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Abstract 

 
The Ornicopter is a single rotor helicopter without 
a reaction torque. By forcing the blades of the 
Ornicopter to flap up and down, both a lifting force 
and an average propulsive force can be 
generated. Because of this average propulsive 
force the blades will propel (i.e. rotate) themselves 
and there will no longer be a need to transfer 
torque from the fuselage to the rotor. If there is no 
longer a torque transferred from the fuselage to 
the rotor there will neither be a reaction torque. 
 
This paper will present the design and testing of a 
radio-controlled Ornicopter model. Design criteria 
regarding vibrations, spring stiffness of the system 
and flexibility of the blades will be identified. 
Subsequently the design of the forced flapping 
mechanism and yaw control system will be 
explained. The tests will demonstrate the 
torqueless operation of the Ornicopter and will give 
insight into the lift that is produced and the amount 
of yaw control that is achievable.  
 
c Blade chord 
clα Derivative of cl with respect to α dcl/dα 
k k2=EI/mΩ2R4 

m Mass per unit length 
mfl Non-dimensional flapping moment 

flm̂  Amplitude of the non-dimensional flapping 
 moment 
r Radius of blade element 
vi Induced velocity 
x Non-dimensional radius of blade element 
r/R 
 
Cl Lift coefficient of a blade 
E Modulus of elasticity 
I Mass moment of inertia of the rotor blade 
 about the rotor hub 
L Lift 
Ma Aerodynamic moment 
Mfl Mechanical flapping moment 
Pa Power available to drive the rotor 
Peng Engine power, power transmitted by the 
 engine to the spring of the mechanical 
 flapping mechansim 
Pfl Mechanical flapping power, power exerted 
 by the flap forcing mechanism on the 
 blade 
Pp Power required to overcome the profile 
 drag 
Q Torque about the rotor hub 
R Rotor radius 

Z Vertical displacement of the flexible rotor 
blade 
 
α Angle of attack 
α Southwell coefficient 
β Flapping angle of the blade 
β̂  Amplitude of the flapping angle 
β' Derivative of β with respect to the azimuth 
 angle dβ/dψ 
β'' Second derivative of β with respect to the 
 azimuth angle d2β/dψ2 

β&  Derivative of β with respect to time dβ/dt 
β&&  Second derivative of β with respect to time 
 d2β/dt2

ε Angle between the horizontal and the line 
 tangent to the blade curvature at the blade  
 root, or ε = dZ(r=0)/dr 
ε&  Derivative of ε with respect to time dε/dt 
ε̂  Amplitude of the angle between the 
 horizontal and the line tangent to the blade 
 curvature at the blade root 
γ Lock number ρClαcR4/I 
ϕ Inflow angle 
λi Non-dimensional induced velocity vi/ΩR 
θ Pitch angle 
ρ Air density 
ψ Azimuth angle 
ωn Natural frequency  
ωnr Non-rotating natural frequency 
Ω Rotational speed of the rotor 
 

Introduction 
 
The tail rotor of helicopters, necessary to 
counteract the reaction torque of the engine and to 
control the helicopter in yaw, has always been 
considered a necessary evil. It is expensive, 
consumes power, has only marginal control 
authority under unfavorable wind conditions, and is 
on top of that noisy, vulnerable and dangerous. 
The ideal solution to all these problems would be 
to design a rotor that eliminates the need for a tail 
rotor. The Ornicopter is such a revolutionary 
design.  
 
The mechanism of the Ornicopter is derived from 
bird flight. When birds flap their wings they are 
able to derive both a lifting force and a propelling 
force out of it. Instead of propelling a helicopter 
blade by spinning it around and deriving lift from 
this rotating movement, as is done in conventional 
helicopter configurations, the Ornicopter flaps its 
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blades like a bird and derives both lift and a 
propulsive force from this movement. In this case 
the blades propel (i.e. rotate) themselves and 
there is no longer a need for a direct torque 
supplied by the engine to rotate the blades. The 
fact that the engine torque is no longer directly 
transferred from the fuselage to the rotor is the key 
feature of the Ornicopter, and it is this feature that 
makes the anti torque device redundant. 
 

How lift is derived from forced flapping 
 
As stated before, the Ornicopter should flap its 
blades like bird wings in order to obtain both a 
propulsive force that will rotate the blades and a lift 
force that will keep the Ornicopter airborne. The 
movement of a bird wing however is extremely 
complicated and it is impossible to mimick this 
movement exactly with an Ornicopter blade. But a 
very useful and simple approximation can be 
obtained by applying a constant pitch angle to the 
Ornicopter blade.  
 
The movement of an Ornicopter blade during one 
revolution is pictured in figure 1. During one 
revolution of the blade, the blade will be forced to 
flap both up and down once, resulting in the shown 
undulating path. If a constant pitch angle is applied 
the lift forces during one revolution will (averaged 
over one revolution) result in an upward force and 
an average propulsive force. This average 
propulsive force is achieved because the forward 
horizontal component of the lift force that occurs 
when the blade is flapping downwards is much 
larger than the backward horizontal component of 
the lift force that occurs when the blade is flapping 
upwards. Thus by setting all the Ornicopter blades 
at a constant pitch angle and flapping them 
upwards and downwards a propulsive force is 
created that will rotate the blades around the rotor 
hub and an upward force is created that will 
counteract gravity. 
For a further explanation of the basic principles of 
the Ornicopter (a calculation of the power required, 
or an explanation of yaw control, cyclic control and 
collective control) see (Ref 1 and 2). 
 
