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Abstract 
The requirements of active control 

technology, together with increased operational 
demands, present a range of new problems for 
the designers of helicopter flight control laws. 
Multivariable control system design techniques, 
such as eigenstructure assignment, provide a 
potentially powerful set of tools for control law 
development which take account of the 
inherently multi-input multi-output nature of 
the helicopter. This paper examines the use 
of eigenstructure assignment for the design of 
control laws based on state variable feedback. 
The merits of this approach are examined 
through the use of an illustrative design 
example with particular emphasis being given 
to decoupling and robustness properties. 

1 . I nt roduct ion 
Multivariable control Jaw design techniques 

are of potential interest for helicopter 
applications in that they provide an integrated 
approach to the design of multi-input 
multi-output control systems and have proved 
to be of value in other fields of application. 
A review of multivariable design methods and 
details of a strategy for assessment of such 
techniques for helicopter applications can be 
found in a companion paper presented at this 
Forum [Ref. 1 ]. 

Eigenstructure assignment is a method of 
multivariable control Jaw design in which 
eigenvalue placement is used to ensure stability 
while the selection of eigenvectors gives 
decoupling. This approach has been applied 
previously in a number of published studies 
involving fixed-wing aircraft and rotorcraft. 
Indeed reviews of the literature suggest that 
many of the theoretical developments in 
eigenstructure-based design methods have been 
stimulated by aerospace applications. Examples 
of the use of eigenstructure assignment 
techniques to problems of helicopter flight 
control are, however, small in number 
compared with the fixed-wing case. Parry and 
Murray-Smith [Ref. 2], Garrard and Liebst 

[Ref. 3], Innocenti and Stanziola [Ref. 4] 
and Ekblad [Ref. 5] have all described design 
methods based on eigenstructure assignment 
(:oncepts which they have applied to helicopter 
flight control problems. Apkarian [Ref. 6] 
has also applied eigenstructure assignment as 
Jpart of a hybrid approach to design which also 
involved the use of nonlinear programming. 

One reason for applying eigenstructure 
assignment to the problems of helicopter flight 
control Jaw design is that by using a technique 
based on eigenvalues and eigenvectors one 
provides a natural link between quantities 
commonly used to describe the dynamics of the 
vehicle itself and the processes involved in the 
development of the controller. This allows the 
design process to be related directly to the 
overall dynamic characteristics of the vehicle 
and provides a level of visibility in the design 
calculations which is not present in certain 
other methods. 

2. Eigenstructure Assignment 
The techniques of eigenstructure 

assignment have their ongms in the more 
restricted topic of eigenvalue assignment and 
can be traced to comments by Rosenbrock in 
1962 [Ref. 7] concerning the control of linear 
systems. This early work involving eigenvalue 
assignment was concerned with pole placement 
for system stabilisation using state feedback 
rather than with the satisfaction of transient 
response specifications. The resulting 
controllers were not unique for a multi-input 
system. 

Theoretical work carried out by Moore 
[Ref. 8 ] provided a basis for extending the 
use of · full state feedback to allow 
~onsideration of eigenvectors as well as 
eigenvalues and Srinathkumar [Ref. 9] 
subsequently showed that for controllable 
systems with n state variables and m inputs the 
following general results apply:-
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i) 

and 

n eigenvalues and a maximum of n x m 
eigenvector elements can be chosen 
arbitrarily 

ii) no more than m entries in one 
eigenvector can be chosen arbitrarily. 
Some insight concerning these design 

constraints may be obtained by considering the 
standard state-space linear time-invariant 
formulation 

• 
.lf Ali + By (1) 

(2) 

where l[(t) is the state vector, y(t) is the input 
vector, y(t) is the output vector and A, B, C 
are matrices with constant coefficients. If one 
applies a linear feedback control law 

g( t) (3) 

the corresponding closed-loop system is 
described by the equation 

• 
.lf (A + BF).lf (4) 

Assume now that a set of given eigenvalues Ai 
(i = 1 ,2, .... n) are the desired closed-loop 
eigenvalues with corresponding eigenvectors E.i· 
Then for each eigenvalue-eigenvector pair we 
have 

