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ABSTRACT 

Mathematical modeling of the elastic rotor blade in flight me­
chanical investigations is based on the known stubstitute model 
of rigid beam with phantom flapping - that is respective lagging 
hinge in the vicinity of blade clamping place. The elasticity 
of blade is respesented equivalently by installation of a spring 
on the hinge. The blade model serves sufficiently for statements 
on the first harmonic oscillations. 

In case of dynamic investigations it is however necessary to 
represent higher harmonic oscillation forms of blade. The ne­
cessary local deviations for this on the blade supplies the 
solution of the partial differential equations of blade de­
flections. 

These coupled diff~rential equations for flapping, lagging and 
torsion are derived by J. C. Huboldt and G. W. Brooks. 

For the solution of equations a variation formulation according 
to Ritz with Hermite-polynomials as formulation functions is 
drawn up. Based on this solution formulation, a calculation 
program is set up on which blade oscillation forms and bending 
procedures for various flight cases can be determined and dis­
cussed. 

The study was carried out at the Institute for Flight Mecha­
nics and Flight Control at the Technical University of Munich 
by order of the Federal Ministery for Research and Technology. 
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INTRODUCTION 

The derived and coupled differential equations in [1] are of 
the following form: 

Torsion: 

- ( (GI + TiA2 + EB e ' 2 ) 8 I - EB 8 I (y "case + z "sinS ) } I 

1 u E 2 u E u E u 

Te (z "case - y "sinS ) - A E u E u 

+ w 2m* e sin8 + w 2m • [ ( i 2 - i 2 ) cos2S + ee cosS ] S 
Ro u YE Ro m~ mn ; u o u E 

+ m*i 28 + m*e {Z case - Y sinS ) = 
m E E u E u 

M * + ( Ti 2 8 I } I 

L A u 
w 2m• [ (i 2 - i 2 ) sinS cosS + ee sinS ] 

Ro mt;: mn u u o u 

Flapping: 

- Te case e - EB 8 'sinS 0 I}" - (Tz I) I - (w 2m *ex case 8 ) I 
A u E 2 u u E E Ro u E 

+ m * (ZE + e case e ) 
u E 

Lagging: 

z " 
E 

+ (EI sin2s + EI cos 2S ) 
l u 2 u 

y .. 
E 

+ Te sinS s - EB
2

S 'cosS B ') 
A u E u u E 

.. - (Ty ')' + (w 2m*ex sinS S)' 
E Ro u E 

+ w 2m*e sine eE + m• <Y - e sinS 8E) - w 2m*y 
Ro u E u Ro E 

- L * + (Te cos8 ) 11 + (w 2m*ex cos8 )' + w 2m* (e + e cos8) 
y A u Ro u Ro o u 
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The solution of this equation falls under the problems of ela­
sticity theory. 

Mechanical problems of this kind however, frequently do not 
permit any proper solution. This applies especially for the 
so called boundary value problems, that is problems as such 
where a differential equation or a system of differential 
equations with specified boundary conditions is to be solved. 
In such cases one frequently refers to approximation solutions 
adapted to the boundary conditions. The proper methods to find 
such approximation solutions, especially in boundary value 
problems in elasticity theory, are based on variation calcu­
lations where the Ritz - or the Galerkin procedure are the 
most significant. 

2 SIMPLIFICATION OF DIFFERENTIAL EQUATIONS 

The now following method of solution is based on the variation 
method by Ritz. 

First of all to make the procedure clear the simplified un­
coupled flap- equation is derived. 

For this the following neglections are made: 

a) Not only the stiffness of blade EI, but also the mass per 
unit m* are assum~d to be constant along the blade. 

b) Only displacements in the z-direction are considered. 

- y = e = e = o 
E E u 

c) The center of gravities-, tension - and elastic axes 
coincide 

- e = 0 

d) Time inteJration ensues in small time intervals, so that 
the process can be regarded as quasistationary . 

• - L = q(x) z 

The differential eq~ation thus receives the form: 

Eiz 1111 - (Tz ')' +m*Z :::q(x) 
E E E 

( 2) 

in which for centrifugal force holds' 

T=m*w 2fxdx 
Ro (3) 

·rhus it follows 

Eiz "''- m*w 2xz ' 
E Ro E 

q (xl (4) 
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3 THE RITZ-PROCEDURE 

In the elasticity theory the elastic bending line 

w = w (x) 

is according to the Ritz-procedure generally approximated by 

c. w. (x) 
~ ' 

(5) 

The formulation function·s w. (x) are arbitrary chosen functions 
which must be sufficient fa~ the boundary conditions of system. 