 

 
 
Figure 1: Lift and drag forces acting on an 
Ornicopter blade during one revolution when a 
constant pitch angle is applied. 
 

Ornicopter design formulas 
 
This section will introduce the Ornicopter design 
formulas regarding the amount of flapping power 
that needs to be transmitted to the blade, the 
magnitude of the required forced flapping angles 
and the magnitude of the forced flapping moment. 
These design formulas will be used later on in this 
paper to calculate the magnitude of these 
quantities for the demonstrator model. 

 
Figure 2: Aerodynamic forces and velocities on a 
blade element at distance r from the rotor hub 
 
Required flapping power 
 
To calculate the power that is needed to drive the 
Ornicopter rotor, the power needed to drive the 
blade element in figure 2 is calculated, and 
integrated over the entire rotor blade. To find the 
average power during one revolution, the power is 
integrated over one revolution and divided by the 
factor 2π. This yields, assuming small angles: 
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in which Pi is the power required to overcome the 
induced drag, Pp the power required to overcome 
the profile drag, and Ma the aerodynamic flapping 
moment: 
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Equation (4) is a power equation that can be used 
for conventional helicopters, but note that  will 
be zero for a conventional helicopter during hover. 
To be able to add the mechanical flapping power 
to equation (4), consider the equation of motion for 
a centrally hinged rotor blade in Ornicopter 
configuration, i.e. with a mechanical flapping 
moment (M

β&

fl) applied to the blade. The equation of 
motion can be expressed as (see figure 3): 

I
M

I
M fla +=Ω+ ββ 2&&  (8) 

 
Figure 3: Moments and forces on an Ornicopter 
blade with mechanical flapping moment applied to 
the blade 
 
If the forced flapping frequency is chosen equal to 
the 1-P frequency of the blade, then the flapping 
angle will in response also have a 1-P frequency 
and will be given by: 

ψψββ sincos0 SC ++=  (9) 
β0 is the cone angle. Equation (8) now yields: 

0
2βΩ+−= IMM fla

 (10) 
When combining equations (10) and (4): 
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In which Pfl denotes the flapping power: the 
average power per revolution exerted by the flap 
forcing mechanism on the blade. Equation (12) 
shows that if the flapping power (Pfl) is chosen 
sufficiently large, the shaft power can be reduced 
to zero. This means that if the rotor is driven by the 
flap forcing mechanism, there will be no need for 
any additional shaft power (engine power however 
will still be needed for the flapping of the blades). 
So, for the Ornicopter situation, equation (11) 
transforms into: 

(∫ Ω−−+=
π

ψββ
π

2

0
0

2

2
10 dIMPP flpi

&)  (14) 

flpi PPP −+=0  (15) 

It can thus be seen that the flapping power has to 
replace the shaft power, and that the flapping 
power will thus not be larger than the power that is 
transferred to the rotor in conventional helicopters. 
 
Required mechanical flapping moment and 
flapping angle 
 
The power equations (12) and (13) together with 
the equation of motion (8) and the expression for 
the aerodynamic moment (equation (10)) can be 
used to find an expression for the mechanical 
flapping moment Mfl and the flapping angle β 
during hover. In order to do so, the aerodynamic 
moment is expressed as (see also figure 2): 
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with x the non-dimensional rotor radius, γ the Lock 
number, β ′  the derivative of the flap angle w.r.t. 
the azimuth angle and λi the non-dimensional 
induced velocity defined as: 
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If the non-dimensional aerodynamic flapping 
moment (ma) and the non-dimensional mechanical 
flapping moment (mfl) are defined by: 
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Substitution of equations (9) and (27) into (26) 
gives: 
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It can now be seen that: 
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Thus, the non-dimensional mechanical flapping 
moment as a function of the flapping coefficients is 
given by: 

ψγψγ sin
8
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8
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By combining equations (9), (27), (29) and (30) a 
relation can be found between the amplitude of the 
flapping angle ( β̂ ) and the amplitude of the non-

dimensional flapping moment ( ): ˆ flm

2 2ˆ flm A B= + ˆ
8
γ β=  (32) 

The final step is to substitute equations (9), (27) 
and (32) into the expression for the flapping power 
(13): 
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Recapitulating, since Pi and Pp can be calculated, 
equation (15) gives an expression for the flapping 
power Pfl. Once Pfl is known, equation (33) can be 
used to calculate the required amplitude of the 
mechanical flapping angle and non-dimensional 
flapping moment. 
 

Windtunnel tests 
 
Windtunnel tests have been performed as a first 
check on the developed theory (see also Ref 1, 2, 
3 and 4) and the feasibility of the Ornicopter. The 
results of these windtunnel tests which are 
important for the design of the demonstrator model 
will be briefly summarized in this section, for an 
elaborate discussion see (Ref 2). 
 