(5) 

or 

(6) 

With a full state feedback matrix of dimension 
m x n one does not have complete freedom in 
the eigenstructure assignment and the assignable 
eigenvectors E.i must lie in a subspace defined 
by 

r (6) 

where Ai is the desired eigenvalue for the 
mode. As the rank of B is limited to m it is 
clear that for each choice of eigenvalue Ai the 
assignable eigenvectors must be restricted to an 
m-dimensional assignable subspace. Since m, 
the number of inputs, is generally smaller than 
the system order, n, it follows that arbitrary 
assignment of all n elements of the eigenvector 
E.i is impossible. 

The problem of eigenstructure assignment 
is essentially one of choosing (Ai,£i) pairs 
which are assignable. In terms of eigenvalue 
positions in the complex plane it is relatively 

straightforward to define desired regions which 
ensure stability and allow constraints in terms 
of bandwidth, rise time or damping factor to 
be satisfied. For example a stable dominant 
eigenvalue close to the origin will produce a 
smaller system bandwidth than one located 
further into the left half plane. The distance 
of the eigenvalue from the negative real axis 
will affect the damping of the mode. 

Although there are several different 
procedures available for the assignment of 
eigenvectors which involve specification of 
desired eigenvector subspaces [Ref. 2] or 
desired eigenvectors [Ref. 1 0 ], or desired 
eigenvector elements [Ref. 10 ], most 
eigenstructure assignment algorithms have a 
common basis. Once one has a desired 
eigenvalue a desired eigenvector is chosen for 
that mode and this eigenvector is then 
projected on to the assignable subspace r to 
obtain the assignable eigenvector in a least 
squares sense. One approach commonly used 
to find the assignable eigenvectors involves the 
use of singular value decomposition. 

It should be noted that the elements of 
the eigenvector show how strongly each mode 
will appear in each state variable response. In 
aircraft applications it is generally desirable to 
decouple longitudinal responses from lateral 
directional responses and this can be attempted 
by specifying desired eigenvectors for 
longitudinal modes with zero elements on the 
lateral-directional states and vice-versa. In 
general the better the understanding which the 
designer has of the dynamics of the system 
and the performance requirements the easier is 
the task of selecting desired eigenvectors. 

3. Invariant Zeros and Invariant Zero 
Directions 
The invariant zeros of a multivariable 

system correspond to the complex frequencies 
at which transmission through the system is 
blocked [Ref. 11 ]. In terms of a state space 
representation, the invariant zeros are the 
values of s for which the matrix 

P(s) = [ 

si-A 
(7) 

c 
is singular. The matrices A and B in eqn. (7) 
are the system state matrix and control input 
matrix of eqn. (1) while C and D in eqn. (7) 
are (m x n) and (m x m) matrices relating 
the output vector y to the state vector ll and 
input vector !! through an equation of the 
form 

(8) 
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Thus det(P(s)) = 0 when s is an invariant 
zero. The number of invariant zeros is given 
by 

Q n-m-d (9) 

where d is the rank deficiency of the matrix 
product CB. 

The difference between the invariant zeros 
and the transmission zeros of the system is 
that the invariant zeros are defined, as above, 
in terms of a state space description of the 
system while transmission zeros relate to a 
transfer function form of description [Ref. 
11 ]. For a system which is both controllable 
and observable the invariant zeros and the 
transmission zeros are the same. 

The concept of an invariant zero direction 
is, for an invariant zero, similar to the 
concept of an eigenvector being associated 'with 
an eigenvalue. The invariant zero directions, 
x0 , for an invariant zero at s ::: z are given 
by 

P(z) 
[ xg

0 

] 0 ( 10) 

where g is an m vector. The poles and zeros 
in a classical single-input single-output system 
are thus replaced in the case of a 
multivariable system by the eigenstructure and 
the invariant zero structure. Knowledge of the 
invariant zero structure can add considerably to 
the information available about a multivariable 
system and additional physical insight is gained 
which can greatly facilitate the choice of 
desirable eigenvalues and eigenvectors. 