The parameters c. must be determined, that is with the assist­
ance of the alre~dy mentioned variation, which can be deduced 
from the energy formulation due to Hamilton [2] 

J[o(u- V) +owl dt = o 
<>+ 

(6) 

From the kinetic energy u, the potential energy V and the 
exteriour work W follows for the virtual derivations 

' ou = Jm*zoz dx 

ov (7) 

ow 
L 
f(Ozq(x) + m*w 2 xz0z' + m*w 2xOzz') dx 
, · Ro Ro 

rn this existing dynamic problem for the approximation function 
according to eqn. (5) holds 

' 2 (x, t) = E c. ( t) z. (x) 
::, l l 

From this formulation with the derivations 
the energy equation 

L c 
m* !IC.z. l:Oc.z.dx + EI [f.c.z." IOc.z. "dx 

') ~l ll 0 ll ll 

L 

I 10 

" " z' z 

1 * 2 ; ..., 
+ -2 m wRo Jx·-Ic z I6c ~ 'd i i i i X 

2m*w 2 /x'Lc.z. I6c.z. 'dx 
Roo ll ll 

L 

- fq(x) ~oc.z.dx = 0 
•J l l 
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4 THE HERMITE- POLYNOMIALS AS fORMULATION fUNCTIONS 

Now formulation functions must be found sufficing the boundary 
conditions. The Hermite- polynomials are deduced according 
to ref. [3] from a boundary value consideration; they fulfill 
thus this requisition~ According to the degree of the based 
derivations of the boundary values, one distinguishes Her­
mite- 'Polynomials of the 4th, 6th and 8th order. 

In the following tables and figures the various polynomials 
are illustrated. 

4th order 6th order 

a, = 0 - 3 2 a, • 0 0 -10 15 - 6 

Hz • 0 - 2 i< Hz • 0 0 - 6 a 3 

;;Z 0 l ~ ~ - l H3 • 0 0 3 - z H3 • 0 
2 z 2 2 

84 • 0 0 - 1 x3 H4 = 0 0 0 10 -15 6 

I 

;; 

.z 
X 

;(3 

I ·t l: 0 0 - 4 7 -;j l ::j H6 • 0 0 l - 1 
2 

gth order 

Hll• 0 0 0 -35 84 -70 20 

Hz • 0 0 0 -zo 45 -36 10 i( 

il3 0 0 1 a. - 5 10 -~ 2 _.z • z 2 

H4 0 0 0 1 - ~ - ~ 1 ;(3 • 6 6' 6 6 

~5 = 0 0 0 0 35 -84 70 -20 ;;4 

116 = 0 0 0 0 -15 39 -34 10 -5 
"' 

~ 0 0 0 0 2 - 7 .!1 - 2 

j 
.6 • ~ 

2 2 

88 • 0 0 0 0 - l l - l l '1.7 
6 2 2 6 

Table 1: Hermite- polynomials 
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gth order 

Fiq.l: Graph of Hermite- polynomials 
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Variable ~ of the polynomial is hereby without any dimension. 
Thus the later integrations result across the blade radius 
in the interval [0,1) which will be of an advantage. 

From the figures it can be seen that the approximation func­

tion ~ (x) from eqn. (8) originates from a superposition of 
several polynomials.Every polynomial H. is hereby emphasized 
with the r~spective parameter ci corre~ponding to the specific 
boundary derivation. 

For first investigations we choose Hermite- polynomials of the 
4th order. Since, as is well known, polynomials are dimension­
less quantities, it is necessary to get energy equation (9) 
into a normalized form. 

Normalizing with total blade radius L follows in vectorial 
representation. 

T ';-·zd- 1 * z 4 T r·-z- 2 -£ o ~ X + 2EI m WRa L ~ o X ~' dx 
2 m*w 2L4 T ;"---, -
EI Ro ~ o x~~ dx 

( 10) 

in which for the vector c of boundary derivations it is valid 
that 

" Vectors !, ! 1 Z 
vations. 

are the Hermite- polynomials and their deri-

Numerical integration of the with each other multiplied veccors 
~of the Hermite- polynomials, lead to constant matrices, the 
so called Hermite- integral matrices. 

Hereby the following definitions apply: 

' 
iZ'' 2dX = !!22 ,_ 

;i(O~ dx 
0 

J;cz:;, zdx = a 
• - =Xll 

f~l~ dl< 

Jzzdx = ~00 o-

~ ---!xzz dx llxot • 
.. -n-
ix ~ dx 
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The insertion of the from eqn. (11) derived integral matrices 
is equivalent with the local integration. Thus the time va­
riant differential equation system of the 2nd order remains: 

E*H C + (H + ..!:. J! H 
=Oo- =22 2 =X11 

2 B* H ) c - G' E q h 
=X01 '" i-i 

0 (12) 

One recognizes now the great advantage in the application of 
Hermite- polynomials integrated numerically only once accor­
ding to eqn. (11). The matrices and vectors derived from this 
integration can be used for further relevant problems at once. 

