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Abstract

This paper presents an original combined approach to shape-sensing and structural health monitoring of helicopter rotors.
It is based on the measurement of strain in a limited number of points over the blade surface. The Shape-Sensing algorithm
is modal-based and capable of reconstructing nonlinear, moderate lag, flap and torsion deflections. Two Structural Health
Monitoring algorithms are presented, one in the time domain and the other in the frequency domain. Both are based on the
analysis of the discrepancies between the strains arising in the damaged and the undamaged blades. Two damage types
have been considered: a mass unbalance and a localized stiffness reduction. Both Shape Sensing and Structural Health
Monitoring capabilities have been tested by numerical simulation using a multibody dynamic solver for general nonlinear
comprehensive aeroelastic analysis.

1 INTRODUCTION

Rotor blades are subject to significant deformations in stan-
dard and critical operating conditions, owing to aerody-
namic and inertia loads. They are slender structures, whose
flapping deformation is used to direct rotor thrust and to re-
duce aerodynamic asymmetry between the advancing and
retreating sides of the rotor and thus reduce vibratory loads
transmitted to the airframe. Blade shape sensing and struc-
tural health monitoring [1] are thus desired features of fu-
ture helicopters to reduce the need of costly (both in terms
of time and money) periodic inspections [2] and to improve
flight control system performance [3;4;5]. An increase in flight
safety is also expected, since it has been estimated that
about 3% of helicopter accidents are caused by failure in
the rotor system [6].

Although the potential benefits of placing sensors on ro-
tor blades are very clear, two big issues remain open: (i) the
optimal positioning of the sensors on the blade, associated
with the risk of accidental breaks during manufacturing or
operational life, as well as with the the need to avoid bond-
ing delamination (see [7] for a complete review of technolog-
ical issues for the case of sensor application on wind tur-
bines); (ii) the most efficient way of powering and connect-
ing sensors, in relation with the rotational motion of the rotor.
Both these issues make the use of a large number of sen-
sors significantly more complex than in fixed wing applica-
tions. Mainly owing to these reasons, most non-destructive
damage detection techniques currently in use are carried
out in dedicated facilities and rely upon visual or localized

experimental methods, such as acoustic or ultrasonic meth-
ods, radiography, X-ray or thermal field methods, which re-
quire the knowledge of the damage location as well as its
accessibility [8]. In the last years, to overcome limitations im-
posed by these methods, research has focused on the de-
velopment of damage identification procedures based upon
the detection of changes in the structure vibratory behav-
ior (namely natural frequencies, mode shapes and modal
damping).

Following the approach introduced in Refs. [9;10], in this
work the authors propose the use of a limited number of
strain gauge measurement points for the real-time determi-
nation of blade shape and/or health monitoring and blade
balancing, following the criteria of multi-purpose sensors.
Due to both the low cost and reduced weight of the sen-
sors needed to implement such techniques, their range of
applicability can be greatly increased, extending their appli-
cation also to lightweight helicopters, whose overall safety
level could be significantly improved.

2 SHAPE SENSING ALGORITHM

Shape sensing from strain measurement is an area of grow-
ing interest in recent years in many fields of application,
ranging from automotive to civil engineering. Indeed, while
a direct optical measurement (photogrammetry) represents
a viable option in some cases [11], it may suffer from practi-
cal disadvantages: (i) only in-sight parts of objects may be
monitored; (ii) optical markers field of view must be suffi-
cient, i.e. marker plane must form a sufficiently great angle



with the direction between camera and marker itself; (iii) op-
erating conditions (water, ice, absence of light or direct sun
exposure of the camera) make the measurement problem-
atic; (iv) for real-time, high speed measurements, expensive
equipment is required; (v) camera vibrations heavily affect
the accuracy of the measurement. All these problems are
harshly present in rotor blade shape reconstruction, making
the application of optical measurements very difficult.

On the other hand, Fiber Bragg Gratings strain gauges
represent a great improvement in terms of bandwidth and
ease of installation with respect to traditional electric resis-
tance solutions. In particular, they drastically reduce the
need of cables, as a single fiber may host hundreds of
measurement points, whereas each traditional strain gauge
needs a dedicated wiring.

Several numerical approaches have been recently pro-
posed for the determination of the deformed shape of bod-
ies from strain measurement; some of them are based
on the direct integration of data [12;13], whereas others use
modal expansion, exploiting the use of preliminary FEM
analysis on the monitored object [14;15;16]. The latter are
usually more efficient in terms of number of required sen-
sors, but need the knowledge of the object structure. More-
over, with notable exceptions [17], the approaches in the lit-
erature are inherently linear, whereas the general relation
between strain and displacement is nonlinear. The modal
shape functions may be conveniently evaluated for heli-
copter rotor blades through an equivalent 1D beam model.
However, for linear approaches, rotors may be a challenging
application, being subject in standard operating conditions
to moderate deflections. Analogous considerations may be
drawn for fixed wing aircraft which are becoming more and
more flexible.