As one of the most important results the 
windtunnel model (see figure 4)proved that 
reaction-less operation of the Ornicopter indeed is 
possible. A torqueless situation was achieved 
while the rotor was still producing a lifting force, 
see figure 5. Moreover, the torqueless situation 
was obtained while using only modest flapping 
angles, in the order of 12 degrees. 
 
Figure 5 also shows that yaw control is still 
possible: both a negative and a positive reaction 

torque can be achieved which will result in a yaw 
movement in one way or the other. 
 
However, the windtunnel model also demonstrated 
three points of attention that required further 
research and needed to be improved. 
 

 
 
Figure 4: Ornicopter windtunnel model 
 
First, the windtunnel tests indicated that a 
considerable amount of power was lost due to the 
friction in the forced flapping mechanism: 5 Watts 
was lost due to friction on a total of 10 Watts. It 
should be noted here that the wintunnel model was 
not optimized for friction, and therefore these 
results could have been expected. However, this 
clearly indicated that it is of utmost importance to 
keep the friction, and thus the power loss, within 
the forced flapping mechanism as low as possible. 
Otherwise the flapping mechanism itself might 
require more power than the amount of power that 
can be saved due to the fact that a tail rotor (or 
other anti torque device) is no longer necessary. 
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Figure 5: Rotor torque (Mz) and rotor thrust (T) as 
a function of collective pitch for a double teeter 
Ornicopter with twelve degrees flapping 
 
The second point of attention concerned the 
flapping configuration that was used for the 
windtunnel tests. The rotor of the windtunnel 
model was based on the double teeter flapping 
configuration as shown in figure 6. As indicated by 
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its name, the rotor consists of two teeters: the two 
opposite blades are connected like a see-saw, 
which means that if one blade is flapping upwards, 
the opposite blade is flapping downwards. All four 
of the blades are forced to flap with a 1-P 
frequency. At the moment in time that one of the 
two teeters is at its maximum flapping angle, the 
other teeter will be in the neutral position, as 
shown in figure 6. The tip path planes of the two 
teeters are anti-symmetrically tilted with respect to 
the shaft. 

 
Figure 6: Principle of the four bladed double teeter 
rotor. 
 
During the windtunnel tests it became clear that 
the double teeter configuration appeared to cause 
some severe vibrations. Calculations (Ref 3) 
showed that a double teeter configuration causes 
a 2-P vibration in the roll and pitch moment, and a 
2-P vibration on the in-plane forces. In order to 
eliminate these vibrations another flapping 
sequence of the rotor blades is desirable. 
And finally the flapping angles that were necessary 
for torqueless operation of the Ornicopter 
windtunnel model were larger than expected from 
theory (Ref 4). Using the formula for the required 
flapping power (equation 33) a required flapping 
angle was calculated in the order of 8 degrees. For 
the windtunnel model a flapping angle of 12 
degrees appeared to be necessary, although the 
amount of flapping power that was applied to the 
Ornicopter blades was still consistent with the 
calculated theoretical value. This difference could 
be explained by the flexibility of the blades. The 
theoretical calculations were based on the 
assumption of rigid rotor blades, whereas in reality 
the rotor blades have some degree of flexibility. 
Flexible blades do not require additional power, 
but do require a larger forced flapping angle at the 
root of the blade (the deflection of the tip of the 
flexible blade however is equal to the deflection of 
the tip of a rigid blade). The next section will 
elaborate some more on the influence of the 
flexibility of the blades. 
 

Design criteria for the demonstrator model 
 
Using the results from the developed theory and 
the results from the windtunnel tests some 
important design criteria can be set. Design criteria 
regarding minimizing vibrations, regarding the 
influence of flexibility of the blades and regarding 

requirements for the spring stiffness of the entire 
system.  
 
Vibrations 
 
In order to eliminate (or at least reduce) the 
vibrations that are caused by a double teeter 
configuration, another rotor configuration (i.e. 
flapping sequence of the blades) was looked for. 
The rotor configuration that caused the least 
vibrations appeared to be the so called 2x2 anti-
symmetrical configuration (Ref 3). 
 
The rotor in anti-symmetrical configuration also 
consists of four blades, but now the two opposite 
blades are flapping in the same direction. So 
(looking at figure 7) if blade k=0 is flapping 
upwards, blade k=2 is flapping upwards as well, 
while at the same time the two other blades will be 
flapping downwards, and vice versa. The blades 
will pass through the neutral position at the same 
moment in time. 

 
Figure 7: Principle of the 2x2 anti-symmetrical 
rotor 

 
Figure 8: Schematic representation of a flexible 
blade with forced flapping mechanism 
 
The only vibration that will occur within a 2x2 anti-
symmetrical configuration is a 2-P vibration on the 
torque (Ref 3). This vibration is caused both by 
inertia forces (change of angular momentum) and 
by aerodynamic forces. Vibrations in roll moment, 
pitch moment, in-plane forces and vertical force do 
not occur. It should also be noted that the 2-P 
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vibration on the torque that does occur is not an 
unusual vibration: it is also present in single teeter 
rotors.  
 
