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Abstract Harmonic response analysis of the hyper- K,
viscoelastical structures is dealt with in this paper. an _i.j
element harmonic balance method based on Hamilton 7.
variational principal and the properties of intrinsic my
derivates of tensor and trace function is proposed. A
set of new formulas using finite element siress f:[
incremental theory and harmonic balance principal is n”
derived. This method is applied to analysis the !
frequency response analysis of the elastomeric lag N
damper successfully. N,
p.p
Notation q;
a’ harmonic coefficient vector of the
element node displacement r
al i-th sub-block of a°® R.(4,B)
A B matrix variables S
b* harmonic coeflicient vector of the t,r, 1,1,
element pressure t
b’ i-th component of 5° T
C deformation tensor
d differential operator d( ) u
€, identity vector, of which the 17-th u,
component is |
E strain tensor Wv (A)
fiq external force vector acted on the X
clement X
I deformation gradient
£(a’,b°) nonlinear function vector defined by )
(3.21) Ho
hia’) constrain function vector of the clement (0
H interpolation function gradient of the P
element ¢
I 3 x 3 identity matrix v (D)
K function matrix defined by (3.18) @
K, function matrix defined by (3.12) Q°

function matrix defined by (3.17)
matrix defined by (3.19)

matrix defined by (3.26)

number of the harmonic functions
mass matrix

damp tuning coefficient

external force tuning coefficient
interpolation function matrix

i-th component of N

the pressure acted on the element
i-th harmonic component of the

element external force

number of nodes of the element
matrix function
Kirchhoff stress tensor
time

trace operator

vibration period, or matrix transpose
operator

displacement vector of the element
displacement vector of i-th node of the
clement

matrix function

coordinate vector of the element
coordinate vector of i-th node of the
clement

variation operator

maler:al constant

material function

material mass density

Cauch siress tensor

harmonic function

vibration frequency

element volume

* This work was supported by the China National Science Foundation under Grant CNSF-19272030

69. 1



d/dt
d*/dt?

1. Introduction

()
()"

The elastomeric lag damper is an advanced damped set
applied to the rotor systems of helicopter. The material
properties of the clastomer have explicit nonlinearity,
incompressibility, and irreversible thermodynamic and
fading memory characteristic. So it plays the role of
dissipating energy and reducing vibration in the rotor
systems of helicopter. The mathematical model of the
damper is described by nonlinear functional differential
equations with infinite delays and incompressible
constraints. It is difficult to
problem using ordinary analytical mecthods such as
finite element method, etc. The harmonic balance

solve this vibration

method is a useful tool to solve vibration problems of
nonlinear system with a lot of degrees of freedom. But
the incremental harmonic balance method]1] combined
the harmonic balance method with Newton-Raphsen
method is unsuitable for solve these problems. For
engincering nonlinear vibration problems having high
dimensions and complex nonlinear propertics, there is
no a strongly uscful method in the reference we know
by now,

In order to solve these kinds of the problems, we
proposed an element harmonic balance methodf2],
based on Hamilton variational principal and the
properties of intrinsic derivates of tensor and frace
function, In the numerical calculation, the curve
continuation method is used to tracec the unstable
branches of the solution to replace Newton-Raphson
method (A set of new formulas using finite element
stress increment theory and the harmonic balance
principal is derived to analysis frequency response of
an clastomeric lag damper successfully.

2. The matrix decomposition of
the deformation gradient
For an isoparameter finite element which has r nodes,
interpolation function matrix N may be written as
N=[NIN,I - NI 2.1
where N, is the interpolation function of i-th node, T is
al3x3

displacement u of a physical point of the element can

identity matrix. The coordinate X and

be denoted as

X=)NX, uziN,.u,. (22)

I
where X, andu, denote the coordinate and

displacement of i-th node of the element respectively.
Define the interpolation function gradient of the

T
H. :[éN"il , =1y

clement

—_— 2.3
then deformation gradient F, deformation tensor C and
strain tensor E can be denoted as

( it
F=l+—
ax

=I+> uH'
C=F".F

= I+ [Hal +uH )+l u, ) H HT
i iJ

E=(C-D/2

= D [Hul +uH Y2+ (wu)HH] /2
1 i )

(2.4)
The following variation of F can be denoted by

OF =Y duH' |, 6F" = Hdbul (25)

and we have
OFE =(F'8F+8F"F)/2 (2.6)
especially
Ao = A:(FT§F) = A(6F'F) 2.7

where A is any3 x 3 symmetric matrix. For writing
conveniently, we have dropped the superseript “¢ ” of
u; in the equation (2.4) and (2.5).