In the present work, the authors propose a modal shape
sensing approach, capable of reconstructing the complete
deformation of a beam-like structure, including torsion, in-
plane, and out-of-plane bending. It is capable of handling
nonlinear terms up to second order. This is particularly in-
teresting for flight dynamics and aeroelastic control applica-
tions, in which the knowledge of limited information on rotor
kinematics may give unsatisfactory results. It is worth men-
tioning that, at present, devices of the latter type (e.g. mea-
suring cyclic flapping components βc and βs), or flapping-
related displacement on a point along the blade) are still
under development [11].

2.1 Strain-displacement relationship

Let us consider the approximation proposed in [18] for the
strain-displacement relationship of a twisted beam, which is

valid for moderate deflections

εξξ = u′+
1
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where η and ζ are the cross section principal axes, ξ is the
coordinate along the elastic axis, u, v, w are the axial, lead-
lag and flap displacements of the elastic axis, whereas θ

and φ are the built-in twist angle and the blade cross-section
elastic rotation (torsion), respectively. Note that in the above
equations the warping function has been neglected, since
its effect is deemed negligible in rotor blade dynamics.

In the proposed formulation, the displacement δ =
{u,v,w}T and the elastic torsion angle φ are first expressed
as the linear combination of suited shape functions

δ(ξ, t) = ∑
i

qi(t)Ψi(ξ)(2a)

φ(ξ, t) = ∑
i

ri(t)Φi(ξ)(2b)

Then, using M shape functions to approximate the torsion
angle, Eqs. (1b) and (1c) are rewritten as

εξη + εξζ =Kr(3)

where r= {r1,r2, . . . ,rM}T contains the torsion amplitudes
and K is a row vector evaluated in a straightforward man-
ner from the knowledge of the torsion shape functions and
the location of the evaluation point. Once the torsion am-
plitudes are obtained exploiting Eq. (3), Eq. (2b) is used to
calculate the terms depending on φ in Eq. (1a), leaving the
displacement components as the only unknowns.

Finally, using N shape functions to approximate δ, eval-
uating Eq. (1a) at two points of the same cross section,
and subtracting the corresponding εξξ values, a purely
linear relationship between the difference ∆εξξ and q =

{q1,q2, . . . ,qN}T is obtained

∆εξξ =Hq+b(4)

where H is a row vector depending on the displacement
shape functions, Ψi, the torsion angle and the location of
the evaluation point, whereas b is a constant term depend-
ing only on the torsion angle and the location of the evalua-
tion point.

It is worth noticing that, using ∆εξξ instead of εξξ for
the evaluation of the elastic axis displacement, the contri-
bution of the axial displacement u vanishes, thus reducing
the number of total modes required for blade shape recon-
struction.
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2.2 Torsion and displacement amplitude
identification

In order to identify torsion and displacement amplitude from
Eqs. (3) and (4), N +M linearly independent equations are
needed. These equations can be obtained by performing
N measurements for ε12 and/or ε13, and M measurements
for ∆εξξ at different cross-sections along the blade span.
However, owing to the presence of noise and measurement
errors in both the signal acquisition/processing and sensor
positioning processes, a larger number of measurements
should be used to obtain a reliable evaluation of the modal
amplitudes. For both the torsion and bending problems, this
yields overdetermined problems, whose solutions may be
obtained in a least-squares sense as

r = K+(εξη +εξζ)(5)

and

q = H+(∆εξξ−b)(6)

where (·)+ indicates the Moore-Penrose pseudo-inverse.
Notice that the evaluation of ∆εξξ requires at least two

strain gauges for each cross section, with a definite in-
crease in the number of sensors (one per section) with
respect to those used in classical modal approaches (see
for example [15]), which are equal to the number of modes.
This drawback is largely compensated by the fact that
the proposed procedure is computationally very efficient,
as it solves a nonlinear elasticity problem (under the as-
sumption that bodies are subject to moderate deformations)
through the sequential solution of two linear algebraic sys-
tems (Eqs. (5) and (6)). Furthermore, it appears to be quite
accurate since, due to error propagation, a single ∆εξξ mea-
surement is statistically more precise than an εξξ one.

Finally, some details are needed about the simulation
of a real strain gauge measurement. Considering a set of
sensors glued over the blade surface, and oriented at an-
gles αi with respect to the ξ-axis, their outputs εαiαi over
each cross section are used to evaluate εξξ, εξζ and εξη in
that section. Indeed, from the strain tensor associated with
the Euler-Bernoulli beam

T =

εξξ εξη εξζ

εξη −νεξξ 0
εξζ 0 −νεξξ


the local strain along a direction tangent to the beam sur-
face, identified by the unit vector m (see Fig. 1), is given
by

εmm = (Tm) ·m= εξξ[(1+ν)m2
ξ
−ν]

+2εξηmξmη +2εξζmξmζ

(7)

where {mξ,mη,mζ} are the components ofm.