For the solution of differential equation system ( 12) it is 
significant to transform on a system 1st order of general 
form: [ref. 5] 

x_=Ay+b ( 13) 

With the introduction of a member c the system (12) is extended 
in the following manner: 

c 0 E c 0 
= 

= . . . . . - - G* 
+ E* ------ (14) 

c K 0 c !_q. k, 
=m = ,. 1-l 

whereby it is valid that 

-1 
'
2

11xo1 
1 1 

~22) K H ~X11 - E;T =m =00 2 

!>i 
-1 

h. H 
=00 -l 
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Vector c contains, as is well known, the degrees of freedom 
Z , Z', z

1
, z-{ of system. On behalf of both boundary con­

d~tiogs 

~ z = 0 
0 0 

the corresponding equations of system (12) drop out, which is 
equivalent ·to eliminate both first rows and columns of the 
integral matrices. We receive thus differential equation 
system in component notation 

~ 

z.l 0 0 1 0 . zl 0 

Z.' 0 0 0 1 - ' 0 
1 21 G* ( 15) 

= +-
- ~ E* 
z1 K11 K12 0 0 z1 Eqi ki 1 

z ' K21 K22 0 0 ~ ' Eq. k 2 1 z1 ~ c 

5 DETERMINATION OF EXTERIOUR FORCE OF AIR DISTRIBUTION 

The inhomogenous part q(x) in eqn. (2) is equivalent to the 
force of air distribution prevailing on blade. Because of the 
different oncoming flow along the blade radius this force of 
air distribution is a variable load distributed across distance. 
Generally for the uplift generated by a profile 

F = !. pc v 2s 
A 2 A res 

holds. 

Since the force of air is variable on the blade radius, it 
must be calculated in segments. 

(16) 

Calculation of dFA thus divides with P and t 81 known in the 
determination of vres and cA. Both parameters are dependent on 
blade radius x; that is why a simple integration of dFA is not 
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possible. The velocity determining the uplift Vres will be cal­
culated from the rnomentdry state of flight, in which 

v 
res vres (uoo,tPbl'x) 

For the calculation of vres one needs the velocity components 
vx, vy, v 2 in the co - revolving coordinate system with re­
ference to rotor. For this first of all from the given velo­
city components vXg' Vyg' v 2 g in the geodetic coordinate system 
across the transformat1ons matrix 

T 
=GH 

cosBcos~ + sin~sin8sin~ 

cos~sinlji 

cos8sin~sintlJ - sinBcos~ 

sin~sin8cOsW - cos8sin~ sinecos$ 

cos$coslji -sin$ 

sinBsintP + cosBsin~cosW cosBcos$ 

the velocity components from the translational motion of co­
ordinate system vx~' vyT, v

2
T with reference to helicopter, are 

calculated to 

v 
=T T v 

=GH ~ (17) 

In this system the rate of revolution of total helicopter 
(pitching, rolling, yawing) are superimposed on the transla­
tional velocity ~T· I_f one describes this motion by an angular 
velocity vector ~, the thus resulting velocity ~R is calculated 
from 

where Ep is the vector 
gated blade point. 

w x r 
-,p 

from center of rotation to the 

(18) 

investi-

For the velocity vector ~H resulting from the superposition of 
translational and rotational velocity it then holds that 

v (r ) 
-H-p (19) 

Velocity components vx, vy, v
2 

of coordinate system with re­

ference to rotor under consideration of mast installing angle K 
are calculated from the components.of vector~ with reference m 
to helicopter with transformation matrix 
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-cosljlb1cosKm sinljlbl -cos!JJ sinK 
bl m 

:f:HR = -sinljlblCOSKm· -cosljlbl -sin!JJ 
1

sinK 
b rn 

sinK 0 COSK 
m m 

to 

v = (20) 

In the coordinate system with reference to blade the part 

V = W • X 
Ro Ro 

( 2 1 ) 

supplied by rotation of rotor is added scalarly to the y-com­
ponent of ~· 

Flapping velocity v 8 supplies a contribution to the component 
vz of ~· It reckons out stepwise from two temporal succeeding 
biade derivations.'Since for every time interval for deterJi­
ning the local blade derivations an initial flapping velocity 
v 60 is presupposed, the flapping velocity v8 must be determi­
ned iteratively. 

Generally for the flapping velocity holds 

- ljl. 
' 

( 2 2) 

A share to the uplift give only both components Vy and Vz. 
For the resulting velocity vres it thus follows that 

v 
res 

+ v 2 
z ( 2 3) 

The uplift coefficient cA depends on the effective angle of 
incidence aeff which again depends on radius x and also an 
the Mach-number. 