3. Harmenic coeffizient equation and
its tangent stiffness matrix
Based on hamilton variational principal, the virtue

power equation of an element can be written as

2 . ST T e oo
L. [JQ, S: 8LdQ + J‘Qe PNT NdQiie - u -
—Fe s Y =0
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where S is Kirchhoff stress tensor, f° is the

generalized external force acted on the element, QF is
the volume of the element, t is time. If ¢, andft, are

supposed to have arbitrary, then Hamilton variational
principal will be changed as viriue displacement
principal, that is

[, S:6EdQ+ [  pN" NedQit* - '

Mfe .5”& = 0
Iftake 7'=1 —f,, and T is the period of the periodic

(3.2)

then Hamilton
variational principal will be changed as harmonic
balance principal, that is

L[, $:6Ed0+ [ oN" NaCdii* - 6
o "o 0'p

-ff-ouldt =0
6u*(0) = du'(Ty, &u*(0) = o™ (7)

Suppose node displacement u° has following harmonic

solution of node displacemant,

(3.3)

form

w = aly, () G

where  dimension of @ s

e

same as u°
{(//] WY m}is a normal trigonometry function
group , that is ,following formulates are satisfied

ijz”w)w,-(r)dr:{l’ -/
bl 0

3

(3.5)

Suppose @ is the vibration frequency , then
corresponding to i-th harmonic component in the

equation (3.3), i-th harmonic balance cquation is

i {7, 5 om0

2 T ¢ [
— 0¥( [Q, PNT NdDa! - a; 56

B ;lr—-[oz;rfe(t) ()t - &71‘8

i = ]’.. L
For the i-th equation, &E would be supposed only
&al, that s,

I

including  i-th  variation

. oa L,
Ofy = “fi“,_,_:&’i w, (f) ,Above formulates also can be
%1}

supposed the projection of the cquation (3.3) to

periodic function space spanned by {1,1/ LW W, } .

According to arbitrariness of variation, the equation

(3.6 ) also can be written as

1 por o
|, Y S a0t
- " ([ PNT NdQa;
= [T 10 v

Vis

3.7

i=1m
The equation (3.7) is the element harmonic balance
equation based on harmonic balance principal.
In order to obtain tangent stiffness matrix, consider the

increment problems of 1 _[ 2”(J. S 8Ed)dr . From
VY o

the equation (3.7), we first have

S:0F = § FT8F = FS:6F (3.8)
Because there are no harmonic coefficient variables in
oF , we have

d(;lr—_[:ﬂ( [ :aEd0dr)

L[ dsemad 69
T ve o

and

d(S:0E) = dS; 8K + (dFS).6F 3.1
The second item of the right side of the equation (3.10)
can be simplified as

(dFS):6F = i&jfi(af SH )du, (3.11)
I.Jj

Define following block matrix

[K,], = (HTSH)I (3.12)

that is
(dFS).0F = u’ - K, -du’ (3.13)
Obviously, every 3 x 3 sub-block in the matrix-K, is a

identity matrix multiplied by a number, this result is
more compact than the classical result in the statics
problem, in which, & was expanded from3x3 to
9 x 9 matrix.

The stress increments of the first item of the right side
of the equation (3.10) may be very complex when
stress is complex, for the real calculation, the useful
intermediate results are given below[2].
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t,(SEAdE) = 3" 6ul [FW,(A)F" ldu,
L

J

{,(ASE)t, (BdE) =Y & [FR, (4, B)F W
iJ
t(ASFY, (BAF) = 6d [ A" H,H' Bdu,
i
{ (SFAdF) = S 6T [H, HT Ald,
i
(dFASF) = 6uT[ AT H HTJdu,
i

{(SFAAF) = S Sl [(HT AH )T Ydu,
L iJ

(3.14)

where both A and B are 3 x 3 matrix, and the matrix
function W, (A4) and R;(A, B) arc defined as