Figure 1: Sensor orientation.

Notice that, being the twist of a helicopter blade rela-
tively small, the optimal sensor orientation to obtain εξη +
εξζ in Eq. (5) from the difference of the signals of two sen-
sors located at the same measurement point, is αi ≈±45◦.
Notice also that the sum of the signals of the above sensors
may be used to evaluate εξξ. Considering all the N +M
modes, the minimal set of sensors required for the solu-
tion of Eqs. (5) and (6) is of M pairs of ±45◦ sensors and
(at least) N −M + S sensors aligned with the blade span
(N−M sensors to reach the number of N εξξ sensors, plus
one additional sensor per section, for a total of S sensors,
which are needed to measure an additional εξξ value for
each section, to be used in the evaluation of ∆εξξ).

Although a redundant set of sensors is required anyway,
to reduce the influence of measurement errors, for typical
rotorcraft applications a limited number of sensors should
be required, since only few modes (in the order of ten) are
sufficient to accurately reconstruct the shape of the rotor
blades.

3 STRUCTURAL HEALTH MONITOR-
ING ALGORITHMS

Structural Health Monitoring (SHM) has been extensively
studied in the last two decades in almost every field of en-
gineering. In Refs. 19;20;21;22;23, a broad selection of
methodologies are presented, whereas Ref. 2 presents a
review of SHM methodologies for rotorcraft. Despite the
differences, in terms of measured quantities and data post-
processing techniques used to predict and locate a dam-
age, two fundamental concepts are always present: (i) a
reference state is necessary to compare the degraded per-
formance with; (ii) high frequency phenomena can pinpoint
more accurately the location of the damage. In both cases,
helicopter rotors in steady-state flight conditions are a fa-
vorable field of application, due to the presence of multi-
ple blades (ideally identical) experiencing the same low- to
high-frequency excitation with a very small phase shift be-
tween them.

In this paper, two different criteria for blade damage de-
tection based on the comparison of signals from sensors
located on different blades are proposed. The properties
investigated by the authors are: (i) sensitivity to structural
modifications; (ii) proneness to false positives and nega-
tives due to unsteady flight conditions. The first criterion
proposed is based on the evaluation of Welch’s power spec-
tral density [24] of signals obtained as the difference between
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strain measurements from sensors in the same position on
different blades. Indeed, in the absence of a blade dam-
age/imbalance with respect to the other ones, it is expected
that the blade steady-state aeroelastic responses do not dif-
fer, once the signals from the blades are phased by their
relative angles (2π(i− j)/Nb, for i-th and j-th blades).

Moreover, the power spectral density of each blade re-
sponse is characterized by contributions at frequencies iΩ
(where Ω is the rotor angular velocity and i ∈ N0), due to
steady response, and ω± iΩ (where ω is a generic blade
eigenfrequency), due to transient response. Since in he-
licopter applications the rotor eigenfrequencies are sepa-
rated by design from multiples of the rotor angular veloc-
ity, in order to avoid resonance, monitoring iΩ peaks in the
blade response is expected to be a suitable criterion for
damage identification. In fact, the amplitudes of the PSD
peaks of the signals obtained as the difference between
strain measurements from different blades (∆-signal), at fre-
quencies iΩ, are expected to be persistent in time in dam-
aged systems, as opposed to the peaks associated with the
transient response of an undamaged system (strongly de-
pendent on lightly damped lag modes), which are expected
to show a pronounced time dependence.

The second proposed criterion is based on the autocor-
relation of the ∆-signals, namely

(8) ci j(τ) =
1
T

∫ T/2

−T/2
∆si j(t)∆si j(t + τ)dτ

Since the difference between two undamaged blades (as-
sumed identical) contains only noise and transient effects,
it is expected that, considering a sufficiently long sampling
period, the normalized autocorrelation is very low, except
when zero time shift is considered. On the contrary, for
a ∆-signal involving a damaged blade, the autocorrelation
should be high (or low) also for other values of the time
shift, as it may be easily verified for two periodic analytical
signals. Notice that in real-life cases there are dissimilar-
ities between rotor blades as a result of the manufactur-
ing process or of environmental effects, which are mitigated
and maintained below acceptable tolerances by tracking.
Hence, in this case a non-zero ∆-signal is present also in
undamaged systems. To overcome this problem, both crite-
ria are applied to the signal

(9) ∆∆si j(t) = ∆si j(t)−∆sref
i j (t)

namely the variation of the ∆-signal with respect to the ref-
erence state (∆∆-signal).

4 NUMERICAL RESULTS

The test cases considered in this section are hingeless ro-
tor blades inspired to that of the Bölkow (now Airbus Heli-
copters) BO105 helicopter, with a main rotor radius of 4.9
m rotating at 44.4 rad/s, and in forward-flight condition at an
advance ratio (the ratio between the forward velocity and

the blade tip velocity in hover) µ = 0.2. The first blade an-
alyzed is uniform, whereas the second one is realistically
non-uniform, having a maximum variation of the bending
stiffness of about 24000%, considering also the blade root
and the flexbeam. Figure 2 illustrates the qualitative trend
of the main structural properties along the blade.
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Figure 2: Structural properties along blade.