4. Eigenstructure Assignment for 
Decoupled Tracking 
In the helicopter flight control problem, 

as with many other control applications, the 
objective is to design a decoupled tracking 
system. That is, each input should be tracked 
by a single output, thus giving a set of 
decoupled control channels. Hence the design 
emphasis shifts from the state space !!: to the 
output space Y.· In addition, in order to have 
a system which has predictable response 
characteristics for . the pilot, efforts should be 
made to simplify the transfer function for each 
channel as far as possible. The following 
design algorithm uses eigenstructure assignment 
to satisfy these requirements. 

Simple control channel transfer functions 
imply a need to reduce the order of the 
system from the pilot's point of view. In 

classical single-input single-output control the 
order of the system can be reduced by using 
pole-zero cancellation. Extending this concept 
for a multivariable system it can be seen thill 
if eigenvalues and eigenvectors are seiected to 
cancel invariant zeros and invariant zero 
directions then the order of the system is 
effectively reduced. As in the single input 
case, only invariant zeros which are in the left 
half plane can be cancelled if stability is to be 
guaranteed. 

If one has available a number of possible 
output spaces Y. these should all be checked to 
find the output space which has the most 
benign invariant zero locations. Given the A 
and B matrices for a system, the choice of C 
and D for different output spaces Y. will 
determine the invariant zero structure and 
hence the nature of the dynamics to be 
controlled. For example, if there are Q 

invariant zeros for the output space Y.l and 
these are all minimum phase, then it is clear 
that the output space Y.1 will allow a greater 
number of cancellations than some other output 
space Y.2 for which some invariant zeros are 
nonminimum phase. The use of output space 
Y.1 will therefore give a greater reduction in 
the effective order. Jf the matrix product CB 
has full rank such that in eqn. (9) Q = n-m, 
and if all Q of the invariant zeros are 
minimum phase, then the effective order of 
the system can be reduced to m by assigning 
Q modes to cancel the invariant zero structure. 
In this case the task then becomes one of 
assigning the remaining m modes in such a 
way that the m control channels are 
decoupled. This may be achieved from 
consideration of the null space of the matrix 
C. If, for example, a mode (Ai..!'.i) is to be 
present on the first control channel then the 
m-dimensional output space description of the 
mode 

Cv • -I 

should have the form .l!i = [ 1 
The eigenvector must therefore lie 
space of the matrix CN1 where 

and where the elements Ci are the 
the output matrix c. Hence by 
the null spaces 

~ 

(11) 

0 0 JT. 
in the null 

(12) 

ith rows of 
determining 

l::i N(CNi) 1 , ... m (13) 

one is defining 
remaining modes. 
then one mode 

desired subspaces for the 
If the effective order is m 

can be assigned to each 
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control channel and the responses will be first 
order and decoupled as far as the pilot is 
concerned, provided the modes are excited by 
a feedforward controller [Ref. 12 ). If the 
effective system order is greater than m more 
than one mode must be assigned to some 
channels. 

5. System Dynamics and Design 
Objectives 
One of the main problems to be 

overcome in helicopter flight control law design 
is the high level of coupling which exists 
between high frequency modes of the rotor and 
actuators and the lower frequency rigid body 
modes. Because of this coupling the high 
order dynamics tend to restrict the 
performance which can be achieved by 
controlling the rigid body variables. 

The companion paper [Ref. 1 ], referred 
to in Section 1 , concerned more generally with 
the problems of multivariable methods for 
flight control law design, provides details of 
ways in which rotorcraft dynamics influence the 
design process. The approach most generally 
adopted involves tailoring the response of the 
low-order rigid-body dynamics to satisfy 
appropriate design objectives in the presence of 
higher-order dynamics involving the engines, 
the actuators and the main rotor. 