W,(A) = [HH A+ AH H'
+(HT AH )] +(HTH ) 4]/ 4
R,(A,B)=(4+AYHH(B+B")/4

Lj=Ler

(3.15)

They have following simple property
W (A) =W, (4",

Rij(AaB)T = Rji (Bs A)

i}j = 1)."3r

(3.16)

Now suppose K, is the matrix which are determined by

the first item of the right side of the cquation (3.10) ,
corresponding to the equation (3.13), that is

dS:0F =u’ - K, -du’ (3.17)
So, the matrix K is defined as,
K=K, +K, (3.18)

Then, according to the equation (3.13),(3.18),(3.9) and

(3.10), j-th tangent stiffness matrix K,

y corresponding

10 i-th harmonic can be written as

K, =[], Kay,(Ow , (0t

. (3.19)

i j=1m
Now consider the incompressibility of the material.
The pressure p° acted on the element has following

harmonic form

P =26y, () (3.20)
i=l

where b/ is a scalar, In the equation (3.7), if define

M=[_ pN"NdQ

e oy 1 2x ﬂz
g(a by =—[ (5 o Dt
oL,
g ==[" v .@ad
¥a
i=1-m (3.21)

where

a* =[a))", (@), @) T

be =[bf b, b Y (3.22)
and using the equation
ha®)=0 (3.23)
to express the constraints condition resulted in by the
incompressibility, then the element harmonic
coefficient equation can be simple written as
~w*Maf +g,(a°,b°) =q’
h(a’)=0 (3.24)
P=1-m
Considered the definition (3.19),we have
K= 5g,—(;;b ) (3.25)
; .
i, j=1..m
and the following relation is proved casily[2]
- @;,g,b") _ [av,-(;*f,b*’)]r
j'i’ : (3.26)
i, j=10m
S0, the j-th ecxpanded tangent stiffness matrix
corresponding to i-th harmonic is
iy o)
- (3.27)
[Z,] 0

4, Application
In this section, as an application of the theory, we
consider the harmonic response of an elastomeric lag
damper which is consisted of rustless steel, alloy
aluminium and clastomer. The rustless steel and alloy
aluminium supposed to have no deformation, and the
material property of the clastomer is supposed near to
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ZN-1 viscoclastic material, Considered the real
structure of the damper, the deformation state was
supposed to be the plane strain state. The following

constitute relation is supposed[3]
o=-pl +F-[yGI+I;yl(t ~ ) E(7)dr] FT
4.1)

whereo is the Cauch stress temsor, p is the
pressure, f2, and 11,(t) is the material constant and
material function respectively. And the material
function is taken the following form[4]

M= iai e
i

According to the test data of ZN-1 viscoelastic
material, the basic data of the material are follows[5]
p=T7895x 107 Ns* / cmi®

(4.2)

o =3955N 43
a, =4043499N a, = 1327 9885N '
b =-1626705 b, =-1572224
and taking
no=a +d
o (4.4)

q(t) =n, Sin(w e,
where €, denote identity vector, of which the 17-th
component is 1.

In the numerical calculation, the curve continuation
method is used to irace the stable and unstable
branches of the solutions. The partial results are

showed in the figure 1 to figure 5.
In figure 1, we take 1, = 03N, and 1, =2,0.5,0.125

respectively, It is shown that the damping cffect is very
clear, because 7, denotes the damp cocfficient
actually. In order to study the cffect of the exponent
items in  malerial  function, we  simply iake
a =2, a,=0,n, =03N, and calculate three
cases of b, =1, 6,20 respectively, the results are
shown in figure 2. The little b, , the litile the damp,
because b has function of both damp and delay. The
figure 3 show the results in the lincar and nonlinecar
cases, the nonlincar property of the structure present
hard spring characteristic in generally. The figure 4
and figure 5 show the relation between the pressure
amplitude and the structure displacemicnt amplitude.
They are almost linear in the lincar and little

deformation conditions, and have rapid increase
tendency being similar to the response curve in the
finite displacement.
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Fig. 1 effect of difierent darmps (n=0.3N)
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Fig, 3 hard spring characteristic of lhe strudure
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Fig. 4 pressure characieristics In the linear case
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