The actual measurements on the rotor blades are sim-
ulated using numerical results computed by means of dy-
namic and aeroelastic simulations performed with the free,
general purpose multibody dynamics solver MBDyn [25]

4.1 Shape Sensing
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Figure 3: Shape reconstruction for a small-displacement flap
bending. Comparison between linearized and proposed approach.

The first analysis performed is the flap-wise bending recon-
struction of a non-rotating blade with NACA0012 airfoil. In
Fig. 3, the results of the proposed approach are compared
with those of the linearized model for small displacements.

Unless otherwise stated, here and in the following, two
pairs of ±45◦ sensors over the same section are con-
sidered ("measurement section", in the following) for both
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blade upper and lower surfaces. Notice that this is not an
optimal sensor arrangement, which would require a dedi-
cated analysis. Some authors [26] have proposed the use
of the condition number (CN) of matrices H and K as an
estimate of the quality of sensor placement. In addition, it
should be noticed that optimal positioning should also take
into account the expected value of the measurement, to im-
prove the signal to noise ratio.

Two and three bending modes are respectively used for
the definition of the H and K matrices of Eqs. (5) and (6).
The analytical mode shapes from a homogeneous beam
are considered. In this case, the proposed formulation is
equivalent to the classic modal approach to shape sensing,
as expected, since the nonlinear terms are negligible. Anal-
ogous results (not shown here, for conciseness) have been
obtained for the lag deformation.
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Figure 4: Shape reconstruction for a moderate-displacement flap
bending. Comparison between linearized and proposed approach.

On the contrary, when displacements become larger,
the effect of the nonlinear terms is no longer negligible. In
this case, illustrated in Fig. 4, the proposed approach pro-
vides a much more accurate shape reconstruction.
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Figure 5: Shape reconstruction for a torsion-forced beam.

Figure 5 shows the reconstruction of the torsion defor-
mation of the same blade. Here only the result from the pro-
posed approach is shown, since the torsion problem stated
in Eqs. (1b) and (1c) is linear.
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Figure 6: Flap reconstruction using sensors near the blade root.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

Blade span [m]

Fl
ap

 d
is

pl
ac

em
en

t [
m

] Sensors
Reconstructed−proposed app.
Actual shape

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

Blade span [m]

Re
la

tiv
e 

er
ro

r

Figure 7: Flap reconstruction using sensors uniformly distributed
along the blade.

Figures 6 and 7 depict the effect of the spanwise posi-
tion of the sensors, both in terms of flapwise bending re-
construction and relative error. In Figure 6, four sensors are
clustered near the blade root section, whereas in Figure 7
the same number of sensors are uniformly distributed over
the whole span. As expected, placing the sensors closer
to the root, where the strains associated with low-frequency
modes are usually larger, reduces the reconstruction error.
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Figure 8: Torsion reconstruction varying number of modes.

Figure 8 presents a sensitivity analysis with respect to
the number of modes used in the reconstruction algorithm.
It depicts the torsion deformation obtained by increasing
the number of the torsion modes, and using the four sen-
sorized sections clustered near the blade root. Expanding
the modal base up to three modes gives an improvement of
the reconstruction quality, whereas the use of four modes
seems to produce a dramatic worsening of the accuracy.
The same analysis performed on flap and lead-lag defor-
mations (not presented here for the sake of conciseness)
shows that the optimal number of modes is two, although
the sensitivity of the reconstruction accuracy to the modes
number is less pronounced. The negative effect of increas-
ing the number of modes fixing the number of sensors can
be also inferred by Tab. 1, which reports the condition num-
ber of the H and K matrices when the modes number is var-
ied. Here the number of sensors per section has been kept
to a minimum, which is equal to three, assuming that two
sensors are used for evaluating torsion and bending at the
same time (subtracting and adding their signals). Globally,
the modes increase results in a degradation of the condi-
tioning of the matrices, which become ill-conditioned when
four modes are used. It is worth recalling that the recon-
struction accuracy is a trade-off between a well-conditioned
system and an appropriate number of modes. If a high num-
ber of modes is required due to the nature of the problem, a
simultaneous increase of the number of sensors is needed,
taking care to position them in a suited way to keep the con-
dition number low.

Table 1: Condition number of H and K matrices for different bend-
ing and torsion modes number (four sections, three total sensors
per section).

1 2 3 4

H 1 15.82 9.80e02 2.61e05
K 78.74 1.59e03 6.53e02 8.60e06

Thus far, a homogeneous blade has been considered.