The free-flying demonstrator model will thus be 

lexibility of the blades

constructed as a 2x2 anti-symmetrical rotor. 
 
F  

s stated before, the windtunnel tests indicated 

ithin this study the flexible blade is modeled 

s a first comment it is noted that no power is lost 

urther figure 9 immediately shows that the angle 

 
A
that, when flexible blades are incorporated instead 
of the theoretical rigid blades, the flapping 
mechanism should allow for a larger forced 
flapping angle at the root of the blades than 
predicted by theory. This effect has been studied 
more extensively in order to be able to predict the 
difference in the magnitude of the flapping angle 
more accurately (Ref 4). The most important 
findings of this study for design purposes will be 
briefly explained below. 
 
W
using a two-mode approximation, and it is 
assumed that the blade is centrally hinged and is 
forced to flap by a flapping moment that acts at the 
very root of the blade (see figure 8). The resulting 
flapping motion of the flexible blade during one 
revolution around the rotor hub is depicted in figure 
9. As a reference the flapping motion of a rigid 
blade (that was used to calculate the theoretical 
value) that is excited by the same flapping moment 
is also plotted in figure 9.  
 
A
due to the flexibility of the blades. All flapping 
power that is transferred to the root of the blade is 
converted into power available (the forward 
component of the lift that is propelling the rotor 
blade multiplied by the angular velocity). 
 
F
at the root of the flexible blade is indeed larger 
than the blade root angle of the rigid blade, while 
the tip deflection is almost equal for both blades. 
To obtain these results a non-dimensional stiffness 
for the flexible blade was assumed in the 
calculations equal to: 

2 1EI
= =2 4 270

k
m RΩ

 (34) 

and, as a result, the ratio between the flexible 
blade root angle and rigid blade root angle 
appeared to be equal to: 

ˆ ˆ
5ˆˆ

flex flex

rigid

ε ε
ε β

= =  (35) 

This ratio is much larger than the ratio found 
during the windtunnel tests (which was equal to 
1.5). It should therefore be mentioned that the 
situation considered in the theoretical study (as 
depicted in figure 8) actually is a worst case 
scenario. The ratio will drop if the blade is not 

centrally hinged but at an offset (as was the case 
in the windtunnel model). The ratio will also drop 
when the forced flapping moment is not applied at 
the exact location of the root, but at a certain 
distance away from the root (to the right of the root 
in figure 5), this was also the case for the 
windtunnel model. And naturally, when the blades 
have a larger stiffness than assumed in equation 
(34) this will also decrease the ratio. The blades of 
the windtunnel model indeed had a larger stiffness. 
As a final factor contributing to a lower ratio it can 
be mentioned that in order to transfer the same 
amount of flapping power to the flexible blade a 
smaller mechanical flapping moment will be 
required than for the rigid blade since the blade 
root angle is larger which results in a larger 
angular velocity (ε& ), see also figure 8: 

ψε
π

π21 dMP flfl ∫=
02

&  (36) 

 
Figure 9: Bending of a flexible blade (an azimuth 
angle difference of π/4 occurs between two 
successive plots) and a rigid blade for a given 
flapping moment 

 
Figure 10: Bending of a flexible blade and a rigid 

hus, instead of comparing the motion of a rigid 

blade for the same flapping power 
 
T
and flexible blade for the same flapping moment 
(as is done in figure 9), it is more correct to 
compare the motion of a rigid and flexible blade 
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that consume the same amount of flapping power 
and produce the same amount of propelling force 
and lifting force, this is done in figure 10. Figure 10 
illustrates that this effect will also decrease the 
ratio between blade root angle of a flexible and 
rigid blade. 
 
For practical applications it can thus be concluded 

he spring stiffness of the system

that, as long as the blade root angle that is 
calculated from equation (33) necessary to 
produce a certain amount of flapping power and 
power available is multiplied by a factor 5, and the 
forced flapping mechanism can allow for this larger 
blade root angle the design will suffice, and will be 
on the safe side.  
 
T  

respective of the fact whether springs are 

he maximum response of the rotor should follow 

he phase angle (ϕ) depends on the frequency 

ince the phase angle should not deviate too 

 
Ir
incorporated in the forced flapping mechanism, or 
whether the flexibility of the blades is sufficient to 
allow for the superposition of the conventional 
flapping motion on the forced flapping motion, 
there are some requirements for the spring 
stiffness of the entire system (blade and flapping 
mechanism together). 
 
T
its maximum force input by a phase angle of 
approximately 90 degrees. If the phase angle 
deviates too much from 90 degrees too much 
(unwanted) flapping cross-coupling will occur, this 
basically means that when a control input is given 
in the longitudinal direction it will have a side effect 
in the lateral direction which needs to be cancelled 
by the pilot by giving an additional lateral control 
input.  
 
