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Abstract Harmonic response analysis of the hyper­

viscoelastical structures is dealt with in this paper. an 

clement harmonic balance method based on Hamilton 

variational principal and the properties of intrinsic 

derivates of tensor and trace function is proposed. A 

set of new formulas using finite element stress 

incremental theory and harmonic balance principal is 

derived. This method is applied to analysis the 

frequency response analysis of the clastomeric lag 

damper successfully. 
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1. Introduction 

The elastomeric lag damper is an advanced damped set 

applied to the rotor systems of helicopter. The material 

properties of the elastomer have explicit nonlinearity, 

incompressibility, and irreversible thermodynamic and 

fading memory characteristic. So it plays the role of 

dissipating energy and reducing vibration in the rotor 

systems of helicopter. The mathematical model of the 

damper is described by nonlinear functional differential 

equations with infinite delays and incompressible 

constraints. It is difficult to solve this vibration 

problem using ordinary analytical methods such as 

finite element method, etc. The hannonic balance 

method is a useful tool to solve vibration problems of 

nonlinear system with a lot of degrees of freedom. But 

the incremental harmonic balance method[!] combined 

the harmonic balance method with Newton-Raphsen 

method is unsuitable for solve these problems. For 

engineering nonlinear vibration problems having high 

dimensions and complex nonlinear properties, there is 

no a strongly useful method in the reference we know 

by now. 

In order to solve these kinds of the problems, we 

proposed an clement harmonic balance method[2], 

based on Hamilton variational principal and the 

properties of intrinsic derivatcs of tensor and trace 

function. In the numerical calculation, the curve 

continuation method is used to trace the unstable 

branches of the solution to replace Ncwton-Raphson 

method .A set of new formulas using finite clement 

stress increment theory and the harmonic balance 

principal is derived to analysis frequency response of 

an clastomeric lag damper successfully. 

2. The matrix decomposition of 

the deformation gradient 

For an isoparamcter finite clement which has r nodes, 

interpolation function matrix N may be written as 
N = [NJ,N21,-··,NJ] (2.1) 

where N, is the interpolation function of i-th node, I is 

a 3 x 3 identity matrix. The coordinate X and 

displacement u of a physical point of the clement can 

be denoted as 

(2.2) 

where X, and u 1 denote the coordinate and 

displacement of i-th node of the element respectively. 

Define the interpolation function gradient of the 

element 

i=l,-··,r (2.3) 

then deformation gradient F, deformation tensor C and 

strain tensor E can be denoted as 

F=l+at 
oX 

' ' 
=I+ ~.)H,u,' +u,H,']+ L(u[u1 )H,HJ 

i,j 

E = (C -J)/2 

' ' 
= L[H,u[ +u,H;]/2+ 'L.(u[u1 )H,HJ /2 

i,j 

(2.4) 

The following variation ofF can be denoted by 

' 
oF7 = L.H,ou,' (2.5) 

and we have 

oE = (F 1 oF+ oF" F) I 2 (2.6) 

especially 

A:oE = A:(F1 oF) = A:(oF 1 F) (2.7) 

where A is any 3 x 3 symmetric matrix. For writing 

conveniently, we have dropped the superscript "e " of 

u,' in the equation (2.4) and (2.5). 

3. Hm·monic coeffi.jent equation and 

its tangent stiffness matrix 

Based on hamilton variational principal, the virtue 

power equation of an element can be written as 

f,, [ f S: oEdD. + f pN1 NdD.ii' · ou' 
,, Jo• Jo• (3.1) 

- j'. ou']dt = 0 
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where S is Kirchhoff stress tensor, f' is the 

generalized external force acted on the element, n· is 
the volume of the element, t is time. If 11 and 12 are 

supposed to have arbitrary, then Hamilton variational 

principal will be changed as virtue displacement 

principal, that is 

I S: oEdQ + f pNr Nd0i1' . au' 
n' Jn' (32) 

-!'·au'= 0 

!flake T = t 1 - 12 , and T is the period of the periodic 

solution of node displacemant, then Hamilton 

variational principal will be changed as harmonic 

balance principal, that is 

S: [Sa'S: 8Ed0 +fa, pNr NdOii' . ou' 

- !'. au'Jdt = o (33) 

ou'(O) = ou'(T), ou'(O) = ou'(T) 