In addition to the constraints which are 
imposed by the dynamics of the system the use 
of eigenstructure assignment methods must be 
matched carefully to the design objectives. An 
extensive discussion of requirements can be 
found within the handling qualities 
documentation [Ref. 13] but in addition to 
specifications dealing with system bandwidth, 
damping and levels of coupling, the handling 
quality requirements also call for particular 
response-types which, depending on the 
operational requirements of the vehicle, may 
implicitly involve different levels of 
stabilisation. Further discussion of this aspect 
of the handling quality requirements is provided 
by Hoh [Ref. 14]. 

6. Design Example 
Consider an eighth order representation of 

the Lynx helicopter in straight and level flight 
at 80 knots forward speed as given by the 
HELIST AB theoretical flight mechanics model 
[Refs. 15,16]. . Equations <:) a~d (2) are the 
linearised equations of mot10n m state space 
form with the elements of the A and B 
matrices given in Appendix 1. The elements 
of the output vector depend upon the chosen 
response-type of the controlled system. 

Eigenvalues of the A matrix are also given in 
Appendix 1. 

Figure 1 shows a possible form of 
multivariable control system structure involving 
a full state feedback matrix F and a 
precornpensator matrix P. The feedback 
matrix F can be designed using the 
eigenstructure assignment approach outlined in 
Section 2 and the precompensator P may be 
obtained using a special form of the Broussard 
Command Generator approach as described by 
Sobel and Shapiro [Ref. 12]. 

The required response-type chosen for thi' 
example corresponds to an attitude command 
attitude hold (ACAH) controller. Outputs to 
be controlled were chosen as y = [ h 8 'P r f. 
Invariant zeros and invariant zero directions for 
this system were found using methods described 
by MacFarlane and Karcanias [Ref. 11 J. Two 
minimum phase invariant zeros exist in this 
example problem and therefore two of the 
modes of the system were designed to cancel 
these zeros. The remaining six modes could 
then be assigned to give decoupled height rate, 
pitch attitude, roll attitude and yaw rate 
responses. Desired eigenvalues for these 
responses were selected in an iterative fashion 
involving assessment of the bandwidth of the 
closed -loop system resulting from each trial 
set. 

The eigenstructure of the system resulting 
from the complete design process is given in 
Appendix 2 together with the corresponding 
feedback and precompensator matrices. The 
responses of the controlled system (with 
aactuator dynamics included) for step inputs on 
the four pilot inceptors are shown in Figures 
2, 3, 4 and 5. The results show that the 
outputs in each case track the pilot inputs well 
and little coupling appears between channels in 
the steady state. The actuator dynamics 
involved a first order lag for each control 
channel with time constants of 80 ms for the 
three actuators associated with the main rotor 
and 40 ms for actuator on the rail rotor. 

The pitch, roll and yaw rate control 
responses were also evaluated in the frequency 
domain. The bandwidth figures were found to 
be 5.5, 7.3 and 4.17 rad/s respectively in 
pitch, roll and yaw with corresponding phase 
delays of 0.041, 0.028 and 0.025 seconds. 
This gives Level 1 performance in terms of 
bandwidth and phase delay characteristics for 
all three cases for combat/target tracking tasks. 

Evaluation of the performance of the 
system with six additional rotor states 
incorporated in the helicopter model to allow 
for second order rotor flapping dynamics shows 
that there is a deterioration in the bandwidth 
for pitch, roll and yaw channels. The 
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bandwidth figures in this case are 
approximately 3 rad/s in terms of pitch and 2 
rad/s in both the roll and yaw channels with 
corresponding phase delay figures of 0.11, 0.09 
and 0.17 seconds respectively. This no longer 
provides a Level 1 performance for 
combat/target tracking tasks but keeps the 
bandwidth/phase delay performance within the 
Level 1 region or at the Level 1 boundary for 
all other mission task elements. 

The results illustrate clearly the effect of 
additional high frequency dynamics on the basic 
design. The inclusion of rotor modes which 
were not modelled at the original design stage 
has altered the eigenvalues and eigenvectors of 
the system, thus reducing the bandwidth and 
increasing the phase delay. Lack of robustness 
in terms of unmodelled dynamics is generally 
regarded as a problem with design techniques 
based on eigenstructure assignment. The 
results found in this example study are not, 
however, too discouraging in this respect. The 
coupling levels remain small when unmodelled 
dynamics are taken into account and stability is 
maintained, as can be seen from Figure 6 
which shows responses to a unit step command 
in pitch angle. This set of responses is also 
typical of the responses for step command 
inputs for the other channels. 