T
ratio (ν) and the Lock number as shown in figure 
11. The frequency ratio is the ratio between the 
rotational frequency (Ω) and natural frequency (ωn) 
of the blade. The natural frequency (ωn) of a 
hinged rotor blade without offset is identical to its 
rotational frequency (Ω) and therefore the phase 
angle will always be exactly 90 degrees (see figure 
11). If springs are incorporated in the mechanism 
or if an offset is applied, then the natural frequency 
of the blade will no longer be equal to the 
rotational frequency and as a result the phase 
angle will start to deviate. Due to the offset or 
springs, the natural frequency will increase and as 
a consequence the frequency ratio will become 
smaller than 1. 
 
S
much from 90 degrees a requirement can be set 
that the frequency ratio should not become smaller 
than 0.9: 

0.9
n

ν
ω
Ω

= >  (37) 

or 
1.1nω < Ω  (38) 

According to Southwell the natural frequency of a 
blade can be expressed as follows: 

2 2
n nr

2ω ω α= + Ω  (39) 
In this equation ωnr is the non-rotating natural 
frequency and α the Southwell coefficient which 
incorporates the effects of springs and/or hinge 
offset.  
 
The hinge offset and spring stiffness of the springs 
in the flapping mechanism and/or the flexibility of 
the rotor blades should thus be chosen such that 
equation (38) is true. 

 
Figure 11: Phase angle as a function of the 
frequency ratio and Lock number 
 

Design of the demonstrator model 
 
This section will focus on the actual design of the 
demonstrator model. It will begin with an 
explanation of the helicopter kit that has been 
chosen as a starting point, followed by a 
description of the forced flapping mechanism that 
will have to ensure the desired flapping sequence 
of the blades. Subsequently the corresponding 
values for the flapping power, flapping angle and 
flapping moment the design will have to cope with 
will be calculated. After that the spring stiffness of 
the flapping mechanism will be checked, and 
finally the resulting final design will be presented. 
 
Chosen configuration 
 
As explained in the previous section the 2x2 anti-
symmetrical configuration was chosen for the 
demonstrator model due to its favorable vibration 
characteristics. The rotor of the demonstrator 
model will thus consist of four blades. 
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Chosen helicopter kit 
 
The helicopter kit that was chosen as a starting 
point to build a scale-model Ornicopter is the Vario 
X-treme economic (Max RPM 1500, Rotor 
diameter 1.5 m, number of blades: 2). This kit will 
be fitted with a slightly larger engine than 
recommended by the manufacturer: 11.5cc instead 
of 10cc. The two rotor blades will be replaced by 
the blades of a four bladed Vario rotor in order to 
be able to achieve a 2x2 anti-symmetrical 
configuration. 
 
Design of the forced flapping mechanism 
 
The basic principles of the forced flapping 
mechanism that has been developed for the 
demonstrator model will be explained below. 
 
The gearwheel mechanism. A forced flapping 
mechanism will have to be added to the helicopter 
kit that will force the four blades to flap up and 
down in the exact sequence of the 2x2 anti-
symmetrical configuration. For this purpose a 
flapping mechanism was designed based on five 
gearwheels that are placed in a planetary system, 
see figure 12. 
 
The center gearwheel is fixed and does not rotate, 
the other four gearwheels are forced to rotate 
around the center gearwheel with the angular 
velocity of the rotor (Ω). This implies that each of 
the outer gearwheels itself has an angular velocity 
equal to 2Ω with respect to a fixed reference 
frame.  
 
Figure 13 indicates what exactly happens to one of 
the outer gearwheels during one complete rotation 
 

 
Figure 12: Forced flapping mechanism based on 
planetary gearwheels 

around the fixed center gearwheel: when the outer 
gearwheel has made half a revolution around the 
center gearwheel, then the outer gearwheel itself 
has made a complete revolution with respect to a 
fixed reference frame.  
 

 
 
Figure 13: Outer gearwheel during one revolution 
around the center gearwheel 
 
To introduce a forced flapping motion into the 
blade one side of a spring is attached to the blade 
and the other end of the spring is attached to a 
small pin that is located on the surface of the outer 
gearwheel. It can be seen that during one 
complete revolution of the blade around the fixed 
center gearwheel the spring is compressed, goes 
back to neutral, is stretched and goes back to 
neutral again (figure 13). This means that the 
blade is first forced to flap down, goes back to 
neutral, is forced to flap up and goes back to 
neutral again. A 1-P forced flapping motion is thus 
achieved. 
 
By carefully choosing the starting position of all 
gearwheels, or actually the starting position of the 
attachment points on all the gearwheels, the 
situation can be created that two opposite blades 
are flapping upwards while at exactly the same 
moment in time the two other blades are flapping 
downwards. Such a starting position is shown in 

Fixed 
gearwheel 

Ω 

Rotating 
gearwheels 
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figure 12. When the gearwheels start rotating from 
this initial condition a 2x2 anti-symmetrical 
configuration is achieved. 
 
The forced flapping mechanism. To increase 
clarity in the drawings, the principle of the forced 
flapping mechanism has been explained using 
springs. For the demonstrator model push pull 
rods will be used instead of springs. This however 
will not change the working of the mechanism.  
 
