after normalizing to g(#) respectively.

Now the integration of function g(X) regqguires with the appli-
cation of Hermite- polynomials according to egn. {(11) ratio-

nal functions £(x7). Because of this, according to egn. (16}

the line segment load

q{R) =

is approximated by-.a Newton-interpolation-polynomial of the
4th order to

% - = -2 -3 Y
g(x) 95 ¢ =T P q,%° + q, % (25)
The constants 9g-+ -9, are hereby determined from the interpo-
lation procedure., From integration acc rding to egn. (11) the
term Zﬁihi in eqn. (12) results.
& NUMERICAL SOLUTION OF SYSTEM

The setting up of the differential equation system (15) and its
computational solution is carned out with the computer progranm
"EBLAMO" . The determination of the system matrix 3 is done with
elenentary matrix operations requiring short computation times.
The time integration following these after is based on the ap-
proximation procedure due to "Runge-Kutta".

For this a library-routine "DVERK" exists [7].

After every small time step at, the solution vector

of the equation system is determined from this.

3.4 - 13



]
By insertion of components 2y, Z; and the Hermite- polynominals
in the Ritz formulation from egn. (8), for every time interval
with various blade support points the approximated blade bending

line reckons to

{26)

For small time intervals (£f.e.ay, =1°%) oscillations can be re-
presented for various blade support points (f.e. blade tip).

The determined program "EBLAMO" is now applied to th helicopter
BC 105 from MBB, West Germany. The input data hereby are as
follows:

EI = 6800 Nm>
" = 5,54 kg/m
L = 4.912 m
tbl = 0,27 n
' = 44,5 m/52
Wpa ¢

The calculations are executed for both flight cases hove .ing
flight and horizontal forward flight by 200 km/h.

The working of the program "EBLAMO" is shown in the following
flow chart.

3.4 -14
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7 RESULTS AND DISCUSSION

Fig. 2 presents the oscillation of the blade tip for the first
six rotations, wherebyY the normalized deviation 2 of the blad-
tip is plotted versus azimuth angle wbl‘ Figure 2a) shows that
in hovering flight the system earlier gets into a stationary
status than in forward flight. After the first rotation, the
blade tip in both cases oscillates exactly with the frequency
of excitation.

The flapping velocity vg versus the normalized blade radius %
is5 presented in fig. 3 for an interval of 45 degrees. A com=-
parison with fig. 2 shows the correlation with the oscillation
of the blade tip: Flapping velocity vpg is positive for in-
creasing and negative for decreasing deviation.

In fig. 4 bending Lines of the blade are presented, which show
the elastic behaviour of the blade in radial direction - approxi-
mated by Hermite~ polynomials.

The effective angle of incidence versus blade radius is shown
in fig. 5. In case of the advancing blade radial variation of
the angle of incidence is very small. Only at the retreating
blade great variations are recognized near the clamping place
cof the blade {(forward flight). The behaviour of uplift coef-
ficient ¢_, shown in fig. 6 is legiacally similar. In case of
seperatad flow the angle of incidence % and the uplift coef-
ficient =Y are set to zerc for plotting.

8 CONCLUDING REMARKS

The results in the previous chapter 7 make evident, that the
approximation solution based on the Ritz-procedure with Hermite-
polynomials as formulation functions is thoroughly applicable
for such problems. The setting up of the system matrix A only
bases on elementary matrix operations and so it requires short
calculation times. Only determination of the flapping velocity
v g necessitates more computation time. The outlined procedure
is the beginning of a series of continous investigation pos-
sibilities. The application of this procedure for the other
degrees of freedom of blade motion {(lagging, torsion) is
already in work.
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