A modified form of controller involving 
an outer loop with proportional plus integral 
control has also been evaluated. The block 
diagram of this system is shown in Figure 7. 
Elements of the proportional and integral path 
gain matrices KP and KI were found using 
classical design methods and the values used 
are given in Appendix 3. The resulting 
responses, as might be expected with this form 
of control, are considerably more sluggish than 
in the previous design although the coupled 
response transients are of smaller magnitude, 
Figure 8, which is typical, shows responses to 
a unit step command in pitch. 

Robustness to changes of flight conditions 
have also been investigated. Figures 9 and 10 
show responses to a unit step command in 
pitch angle for flight conditions at 50 knots 
and 120 knots respectively for the controller 
with additional proportional plus integral terms 
designed using the helicopter model valid for 
80 knots. The controlled system is still stable 
for these two conditions and coupled transients 
are still small, although in comparison with 
those of Figure 8 their character has changed. 
The responses in Figures 8, 9 and 1 0 are all 
for the helicopter model structure which 
incorporates actuator dynamics and 
second-order rotor flapping dynamics. 

The magnitude of the coupled transients 
shown in Figures 9 and 10 can be reduced 

significantly by appropriately scheduling a 
number of linear controllers developed for spot 
points in the flight envelope. For two spot 
points V1 and V2 which straddle the flight 
condition V controller parameters were 
calculated from the expression 

gi(V) = --- [gi (V2) - gi (V1)] 

(14) 

Figures 11 and 12 show pitch command 
responses for the controller described above 
scheduled using this form of linear 
interpolation with sixteen spot points in the 
range 50 to 120 knots. The transients are 
clearly much smaller than in the unscheduled 
case. 

Figure 13 shows responses obtained from 
a nonlinear simulation based upon the 
HELISIM nonlinear model [Ref. 15,16]. In 
this case a pitch attitude command was applied 
to take the helicopter from an initial trimmed 
forward flight condition of 80 knots to a 
maximum forward speed of 120 knots, then to 
a minimum of 50 knots and back eventually to 
80 knots. It can be seen that the system 
remains stable throughout this manoeuvre and 
that the coupled transients are relatively smalL 
The control law used in this case was the 
proportional plus integral controller from 80 
knots case and the scheduled controller 
matrices F and P. Similar results, but with 
increased transient coupling levels, have been 
obtained in tests involving nonlinear simulation 
without control law scheduling. 

7. Discussion and Conclusions 
It is believed that a thorough 

understanding of the dynamics of the system to 
be controlled is essential before any control 
law design technique can be used to full 
effect. The application of multivariable design 
methods to helicopter flight control law design 
can present considerable difficulties even when 
the dynamics of the vehicle itself are well 
understood due to the complexity of the system 
and of the design objectives. 

Eigenstructure assignment provides a 
degree of visbility in the design process in the 
sense that the control technique can be tailored 
naturally to the dynamics of the helicopter and 
to the objectives to be satisfied. In the 
attitude-command attitude-hold example which 
has been considered the eigenstructure 
assignment made use of knowledge concerning 
the invariant zero structure of the system to 
reduce the order of the response in each 
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control channel. The design freedoms 
available were then used to meet bandwidth 
criteria and to produce a decoupled tracking 
system. 

In order to meet handling qualities 
requirements for combat/target tracking tasks 
the controller bandwidth must extend to 
frequencies at which unmodelled and 
unmeasurable elements of the system are 
active. Imprecise information concerning these 
high order modes inevitably restricts the ability 
of the controller to improve performance at 
high frequencies. Robustness of the system to 
unmodelled dynamics has been investigated both 
in terms of actuator and rotor flapping modes. 
Although the attitude-command attitude-hold 
system designed by this method could not 
provide Level 1 performance for 
combat/tracking tasks in terms of bandwidth 
and phase delay requirements in the presence 
of second-order rotor flapping dynamics, Level 
1 performance was just achievable for other 
mission tasks. 