The flapping mechanism as designed for the 
demonstrator model is shown in figure 14. For 
clarity only one planet gearwheel and one blade-
holder are shown, in reality the flapping 
mechanism will of course consist of four planet 
gearwheels, four blade-holders and four blades. It 
should also be noticed that in figure 14 not only the 
planet gearwheel is rotating around the fixed 
gearwheel, but the entire structure. The upper 
plate, lower plate, blade-holder, blade, lever and 
planet gearwheel are all rotating around the fixed 
axis and fixed gearwheel. 
 

 
Figure 14: The forced flapping mechanism used in 
the radio-controlled demonstrator model 
 
Yaw control. Yaw control is achieved by so called 
'over-flapping' or 'under-flapping' of the rotor 
blades thereby deliberately introducing a small 
amount of reaction torque. Within the flap forcing 
mechanism of the demonstrator model the forced 
flapping angle can be changed by shifting the 
position of the upper plate in figure 14 upwards or 
downwards.  
Since the push pull rod has a fixed stroke a shift of 
the upper plate upwards means that the stroke of 
the push pull rod will act higher up in the slot and 
thus further away from the hinge. This will naturally 
result in a smaller flapping angle. A smaller 
flapping angle means that some shaft torque 
needs to be transferred directly to the blades in 
order to keep the rotor at its required rpm. This will 
cause a yaw movement. 

 
The same holds for a shift of the upper plate 
downwards: the fixed stroke of the push pull rod 
will act closer to the hinge which will result in a 
larger flapping angle. A larger flapping angle 
means that the rotor will tend to speed up, and will 
be slowed down by the fixed rpm of the engine. 
This way a yaw movement in the opposite 
direction is achieved. For a more elaborate 
explanation of yaw control see (Ref 2). 
 
Values for flapping power, blade root angle and 
mechanical flapping moment.  
 
In order to set the dimensions for the flapping 
mechanism and to choose the correct materials it 
will be necessary to calculate the flapping power 
that needs to be transferred to the blade. When 
the flapping power is known, the required flapping 
angle of the blade and the magnitude of the forced 
flapping moment can be calculated. 
 
According to equation (15) the flapping power can 
be calculated by summing the induced power and 
profile power. The latter two can be calculated 
when using the following values: thrust (T) is equal 
to 50 N, the rotor radius with flapping mechanism 
included has increased to 83.7 cm, the blade 
chord (c) is equal to 53 mm, the angular velocity of 
the Ornicopter is set at 136 rad/s (1300 rpm), the 
rotor solidity (σ) is equal to 0.08, the profile drag 
coefficient (

pDC ) and the lift gradient ( lC
α

) are 

estimated to be 0.01 and 5.43 rad-1 respectively, 
and finally the correction factor for non-constant 
induced velocity (k) is equal to 1.2. The following 
values then follow for the induced power and 
profile power: 

Push pull rod 

Slot 

Lever 

Hinge 

Fixed shaft Rotating gearwheel 
W

R
TkTPi 183

2 2 ==
ρπ

 (40) 

( )
W

RRC
P pD

p 407
8

23

=
Ω

=
πσρ

 (41) 

Rotating shaft Fixed gearwheel 

And consequently the flapping power has to be 
equal to: 

WPPP piflap 590=+=  (42) 
The rigid blade flapping angle can now be 
calculated by rewriting equation (33) using the 
expression for the Lock number (equation (21)) 
and taking into account that the total flapping 
power is generated by four blades (N=4): 

3 4

161ˆ 4.17fl

l

P
N C cR

α

β
ρ

= =
Ω

o  (43) 

This means that if the demonstrator model would 
have rigid rotor blades, the forced flapping 
mechanism should allow for a forced flapping 
angle equal to 4.17 degrees. However, the blades 
will not be rigid but will be flexible, and therefore 
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the calculated rigid flapping angle should, 
according to equation (35), be multiplied by a 
factor 5 yielding a forced flapping angle at the 
blade root equal to approximately 20 degrees.  
 
The windtunnel model on the other hand only 
yielded a factor 1.5 which in this case would result 
in a flapping angle equal to 6.3 degrees. This all 
means that in reality one can expect a forced 
flapping angle anywhere between 6.3 degrees and 
20 degrees. This range proved to be too large for a 
single design. Therefore the choice was made to 
focus on the lower part of this flapping angle 
range, but to make the design modular so that 
parts can be easily replaced in order to 
accommodate the higher values of the flapping 
angle range. 
 
To conclude the calculations the required flapping 
moment will be calculated. The expression for the 
non-dimensional flapping moment can, using 
equation (33) and (21), be written as: 

4

ˆ ˆˆ
8 8

l
fl

C cR
m

I
α

ργ β β= =  (44) 

It now follows for the flapping moment (equation 
(25)): 

4
2 ˆ 29

8
l

fl

C cR
M Nmα

ρ
β= Ω =  (45) 

All parts in the forced flapping mechanism thus 
have to be designed in such a way that they can 
withstand a forced flapping moment equal to 29 
Nm. 
 
Spring stiffness of the flapping mechanism. 
 