In other words, the modal base used for the definition of the
H and K matrices of Eqs. (5) and (6) is the proper base for
the problem examined. If we consider a non-uniform blade
in the simulation, the overall quality of the shape reconstruc-
tion is expected to decrease, for a fixed number of modes
(Figs. 9 and 10).
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Figure 9: Shape reconstruction of a non-uniform blade, using
modes of a uniform one.
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Figure 10: Shape reconstruction of a non-uniform blade, using
modes of a uniform one.
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Figure 11: Shape reconstruction of a non-uniform blade, using its
natural modes.
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Figure 12: Shape reconstruction of a non-uniform blade, using its
natural modes.

However, using accurate blade mode shapes, computed
for the actual non-uniform blade, the reconstruction accu-
racy is essentially restored, as shown in Figs. 11 and 12.
Since for real-life applications a FEM model of the blade
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is usually available, the evaluation of its eigenmodes is a
convenient operation, which reduces the number of modes
that need to be considered (and thus of the sensors to be
installed). Another issue that is addressed here is the influ-
ence of measurement noise on the robustness of the result.
In particular, the effect of redundant measurement sections
on disturbance rejection has been investigated.
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Figure 13: Percentiles of error for different number of sensors over
each measurement section.

Considering a random noise equal to 0.2× 10−6 plus
10% of the measurement (which is a value significantly
higher than that expected for a modern strain sensor), the
reconstruction error for a flap bending case has been eval-
uated over ten thousand simulations with different numbers
of couples of ±45◦ sensors for each measurement section.
Figure 13 shows the resulting percentiles of integral error

(namely
1
L3

∫ L

0

(
wr−ws

)2dx). From the figure it is clear

that by increasing the number of sensors, the error is signif-
icantly reduced.

In the following, the focus is on dynamical results. Fig-
ure 14 shows the tip-flap displacement for a periodically
forced, yet non-rotating case.
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Figure 14: Time history of actual flap displacement of tip and its
reconstruction with linearized and proposed approach.
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Figure 15: Reconstruction of tip flap, lag and torsion displace-
ments of the rotating blade.

Figure 15 reports the tip displacement components for
the rotating blade. In this case, one lag mode, four flap
modes and two torsion modes are used in the reconstruc-
tion, which uses four measurement sections. As stated in
Section "Shape Sensing Algorithm", axial modes are not
needed for the proposed approach. On the contrary, with
the linearized approach it is strictly necessary to introduce
them, since a significant part of strain is due to the cen-
trifugal force field. Figure 16 shows what happens when
no axial modes are included in the simulation for the lin-
earized approach. In this case, after introducing a single
axial mode, the quality of the reconstruction is restored, as
shown in Fig. 17. However, this comes at the cost of an in-
crease of modes that need to be evaluated and thus of the
number of required sensors.
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Figure 16: Shape reconstruction of a rotating blade. The linearized
approach is here applied without including axial modes.
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Figure 17: Comparison between proposed approach and lin-
earized one (including axial mode) for a rotating case.

Figure 18 shows the time history of the integral error
(defined as above) and the relative error at the blade tip.
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Although quite small, the error on flap displacement is sig-
nificantly larger than those on lag and torsion. Increasing
the number of sensorized sections and modes from four to
eight (Fig. 19) significantly improves the shape reconstruc-
tion. Note that increasing the number of sensors requires
a corresponding increase of the sensorized portion of the
blade, to maintain a small conditioning number for both the
H and K matrices. This caution is needed, since natural
modes behave similarly in the vicinity of the blade root.

Notice that a reduction of required modes may also be
achieved by considering those of a rotating beam.

It is worth mentioning that the proposed approach could
be also applied to subparts (beams) of complex structures.
This makes it possible to retain also the evaluation of sec-
ond order terms in cases where the analytical relationship
between displacement and strain is unknown. The draw-
back is that for the evaluation of the structure’s global shape
a post-processor is needed, which enforces compatibility of
the subparts’ deformation.

0 1 2 3 4
0

1

2

3
x 10

−5 Integral error − Flap

0 1 2 3 4
0

0.005

0.01
Tip error − Flap

0 1 2 3 4
0

2

4
x 10

−7 Integral error − Lag

0 1 2 3 4
0

0.5

1

1.5
x 10

−3 Tip error − Lag

0 1 2 3 4
0

2

4

6

8
x 10

−7 Integral error − Torsion

Time [s]
0 1 2 3 4

0

2

4

6
x 10

−4 Tip error − Torsion

Time [s]

Figure 18: Integral and tip error using one lag, four flap and two
torsion modes, considering four sensorized sections.
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Figure 19: Integral and tip error on flap using eight flap modes,
considering eight sensorized sections.