A second form of control law involving 
additional output feedback with dynamic 
precompensation in the form of proportional 
plus integral control has also been considered. 
This provides an illustration of the way in 
which eigenstructure assignment principles can 
be blended with classical control design 
concepts. Robustness of this system to 
unmodelled dynamics and to variation of flight 
condition has been assessed and the tracking 
performance for scheduled and unscheduled 
controllers has been investigated with both 
linear and nonlinear simulations of the Lynx 
helicopter. 

It is intended that the design example 
considered in this paper should provide an 
illustration of the strategy for assessment of 
multivariable control law design techniques 
which is described in more detail in the 
companion paper [Ref. 1 ]. Factors which 
have not been discussed and which must be 
addressed in a complete evaluation of a design 
include the response of the controlled vehicle 
to atmospheric disturbances and the effects of 
sensor noise on system performance. 
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Appendices 
Appendix 1: Linearised description of dynamics of Lynx helicopter for condition 

involving straight and level trimmed flight at 80 knots forward speed as 
obtained from the HELISTAB program (Refs. 15 and 16) 

The matrices of the state space model are: 

A 

-0.0322 0.0403 -0.2261 -9.8080 -0.0021 -0.1086 0.0000 0.0000 
-0.0096 -0.8018 41.0911 -0.2113 -0.0194 -0.4512 0.3223 0.0000 
0.0271 0.0288 -2.3408 0.0000 0.0104 0.4102 0.0000 0.0000 
0.0000 0.0000 0.9995 0.0000 0.0000 0.0000 0.0000 0.0329 
0.0043 0.0143 -0.1284 0.0069 -0.1665 0. 1986 9.8028 -40.6861 

-0.0373 0.2344 -1.9960 0.0000 -0.1633 -10.5358 0.0000 -0.2865 
0.0000 0.0000 -0.0007 0.0000 0.0000 1.0000 0.0000 0.0215 

-0.0258 0.0024 -0.0885 0.0000 0.1014 -1.7934 0.0000 -1.3488 

B 4.3447 -7.6327 2.0578 0.0000 
-117.7857 -30.3913 0.0000 0.0000 

14.0778 28.5401 -5.8552 0.0000 
0.0000 0.0000 0.0000 0.0000 
1.4985 -1.5282 -9.3201 6.7038 

32.0714 -25.0312 -153.2298 -1.3416 
0.0000 0.0000 0.0000 0.0000 

13.9472 -5.9564 -26.8072 -18.0693 
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The elements of the state vector are: 

u - longitudinal velocity (m/s) 
w - z-axis velocity (mls) 
q - pitch rate (rad/s) 
8 - pitch angle (rad) 
v - lateral velocity (m/s) 
p - roll rate (rad/s) 
<P - roll angle ( rad) 
r - yaw rate (rad/s) 

The eigenstructure is as follows: 

Eigenvalue -10.5525 -3. 1994 

Eigenvector 
u -0.0093 0.0381 
w -0.2039 0.9567 
q 0.0392 -0.0551 
0 -0.0033 0.0170 
v -0.6015 0.2793 
p -0.7551 0. 0384 

<P 0.0718 -0.0121 
r -0.1401 0.0186 

-0.6531 

0.0013 
0.0145 

-0.0010 
0.0012 

-0.9707 
0.0146 

-0.0048 
0.0002 

± 2.2539i +0.1339 ± 0.3766i -0.4053 -0.0305 

± 0.0044i -0.5559 ± 0.5834i -0.5831 -0.3621 
± 0.0136i 0.1788 ± 0.5311i 0.8076 -0.0053 
± 0.0009i -0.0008 ± 0.0141i 0.0081 -0.0030 
± 0.0001i 0.0325 ± 0.0132i -0.0193 0.0001 
± 0.2323i 0.0360 ±0.1829i 0.0708 0.8420 
± 0.0086i 0.0055 ± 0.0041i 0.0184 -0.0138 
± 0.0051i 0.0141 ± 0.0098i -0.0448 0.3891 
± 0.0553i 0.0049 ± 0.0038i -0.0101 0.0908 