To avoid too much unwanted flapping cross 
coupling the requirement was set that the flexibility 
of the blades should be such that equation (38) is 
true. To check this requirement the stiffness of the 
rotor blade (EI) was measured and found to be 
equal to 11.81 Nm2. Since the offset of the blade 
(e) is 18.8% of the total rotor radius the Southwell 
coefficient can also be calculated: 

346.1
188.01

188.0
2
31

12
31 =

−
+=

−
+=

e
eα  (46) 

The natural frequency of a flapping and rotating 
rotor blade then is equal to (equation 39): 

2
412.37 1.346 161.85n

EI
mR

ω = + Ω =  

rad/s 

(47) 

with m the mass per unit length of the blade equal 
to 0.25 kg/m. According to the requirement the 
natural frequency should be smaller than: 

1.1 1.1*136.1 149.71nω ≤ Ω = =  rad/s (48) 
This implies that the requirement is not met. 
Therefore special care should be given to cross-
coupling effects during testing. 

Final design. 
 
All calculations and drawings have finally resulted 
in the forced flapping mechanism as shown in 
figure 15. 
 
 

 
 

 
 

 
 
Figure 15: Pictures of the free-flying radio-
controlled scale model of the Ornicopter 
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Tests performed with the radio-controlled 
Ornicopter 

 
The first tests with the free-flying radio-controlled 
scale model of the Ornicopter have been 
performed and yielded very promising results. 
These results will be discussed in this section. 
 
General test set-up 
 
Although the radio-controlled Ornicopter is 
designed as a free-flying model, the first tests have 
been performed with the model firmly attached to a 
test bench. Since there was no windtunnel present 
all test results that will be discussed are valid for 
the hover situation. The variables that have been 
measured during the tests are: reaction torque on 
the fuselage, reaction torque on the fixed 
gearwheel, vertical force, rpm of the rotor, pitch 
angle of the blades and flapping angle at the root 
of the blades.  
 
During the tests the rotor blades were rotating at 
approximately 500 rpm. This is slower than the 
intended 1300 rpm for which all previous 
calculations have been performed. The reason to 
choose this lower rpm is simply to gain insight into 
the behavior of the rotor blades at a low rpm 
before proceeding to higher rotational speeds. 
 
The corresponding Reynolds numbers are in the 
range of 1.6 105 with tip Mach numbers of 
approximately 0.13. The profile drag coefficient 

 was in the order of 0.035. It should however 
be mentioned that this profile drag coefficient was 
derived from the test results using a correction 
factor for the non-uniformity of the induced velocity 
(k) equal to 1.2. It is however very well possible 
that this factor deviates from the usual 1.2 due to 
the flapping of the blades. Therefore the actual 
profile drag coefficient can also differ from the 
calculated 0.035. 

PDC

 
Vibrations
 
As a first striking result it was immediately clear 
(when looking at the operating Ornicopter model) 
that all vibrations that were present during the 
earlier windtunnel tests had disappeared. No 
vibrations were detected at all, except, of course, 
the 2P vibration in the torque. It appeared 
however, that even this vibration was less severe 
than expected. This was due to the fact that part of 
the 2P torque vibration was already absorbed by 
some flexibility in the forced flapping mechanism 
which allowed the rotor blades to slightly speed up 
and slow down whereas the calculations assumed 
an exactly constant rotational speed. Another 
contribution came from the distribution belts 
running from the engine to the rotating shaft, these 

two belts also absorbed a part of the 2P torque 
vibration. 
 
Reaction torque on fuselage and yaw control
 
Another important question of course was whether 
the reactionless situation could be achieved with 
the new Ornicopter model. Figure 16 shows that 
this indeed was possible. For a collective pitch 
angle of 4 degrees a forced flapping angle of 
approximately 8 degrees was required to obtain 
the torqueless situation. It can also be seen that 
the higher the collective pitch, the higher the 
forced flapping angle needs to be to achieve a 
situation without reaction torque. Figure 17 shows 
that the rotor is still producing a lifting force in the 
torqueless situation. 
 
Figure 16 also illustrates that both a negative and 
a positive reaction torque on the fuselage can be 
achieved. When looking at the data point 
representing 4 degrees collective and 8.3 degrees 
flapping, it can be seen that an increase in flapping 
angle to 9.8 degrees while maintaining 4 degrees 
collective will yield a negative reaction torque 
whereas a decrease in flapping angle to 7.2 
degrees (with 4 degrees collective) will yield a 
positive reaction torque. Yaw control is thus 
possible in both directions. 
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Figure 16: Reaction torque on fuselage as a 
function of collective 
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Figure 17: Reaction torque on fuselage and 
corresponding lift force for a forced flapping angle 
of 8.3 degrees 
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Lift
 
Figure 18 illustrates that the thrust coefficient only 
depends on the collective pitch and is independent 
of the forced flapping angle, as could be expected. 
The same of course holds for the lifting force on 
the rotor which is depicted in figure 19. It can be 
seen that the largest lifting force obtained so far (at 
500 rpm) is equal to approximately 27 N. The 
largest lift force that was achieved in the 
torqueless situation is equal to approximately 13 N 
(achieved with approximately 6.5 degrees 
collective pitch and 9.8 degrees flapping). The lift 
force required for lift off should be equal to 50 N, 
this will be achievable at the higher rotational 
speed of the rotor of approximately 1300 rpm. 
 