Suppose node displacement u' has following harmonic 

form 
m 

u' = La,' \if, (t) (3.4) 

where dimension of a;e is same as ue 

{\if 1 , \if 2 , • • ·, \if"'} is a normal trigonometry function 

group , that is ,following formulates arc satisfied 

_!_ f'" \1",(1)\if f(t)dt = {1
' i = j (3.5) 

n Jo 0, i etc j 

Suppose llJ 1s the vibration frequency then 

corresponding to i-th hannonic component m the 

equation (33), i-th harmonic balance equation is 

_!_ r'" <f s oEdO)dt 
;r Jo n' 

- w' <So. pNr NdO)a,' . &t,' 

= _!_ r'" !' (t). \if, (t)dt. &t,' 
7l' Jo 

i == 1, · · · ,1n 

(3.6) 

For the i-th equation, oE would be supposed only 

including i-th variation &t,', that IS, 

, .. OE "'~' ( ) uio = --: U<.l. \if. t ,Above formulates also can be 
ilJe I I 

supposed the projection of the equation (3.3) to 

periodic function space spanned by {\if 1, \if 2 ; • ·, \if"' } . 

According to arbitrariness of variation, the equation 

(3.6) also can be written as 

1 J2K J a;; - ( S:-dO)\if.(l)dt 
ff 0 0' oue l 

- w'(fo, pNr NdQ)a; (3.7) 

= _!_ r'K f' (t). \if, (t)dt 
7l' Jo 

i==l;··,m 

The equation (3.7) is the element harmonic balance 

equation based on harmonic balance principal. 

In order to obtain tangent stiffness matrix, consider the 

increment problems of _!_ r'K ( r S: oEdQ )dt . From 
1f Jo Jet 

the equation (3. 7), we first have 

S:oE = S:Fr oF= FS:oF (3.8) 

Because there are no harmonic coefficient variables in 

OF', we have 

d( _!_ r'" cf s: OEdO)dt) 
1f Jo o' 

~_!_ r'" c r d(S:oE)dO)dt 
1f Jo Jo' (3.9) 

and 
d(S:oE) = dS:oE + (dFS):oF (3.10) 

The second item of the right side of the equation (3 .1 0) 

can be simplified as 

' (dF'S):oF = L:au,r[(H,' SH)l]du
1 

(3.11) 
i.j 

Define following block matrix 

[Ko]g = (H,' SH1)I (3.12) 

that is 

(dFS):oF = ou' ·K0 ·du' (3.13) 

Obviously, every 3 x 3 sub-block in the matrix· K 0 is a 

identity matrix multiplied by a number, this result is 

more compact than the classical result in the statics 

problem, in which, :., was expanded from3 x 3 to 

9 x 9 matrix. 

The stress increments of the first item of the right side 

of the equation (3 .I O) may be very complex when 

stress is complex. for the real calculation, the useful 

intermediate results arc given below[2). 

69. 3 



' 
t,(oEAdE) = l:&,'[FW,i(A)F')dui 

i,j 

' 
t,(AoE)t,(BdE) = L&;1 [F]\(A,B)F 1 )dui 

i,j 

' 
t,(AoF)t, (BdF) = l:&,'[A 1 H;HJ B]dui 

i,j 

' 
t,(OFAdF)= l:&,'[HiH;' A)dui 

i,j 

' 
t,(dFAoF) = l:&;'[A 1 HiH;')dui 

i,j 

' 
t,(OFAdF) = l:&{[(H;1 AH)l)dui 

i,j 

m 

p' = l:b;'lf/;(t) (3.20) 
i=l 

where b;' is a scalar. In the equation (3. 7), if define 

M = fo. pN1 NdD. 

g,(a',b') = _!_f'' (r S: iJE dD.)•"(t}dt 
1f 0 Joe a/ 'f' I 

where 

q;' = _!_iz. f'(t)·v;(t)dt 
7C 0 

i = 1; · ·,m 

a' =[(a1'}',(a;}1 ,-··,(a;)1
]' 

b' = [bt ,b; ,-··,b;]' 

and using the equation 

(3.21) 

(3.22) 