Finally, with the aim of assessing the effectiveness of
the shape sensing procedure on complex 3D structures,
composed of different structural elements (e.g., 3D ele-
ments, beams and shells), the wing box sketched in Fig. 20
has been considered. For this analysis, an approximate dis-
tribution of the aerodynamic loads is considered, linearly
varying along the wing chord and elliptically varying along
the wing span. [27] Nine virtual strain gauges are positioned
on the upper skin, in the first third of the wing span from the

root (see Fig. 20). Results in terms of spanwise distribu-
tion of the out-of-plane displacement are shown in Fig. 21,
where results from a FEM analysis are compared with the
reconstruction obtained using two modes. Note that in this
case the accuracy of the reconstruction algorithm is weakly
dependent on the number of modes. Indeed, a similar anal-
ysis, performed using only one mode for the out-of-plane
displacement reconstruction, provided results with less than
1% error at the wing tip.

Figure 20: Idealized wing structure (C=1 m, L=6.5 m, a=0.22 m,
b=0.57 m). Black dots on the right picture represent measurement
points location.
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Figure 21: Simulated and reconstructed wing deflection.

4.2 Structural Health Monitoring

Two types of alteration on the blade have been considered
with the techniques proposed in section "Structural Health
Monitoring Algorithms": (i) variation in mass distribution;
(ii) variation in flapping stiffness; The former are represen-
tative of an incorrect track and balance procedure, while the
latter of a structural damage of the blade.

The mass alteration is simulated by introducing lumped
masses at the tip of the blade, whereas the structural dam-
age is simulated by dividing the blade into two beams con-
nected by a rotational joint with a spring that reproduces
the residual stiffness in the damaged location. Considering
the case of blade flapwise bending (analogous considera-
tion may be made for the torsion), the equivalence between
the spring constant and the variation of the stiffness ∆S in a
region of length Ld � R is stated by the formula:

K =
1

Ld
[
(S−∆S)−1−S−1

]
where S is the undamaged blade stiffness.

4.2.1 Time-domain analysis

The first results show the autocorrelation of the ∆∆-signal
over 100 revolutions. Note that, although the undamaged
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blades are identical, the numerical solution of the aeroe-
lastic simulation introduces systematic discrepancies in the
blade response. Thus, even here the use of the ∆∆-signal
instead of the ∆-signal is beneficial. Figures 22 and 23
clearly show the effect of the addition of 2 and 4 grams,
respectively, at the tip of one blade.
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Figure 22: Autocorrelation of ∆∆-signal from altered (+2 g @tip)
and nominal blades.
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Figure 23: Autocorrelation of ∆∆-signal from altered (+4 g @tip)
and nominal blades.

Figure 24 shows what happens if the autocorrelation is
performed over the ∆-signal instead of ∆∆-signal. In this
case the damaged blade is no longer recognizable for that
value of alteration (2 grams). While the systematic dis-
crepancy between undamaged blades is a purely numeri-
cal problem, it is expected that an analogous situation will
be present in real-life cases, making the use of ∆∆-signal
an interesting way to obtain more robust results.
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Figure 24: Autocorrelation of ∆-signal from altered (+2 g @tip) and
nominal blades.

Complementary information may be drawn from the
analysis of mean values of ∆∆-signal, shown in Figs. 25
and 26. The presence of blade damage appears clearly in
the bars involving blade 1 (the one which is damaged), with
almost identical effect. On the contrary, the mean value of
∆∆-signal between undamaged blades are more than two
orders of magnitude smaller. Figure 27 shows an example
of analysis of mean values considering ∆-signal instead of

∆∆-signal. As noted before, also in this case the damaged
blade is not clearly recognizable.
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Figure 25: Mean value of ∆∆-signal from altered (+2 g @tip) and
nominal blades.
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Figure 26: Mean value of ∆∆-signal from altered (+4 g @tip) and
nominal blades.
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Figure 27: Mean value of ∆-signal from altered (+2 g @tip) and
nominal blades.

Figures 28 to 31 show autocorrelation and mean values
of ∆∆-signal in presence of damage which causes 5% or
10% flapping stiffness reduction on a 1cm trait positioned
at one third of the blade, leading to analogous considera-
tions.
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Figure 28: Autocorrelation of ∆∆-signal from altered (5% flapping
stiffness reduction on 1 cm @r = 1.53 m) and nominal blades.

9



−100 −80 −60 −40 −20 0 20 40 60 80 100
−2

0

2

4

6

8
x 10−9

 

 

Time shift [rev]

A
ut

oc
or

re
la

tio
n 

(∆
 −

∆ B
)

damaged−undamaged
undamaged−undamaged

Figure 29: Autocorrelation of ∆∆-signal from altered (10% flapping
stiffness reduction on 1 cm @r = 1.53 m) and nominal blades.
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Figure 30: Mean value of ∆∆-signal from altered (5% flapping stiff-
ness reduction on 1 cm @r = 1.53 m) and nominal blades.
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Figure 31: Mean value of ∆∆-signal from altered (10% flapping
stiffness reduction on 1 cm @r = 1.53 m) and nominal blades.
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Figure 32: PSD of ∆∆-signal from altered (+2 g @tip) and nominal
blades.
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Figure 33: PSD of ∆∆-signal from altered (+4 g @tip) and nominal
blades.
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Figure 34: PSD of ∆∆-signal from altered (5% flapping stiffness
reduction on 1 cm @r = 1.53 m) and nominal blades.
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Figure 35: PSD of ∆∆-signal from altered (10% flapping stiffness
reduction on 1 cm @r = 1.53 m) and nominal blades.