Atmendix 2: Feedback matrix and precompensator matrix for attitude-command 
attitude-hold flight control Ia w together with resulting eigenstructure 

0.0006 -0.0307 -0.0453 1.4631 0.0012 0.0006 0.0120 -0.0002 

0.0007 -0.0141 0.1804 -0.2572 0.0000 0.0109 -0.0558 0.0028 
F 

0.0003 -0.0101 -0.0255 0.3420 0.0014 -0.0155 -0.2430 0.0021 

0.0013 -0.0134 -0.0518 0.7067 -0.0067 0.1191 0.3882 -0.2063 

0.0382 -0.1100 0.0131 0.0020 

-0.0167 0.4297 -0.0563 -0.0058 

p 
0.0106 -0.0925 -0.2427 0.0045 

0.0193 -0.0893 0.3888 -0.2799 

Eigenstructure: 

Eigenvalue -0.0237 -0.1080 -4,0000 -7.0000 -5.0000 -2.5000 -5.5000 -4.5000 

Eigenvector 

u 0.9998 -0.0017 0.0759 0.0003 0.0007 0.0959 0.0003 0.0681 
w 0.0214 -0.0329 -0.9969 -0.0106 0.0326 0.9931 -0.0143 0.9914 
q 0.0000 0.0000 0.0000 0.0000 -0.0041 -0.0601 0.0000 -0.1081 
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0240 0.0000 0.0240 
v -0.0043 -0.9995 0.0199 -0. 1997 0.9981 0.0176 -0.2813 0.0131 
p 0.0000 0.0000 0.0000 -0.9700 -0.0027 0.0000 -0.9440 -0.0001 
<P 0.0000 0.0000 0.0000 0. 1386 0.0000 0.0000 0.1716 0.0000 
I' 0.0000 0.0000 0.0000 0.0000 0. 1235 0.0000 0.0000 0.0000 
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AQQendix 3: Proportional (KP) and integral (Kl) gain matrices for outer loop 
controller. 

0.20 0.00 0.00 0.00 

0.00 0.20 0.00 0.00 
KP 

0.00 0.00 0.10 0.00 

0.00 0.00 0.13 0. 30 

1. 80 0.00 0.00 0.00 

0.00 0.80 0.00 0.00 
KI -

0.00 0.00 1.50 0.00 

0.00 0.00 0.00 2.80 

.)(c .l> 

f 

Figure 1 A linear multivariable controller using full state feedback and precompensation. 
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Figure 2: ACAH system response to a height rate unit step command. Linear 8th order 

system model with additional first order actuator dynamics for each control channel. 
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Figure 3: ACAH system response to a unit step command in pitch angle. Linear 8th 
order system model with additional first order actuator dynamics for each control channel. 
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Figure 4: ACAH system response to unit step command in roll angle. Linear 8th 
system model with additional first order actuator dynamics for each control 
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Figure :>: ACAH system rtsponse to a unit step command in yaw rate. Linear 8th order 

system model with additional actuator dynamics for each control channel. 
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Figure 6: ACAH system response to unit step command in pitch angle for system model 
incorporating actuator and rotor dynamics. 
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Figure 7: Linear multivariable controller with full state feedback, precompensation and 
output feedback incorporating proportional plus integral control. 
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Figure 8: ACAH system with additional proportional olus 
unit step command in pitch angle for linear system model 
dynamics. 
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Figure 9: ACAH system with additional proportional plus integral control. Performance of 
system for 50 knot flight condition. 
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Figure 10: ACAH system with additional proportional plus integral control. Performance 
of system for 120 knot flight condition. 
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Figure II : Gain- scheduled controller responses for unit- step command of pitch angle at 
50 knots flight condition. 
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Figure 12: Gain- scheduled controller responses for unit- step command of pitch angle at 

120 knots flight condition. 
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Figure 13: Response of system with scheduled controller. Non- linear simulation involving 
sequence of positive and P.egative steps for pitch angle. 
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