(3.14) h; (a')= 0 (3.23) 

where both A and B are 3 x 3 matrix, and the matrix 
function W,i (A) and Rv (A, B) are defined as 

w,;(A) = [HiH;' A+ AHiH{ 

+(H{ AH)I +(H;'Hi)A]/ 4 

f?y(A,B) =(A+ A1 }H;HJ (B + B1
} I 4 

(3.15) 

i,j = 1,-· ·,r 

They have following simple property 

w,;(A)1 = Uj;(A 1
), 

1\i(A,B)' = Rp(B, A) (3.16) 

i,j = 1,-··,r 

Now suppose Kv is the matrix which arc determined by 

the first item of the right side of the equation (3 .1 0) , 

corresponding to the equation (3.13), that is 

dS:oE=ou'·Kv·du' (3.17) 

So, the matrix K is defined as, 

K=K0 +Kv (3.18) 

Then, according to the equation (3.13),(3.18),(3.9) and 

(3.10),j-th tangent stiffness matrix K;i corresponding 

to i-th harmonic can be written as 

- 1 J.'' r K;i = 7C 
0 

(J0 ,KdD.)If/;(t)lf/i(t)dt (
3

.
19

) 

i,j = l,···,m 

Now consider the incompressibility of the material. 

TilC pressure p' acted on the clement has following 

hannonic form 

to express the constraints condition resulted in by the 

incompressibility, then the element harmonic 

coefficient equation can be simple written as 

-w' Ma;' + g; (a' ,b') = q;' 

h;(a') = 0 

i = 1; · ·,m 

Considered the definition (3 .19), we have 

K,., = -'0;'""-;.,_( a_' ,'-b--'-') 
, &' 

J 

i,j = 1,-··,m 

(3.24) 

(3.25) 

and the following relation is proved casily[2] 

I= 0;';(a',b') = ['~l;(a',b')t 
" a; m; (3.26) 

i,j = 1,. ··,111 
So, the j-th expanded tangent stiffness matrix 

con·esponding to i-th harmonic is 

[ 
Kif l,i] (3.27) 

[I,;)' 0 

4. Application 

In this section, as an application of the theory, we 

consider the harmonic response of an clastomcric lag 

damper which is consisted of rustlcss steel, alloy 

aluminium and elastomer. The rustless steel and alloy 

aluminium supposed to have no deformation, and the 

material property of the elastomer is supposed near to 
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ZN-1 viscoelastic material. Considered the real deformation conditions, and have rapid increase 

structure of the damper, the deformation state was tendency being similar to the response cnrve in the 

supposed to be the plane strain state. The following finite displacement. 

constitute relation is supposcd[3] 

cr =-pi+ F · [,u 0 l + J:.UJt- r)E(r)dr]-Fr 

(4.1) 

where cr is the Cauch stress tensor, p is the 
pressure, flo and flJI) is the material constant and 

material function respectively. And 

function is taken the following form[4] 

the material 

(4.2) 

According to the test data of ZN-1 viscoelastic 

material, the basic data of the material arc follows[5] 

p = 78.95 X 10-7 Ns' I cm4 

.Uo = 3.955N 

a 1 = 40.43499N a, = 1327.9885N 

h, = -1626.705 b, = -157222.4 

and taking 

nh =a, +a, 

q(t) = nf')in( (l) t)e17 

(4.3) 

(4.4) 

where e 17 denote identity vector, of which the 17-th 

component is 1. 

In the numerical calculation, the curve continuation 

method is used to trace the stable and unstable 

branches of the solutions. The partial results are 

showed in the figure 1 to figure 5. 
Infigurcl,wctakc n1 =0.3N,and 11;, =2,0.5,0.125 

respectively. It is shown that the damping effect is very 
clear, because 11;, denotes the damp coefficient 

actually. In order to study the effect of the exponent 

items m material function, we simply take 
a 1 = 2, a 2 = O,n1 = 0.3N, and calculate three 

cases of h1 = I, 6, 20 respectively, the results are 

shown in figure 2. The little h, , the little the damp, 

because h1 has function of both damp and delay. The 

figure 3 show the results in the linear and nonlinear 

cases, the nonlinear property of the structure present 

hard spring characteristic in generally. The figure 4 

and figure 5 show the relation between the pressure 

amplitude and the stn>cturc displacement amplitude. 

They arc almost linear in the linear and little 
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