4.2.2 Frequency-domain analysis

The same damaged configurations have been investigated
also though the frequency domain approach presented in
Section "Structural Health Monitoring Algorithms". Fig-
ures 32 and 33 show the PSD of ∆∆-signal in presence of 2
grams and 4 grams mass at one blade tip, respectively. The
PSDs have been obtained through the Welch’s algorithm
using a 100-revolutions long signal, divided in 10 Blackman-
Harris windowed chunks with 50% overlap.

As expected, a great discrepancy between the PSDs of
∆∆-signals involving the damaged blade and those not in-
volving it is present at zero frequency. Moreover, from the
PSD, it is also possible to highlight other discrepancies of
the force (periodic) response at frequency Ω,2Ω, . . . ,NΩ

which are unaffected by transient response if no reso-
nances are present. Peaks at iΩ are clearly visible in
Fig. 33, whereas in Fig. 32 the type and entity of the dam-
age hide this behavior.

When considering the flapping stiffness reduction (see
Figs. 34 and 35), the iΩ peaks are present also for low dam-
age entity, along with the peak for zero frequency. This is
probably due to the fact that this kind of alteration affects
modes having frequency higher than those affected by the
addition of a tip mass.

5 CONCLUSIONS & FUTURE WORK

The numerical testing of the shape-sensing procedure has
given good results in terms of accuracy and precision,
with a small number of required strain sensors. It has
also demonstrated its capability to reconstruct the shape
of moderately deflected beams (whereas classical modal
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approaches to shape-sensing are limited to small displace-
ments), although the algorithm only requires the solution of
linear problems. The determination of the optimal place-
ment of sensors, the capability of dealing with finite dis-
placements and the extension of the algorithm to other ba-
sic structural elements (e.g. plates, shells) are still open
issues that will be the subject of future analyses.
Another field of future study is the application of the pro-
posed procedure to complex structures. In this case, it will
be necessary to make information from the shape-sensing
consistent across subparts of the structure. The structural
health monitoring problem has been addressed using both
frequency and time domain analyses applied on the differ-
ence of strain signals (∆-signals) among the blades. The
techniques may be applied to the measurements used for
the shape sensing algorithm, a positive fact in the scope
of an integrated instrumentation lodged on rotor head. The
different techniques have shown a good capability to detect
blades mass or stiffness alterations, even of small entity.
The use of a reference ∆-signal (due to differences among
blades caused by fabrication process) is promising in order
to reduce false positives. The accuracy and robustness dur-
ing maneuvered flight in presence of external disturbance
will be addressed in the future.

References

[1] C. R. Farrar and K. Worden, “An introduction to structural
health monitoring,” Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineer-
ing Sciences, vol. 365, no. 1851, pp. 303–315, 2007.

[2] P. Pawar and R. Ganguli, “Helicopter rotor health monitoring-
a review,” proceedings of the institution of mechanical engi-
neers, part G: Journal of Aerospace Engineering, vol. 221,
no. 5, pp. 631–647, 2007.

[3] M. D. Takahashi, “Rotor-state feedback in the design of flight
control laws for a hovering helicopter,” Journal of the Ameri-
can Helicopter Society, vol. 39, no. 1, pp. 50–62, 1994.

[4] J. F. Horn, W. Guo, and G. T. Ozdemir, “Use of rotor state
feedback to improve closed-loop stability and handling qual-
ities,” Journal of the American Helicopter Society, vol. 57,
no. 2, pp. 1–10, 2012.

[5] S. Panza and M. Lovera, “Rotor state feedback in the design
of rotorcraft attitude control laws,” in Advances in Aerospace
Guidance, Navigation and Control, pp. 205–225, Springer,
2015.

[6] L. Iseler and J. De Maio, “An analysis of us civil rotorcraft
accidents by cost and injury (1990-1996),” Tech. Rep. TM-
2002-209615, NASA, 2002.

[7] S.-W. Kim, W.-R. Kang, M.-S. Jeong, I. Lee, and I.-B. Kwon,
“Deflection estimation of a wind turbine blade using fbg sen-
sors embedded in the blade bonding line,” Smart Materials
and Structures, vol. 22, no. 12, p. 125004, 2013.

[8] S. W. Doebling, C. R. Farrar, M. B. Prime, et al., “A sum-
mary review of vibration-based damage identification meth-
ods,” Shock and vibration digest, vol. 30, no. 2, pp. 91–105,
1998.

[9] C. Enei, G. Bernardini, J. Serafini, L. Mattioni, C. Ficuciello,
and V. Vezzari, “Photogrammetric detection technique for ro-
tor blades structural characterization,” in Journal of Physics:
Conference Series, vol. 658, p. 012003, IOP Publishing,
2015.