The effective angle of incidence is made up of a set angle 
of inCidence aA and a variably induced angle of inciden~e ai 
For the induced angle of incidence ai holds: 

a. 
' 

arctan 
v 

z 
v 

y 
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For the profile NACA 23012 exists a data sheet from "MBB" [~ 
which contains the coefficients cA depending on angle of in­
cidence a for several Mach-numbers. 

If both the actual effective angle of incidence aeff and the 
actual Mach-number are not comprehended in the data sheet, 
the c -coefficient is determined by a linear interpolation. A . 
The values for vres and cA received thus result, according 
to eqn. ( 16), the uplift force dFA/dx relevant to blade ra­
dius. The execution of this calculation on plurality of blade 
supporting points leads to the searched for line segment load 
q(x) that is after normalizing to q(x) respectively. 

Now the integration of function q(X) requires with the appli­
cation of Hermite- polynomials according to eqn. (11) ratio­
nal functions f(X 0 ). Because of this, according to eqn. (16) 
the line segment load 

q(xJ 
dFA 1 

pc v 2 t 
2 A res bl 

= := 

dx 

is approximated by·a Newton-interpolation-polynomial of the 
4th order to 

q(xJ 

The constants q 0 ... q 4 
are hereby determined from the 

lation procedure. from integration ace rding to eqn. 

term L_qihi in eqn. (12) results. 

6 NUMERICAL SOLUTION OF SYSTEM 

( 2 5) 

interpo­
( 11) the 

The setting u~ of the differential equation system (15) and its 
computational solution is earned out with the computer program 
''EBLAMO''. The determination of the system matrix~ is done with 
elenentary matrix operations requiring short computation times. 
The time integration following these after is based on the ap­
proximation procedure due to ''Runge-Kutta''. 
For this a library-routine "DVERK" exists [ 7]. 
After every small time step At, the solution vector 

of the equation system is determined from this. 
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I 

By insertion of components z1, !1 
in the Ritz formulation from eqn. 
with various blade support points 
line reckons to 

and the Hermite- polynominals 
{8), for every time interval 
the approximated blade bending 

z ex J = (3x 2 - 2x 3Jz + 1 
( -x2 • -'Jz I X 1 (26) 

For small time intervals (f. e.,.ljJbJ. = 1°) oscillations can be re­
presented for various blade support points (f. e. blade tip). 

The determined program ''EBLAMO'' is now applied to th helicopter 
BO 105 from MBB, West Germany. The input data hereby are as 
follows: 

EI 6800 Nm 2 = 
" 5.54 kg/m m = 

L = 4.912 m 

tbl = 0,27 m 

= 44,5 m/s 2 
WRo 

The calculations are executed for both flight cases hove ing 
flight and horizontal forward flight by 200 km/h. 

The working of the program ''EBLAMO'' is shown in the following 
flow chart. 
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7 RESULTS AND DISCUSSION 

Fig. 2 presents the oscillation of the blade tip for the first 
six rotations, whereby the normalized deviation ~ of the blad·' 
tip is plotted versus azimuth angle 1/Jbl· Figure 2a) shows that 
in hovering flight the system earlier gets into a stationary 
status than in forward flight. After the first rotation, the 
blade tip in both cases oscillates exactly with the frequency 
of excitation. 

The flapping velocity v8 versus the normalized blade radius X 
is presented in fig. 3 for an interval of 45 degrees. A com­
parison with fig. 2 shows the correlation with the oscillation 
of the blade tip: Flapping velocity v 6 is positive for in­
creasing and negative for decreasing deviation. 

In fig. 4 bending lines of the blade are presented, which show 
the elastic behaviour of the blade in radial direction - approxi­
mated by Hermite- polynomials. 

The effective angle of incidence versus blade radius is shown 
in fig. 5. In case of the advancing blade radial variation of 
the angle of incidence is very small. Only at the retreating 
blade great variations are recognized near the clamping place 
of the blade (forward flight). The behaviour of uplift coef­
ficient cA, shown ~n fig. 6 is logiacally similar. In case of 
seperated flow the angle of incidence a and the uplift coef­
ficient cA are set to zero for plotting. 

8 CONCLUDING REMhRKS 

The results in the previous chapter 7 make evident, that the 
approximation solution based on the Ritz-procedure with Hermite­
polynomials as formulation functions is thoroughly applicable 
for such problems. The setting up of the system matrix ~ only 
bases on elementary matrix operations and so it requires-short 
calculation times. Only determination of the flapping veloc1ty 
v~ necessitates mare computation time. The outlined procedure 
is the beginning of a series of continous investigation pos­
sibilities. The application of this procedure for the other 
degrees of freedom of blade motion {lagging, torsion) is 
already in work. 
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Fig.6: Uplift coefficient cA vs. 
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