-1

0

1

2

3

4

5

6

0 2 4 6 8 10

collective [degr.]

C
T 

*1
00

0

12

flapping angle 7,24
flapping angle 8,32
flapping angle 9,78

Mtip=0,129   Retip=1,6*10^5   hover situation

 
Figure 18: Thrust coefficient as a function of 
collective and flapping angle. 
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Figure 19: Lift as a function of collective and 
flapping angle. 
 
Figure of Merit and power required
 
Looking at figure 20 it can be seen that the 
magnitude of the forced flapping angle has an 
influence on the figure of merit, in the sense that 
the figure of merit decreases with increasing 
forced flapping angle. This effect can be due to 
two different causes: either the profile drag 
coefficient is influenced by the continuous 
fluctuation of the lift or the correction factor for the 
non-uniformity of the induced velocity (k) is 
influenced by this fluctuation or both. At this 
moment in time it is not yet possible to pinpoint the 
exact (combination of) cause(s). 
 

Figure 21 additionally gives an indication of the 
required flapping power. Note that only two points 
in this graph represent a torqueless situation. The 
values in figure 21 however, can not be compared 
to the calculated value in equation (42) due to the 
difference in rotational speed. Because of the 
uncertainty in the values for the profile drag 
coefficient and the correction factor for the non-
uniformity of the induced velocity as discussed 
previously there is no added value in recalculating 
the flapping power in equation (42) for the correct 
rotational speed. Therefore a comparison between 
the tests and theory can not be made at this 
moment. 
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Figure 20: Figure of Merit as a function of 
collective and forced flapping angle 

0

50

100

150

200

250

0 2 4 6 8 10 1

collective [degr.]

Pf
l [

W
]

2

flapping angle 7,24
flapping angle 8,32
flapping angle 9,78

Mtip=0,129   Retip=1,6*10^5   hover situation

 

Torqueless 
situations 

Figure 21: Flapping power as a function of 
collective and flapping angle.  
 
Required flapping angle 
 
As seen previously, the torqueless situations were 
achieved with forced flapping angles equal to 8.3 
degrees and 9.8 degrees. Again these values can 
not be compared to equation (43) because of the 
difference in rotational velocity of the rotor blades. 
However, in this case the theoretical values for the 
forced flapping angles can be recalculated using 
the results of the tests. The rigid blade flapping 
angles can be calculated with equation (43) when 
the flapping power that was needed during the 
tests is substituted, this flapping power is given in 
table 1. 
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Table 1: Flapping angle according to rigid blade 
theory and flapping angle according to tests for the 
two torqueless situations. 
 Collective 

pitch 
[deg] 

Flapping 
power 

test  
[W] 

Flapping 
angle 
theory 
[deg] 

Flapping 
angle 
test 

[deg] 
Sit. 1 4 110 7.5 8.3 
Sit. 2 6.3 150 8.7 9.8 
 
Now it can be seen that there is only about 10% 
difference between the rigid blade flapping angles 
as predicted by the theory and the flapping angles 
that actually occurred during the tests. This is less 
than was predicted by the flexible blade theory. 
 
Spring stiffness of the flapping mechanism 
 
Earlier in this paper it was noted that special care 
should be given to cross-coupling effects during 
testing. So far, the cyclic control of the Ornicopter 
model has not yet been tested and therefore no 
conclusions can be drawn regarding these cross 
coupling effects. 
 

Conlusions and recommendations 
 
The radio-controlled Ornicopter model has been 
successfully designed, built and tested. The tests 
showed that all vibrations that occurred during 
testing of the earlier windtunnel model had 
disappeared due to the new flapping configuration 
of the rotor blades. Additionally, the radio-
controlled Ornicopter model has a flapping 
mechanism that is much lighter and much more 
compact than the flapping mechanism that was 
used for the windtunnel model. Therefore it is the 
expectation that this radio-controlled model will 
actually become a free-flying model in the near 
future. 
 
The tests demonstrated that a torqueless situation 
can be achieved while using only modest forced 
flapping angles, and that yaw control is still 
possible.  
 
However, the tests also revealed a couple of 
points of attention that require further research. 
Firstly, it should be investigated whether an 
increase in forced flapping angles decreases the 
figure of merit due to an increase in profile drag 
coefficient or due to an increase in the correction 
factor for the non-uniformity of the induced 
velocity. Secondly, it should be studied why there 
is only a difference of 10 percent between the 
flapping angles that were calculated from theory 
for rigid blades and the flapping angles that 
occurred during the tests. 
 
Additionally, further tests should be performed in 
order to determine whether the cross coupling 

effects that are predicted by the theory actually 
occur in reality. Tests should also be performed 
with the model operating in normal helicopter 
mode in order to be able to compare the results of 
the Ornicopter mode (with forced flapping of the 
blades) with the helicopter mode. This way it will 
be possible to determine whether the Ornicopter 
mode requires a different amount of power or 
produces a different amount of lift than a normal 
helicopter. 
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