[10] G. Bernardini, J. Serafini, C. Enei, L. Mattioni, C. Ficuciello,
and V. Vezzari, “Structural characterization of rotor blades
through photogrammetry,” Measurement Science and Tech-
nology, vol. 27, no. 6, p. 065401, 2016.

[11] L. Trainelli, M. Gennaretti, E. Zappa, M. Lovera, A. Rolando,
P. Cordisco, R. Grassetti, and M. Redaelli, “Development and
testing of innovative solutions for helicopter in-flight noise
monitoring and enhanced control based on rotor state mea-
surements,” in Proceedings of 42nd European Rotorcraft Fo-
rum, Lille, France, September 2016.

[12] G. C. Kirby III, T. W. Lim, R. Weber, A. Bosse, C. Povich,
and S. Fisher, “Strain-based shape estimation algorithms for
a cantilever beam,” in Smart Structures and Materials’ 97,
pp. 788–798, International Society for Optics and Photonics,
1997.

[13] R. Glaser, V. Caccese, and M. Shahinpoor, “Shape monitor-
ing of a beam structure from measured strain or curvature,”
Experimental mechanics, vol. 52, no. 6, pp. 591–606, 2012.

[14] G. Foss and E. Haugse, “Using modal test results to develop
strain to displacement transformations,” in Proceedings of
the 13th international modal analysis conference, vol. 2460,
p. 112, 1995.

[15] P. B. Bogert, E. Haugse, and R. E. Gehrki, “Struc-
tural shape identification from experimental strains us-
ing a modal transformation technique,” in Proceedings of
44th AIAA/ASME/ASCE/AHS Structures, Structural Dynam-
ics and Materials Conference, Norfolk, Virginia, 2003.

[16] C.-g. Pak, “Wing shape sensing from measured strain,” AIAA
Journal, vol. 54, no. 3, pp. 1068–1077, 2016.

[17] M. Alioli, P. Masarati, M. Morandini, T. Carpenter, N. B. Os-
terberg, and R. Albertani, “Membrane shape and load re-
construction from measurements using inverse finite element
analysis,” AIAA Journal, vol. 55, no. 1, pp. 297–308, 2017.
doi:10.2514/1.J055123.

[18] D. H. Hodges and E. H. Dowell, “Nonlinear equation for
the elastic bending and torsion of twisted nonuniform rotor
blades,” Tech. Rep. TN D-7818, NASA, 1974.

[19] S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. She-
vitz, “Damage identification and health monitoring of struc-
tural and mechanical systems from changes in their vibration
characteristics: a literature review,” tech. rep., Los Alamos
National Lab., NM (United States), 1996.

[20] H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stine-
mates, B. R. Nadler, and J. J. Czarnecki, “A review of struc-
tural health monitoring literature: 1996–2001,” Los Alamos
National Laboratory, USA, 2003.

11



[21] R. B. Randall, “State of the art in monitoring rotating
machinery-part 1,” Sound and vibration, vol. 38, no. 3,
pp. 14–21, 2004.

[22] R. B. Randall, “State of the art in monitoring rotating
machinery-part 2,” Sound and Vibration, vol. 38, no. 5,
pp. 10–17, 2004.

[23] D. Montalvao, N. M. M. Maia, and A. M. R. Ribeiro, “A review
of vibration-based structural health monitoring with special
emphasis on composite materials,” Shock and Vibration Di-
gest, vol. 38, no. 4, pp. 295–326, 2006.

[24] P. Welch, “The use of fast fourier transform for the estimation
of power spectra: a method based on time averaging over
short, modified periodograms,” IEEE Transactions on audio
and electroacoustics, vol. 15, no. 2, pp. 70–73, 1967.

[25] P. Masarati, M. Morandini, and P. Mantegazza, “An efficient
formulation for general-purpose multibody/multiphysics anal-
ysis,” Journal of Computational and Nonlinear Dynamics,
vol. 9, no. 4, p. 041001, 2014. doi:10.1115/1.4025628.

[26] C.-J. Li and A. G. Ulsoy, “High-precision measurement of tool-
tip displacement using strain gauges in precision flexible line
boring,” Mechanical Systems and Signal Processing, vol. 13,
no. 4, pp. 531–546, 1999.

[27] D. P. Raymer, Aircraft Design: A Conceptual Approach and
Rds-student, Software for Aircraft Design, Sizing, and Per-
formance Set (AIAA Education). AIAA (American Institute of
Aeronautics & Ast, 2006.

12


	Introduction
	Shape Sensing Algorithm
	Strain-displacement relationship
	Torsion and displacement amplitude identification

	Structural Health Monitoring Algorithms
	Numerical Results
	Shape Sensing
	Structural Health Monitoring
	Time-domain analysis
	Frequency-domain analysis


	Conclusions & future work

