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Abstract

The objective of this paper is the vibration anal-
ysis of a tiltrotor aircraft in cruise flight, and
in particular the investigation of the impact of
the aerodynamic model accuracy on the aeroe-
lastic response predicted. A simplified structural
model, composed of a bending-torsion semirigid
wing and flap-lag semirigid proprotor-blades, has
been coupled with a 2-D quasi-steady strip-theory
for both wing and blades, a 2-D unsteady strip-
theory, and a 3-D unsteady BEM for incom-
pressible flows. Preliminary numerical results
have been obtained comparing the aeroelastic re-
sponses of the three aforementioned models to an
atmospheric gust disturbance.

1 Introduction

Tiltrotors are very complex machines, and in the
analysis of their vibrations it is needed to study
both the typical fixed wing and the typical rotary-
wing aeroelastic phenomena. In this type of air-
craft, an additional important role is played by
the strong mechanical coupling between wing and
proprotor, that affects the aeroelastic behaviour
of the overall configuration. Hence, the impor-
tance of using sophisticated structural and aero-
dynamic formulations, to achieve a satisfying ac-
curacy in aeroelastic response analysis. For in-
stance, it has been evidenced that an accurate
aeroelastic modelization is also of interest in the
analysis of fuselage structural vibrations and in-
ternal sound disturbance, induced by wing and
proprotor motion (see, e.g., ref. [1]).

During the last twenty years several models for
tiltrotor aeroelastic analysis have been developed.
After the early work of W. Johnson [2], who de-
veloped a semirigid wing-proprotor model, a fi-
nite element formulation for tiltrotor with ad-
vanced blade configurations has been developed
by M.W. Nixon [3], both the formulations making
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use of a 2-D quasi-steady aerodynamic model. A
multi-body formulation, including rigid as well as
elastic bodies, has been developed by G.L. Ghir-
inghelli, P. Masarati and P. Mantegazza [4], us-
ing a 2-D strip theory aerodynamic model, with
aerodynamic coefficients based on interpolation
of experimental data.

The aim of this paper is the aeroelastic analy-
sis of a wing-proprotor configuration perturbed
from the cruise-flight trim condition, using sev-
eral aerodynamic models. Specifically, in this
work it will be investigated the influence of the
choice of different aerodynamic models on the
wing-proprotor aeroelastic response to a gust dis-
turbance.

To this aim a simple nonlinear structural model
has been developed, including a flap-pitch semi-
rigid wing connected with a semirigid three-
bladed proprotor, with each blade having flap-lag
degrees of freedom.

Unsteady aerodynamic loads are obtained from
several aerodynamic models having different ac-
curacy and complexity, in order to assess the
impact of the choice of the aerodynamic solu-
tion approximation on the aeroelastic behaviour
predicted. Specifically, from the use of a sim-
ple 2-D quasi-steady aerodynamic model, we will
go through more sophisticated aerodynamic-load
predictions, using a 2-D unsteady strip-theory,
approximated in finite state form, up to the ap-
plication of a 3-D unsteady boundary element so-
lution for potential flows around the overall com-
plex configuration [5].

The final aeroelastic model will be expressed in
terms of a set of periodic-coefficient ordinary dif-
ferential equations in the structural lagrangean
variables, forced by aerodynamic loadings. These
will be given either in explicit form in terms of
the system variables (simple 2-D analytical mod-
els) or in terms of aerodynamic flow solutions im-
plicitly dependent on them (BEM model). The
numerical aeroelastic solution will be obtained



integrating the resulting set of ordinary differ-
ential equations by the Cranck-Nicholson time-
marching algorithm.

2 Structural Model

The wing-proprotor is modeled as a system of
rigid bodies connected by hinges and springs, to
simulate elastic effects (semi-rigid body approxi-
mation). Wing motion is represented by flap and
pitch angles, in a frame of reference connected
with the fuselage, whereas flap and lag angles are
the degrees of freedom of proprotor blades mo-
tion, relative to a frame of reference connected
with the rotating shaft. The governing equations
for structural dynamics are the following Euler
equations applied at each rigid body
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where Q and H are the linear and angular mo-
menta about point O. In addition, v, and v are
respectively point O and center-of-mass, G, veloc-
ities, whereas M and J, are the rigid body mass
and inertia moment about O. External forces f
and moments m, are given by the superposi-
tion of weight loadings, aerodynamic generalized
forces and constraint reactions at hinge joints.
Constraints forces and moments, between wing
and proprotor blades, cause the equations to have
time-variant coefficients, due to blades rotational
motion. Hence eq. (1) represents a set of nonlin-
ear periodic equations with unknowns wing and
blades rotation angles. Being wing and blades
lagrangean variables defined with respect to the
undeformed configuration, we assume that per-
turbation angles and their time derivatives are
small (e.g., order €) and consequently apply an
ordering scheme retaining terms up to order £2.
Following this assumption, the nonlinear periodic
equations of motion may be recast as

where @7 = {qZ%,q!} is the row matrix of wing
(Qw) and blades (qp) degrees of freedom whereas
Ms,C*,K*® are the periodic, state-dependent,
mass, damping/gyroscopic and stiffness struc-
tural matrices. Forcing terms are given by weight

!Tn the following, the symbol & will denote the Laplace
transform of function a.

loadings in the undeformed configuration, wy,
wing aerodynamic moments m,,,, and periodic
matrix, N, which takes into account the ef-
fects (via joint reactions) of blade aerodynamic
loadings, b on wing dynamics.

3 Aerodynamic Models

Unsteady aerodynamic loads have been obtained
from three aerodynamic models having different
accuracy and complexity, in order to investigate
the impact of the choice of the aerodynamic so-
lution approximation on the aeroelastic response
predicted. A simple 2-D quasi-steady aerody-
namic model, for wing and blades, is first con-
sidered, then wing aerodynamics is enriched with
the use of a 2-D unsteady strip-theory based on
a finite state approximation of Theodorsen aero-
dynamic model. Finally we will consider a 3-D
unsteady boundary element solution for potential
flows around complex configurations.

3.1 Two-dimensional Analytical Models

3.1.1 Wing

Wing aerodynamics has been modeled by a 2D
strip-theory, based on Theodorsen theory for a
thin symmetrical airfoil [6]. In particular, con-
sidering Theodorsen relations for section aero-
dynamic lift and pitch moment, and integrating
along wing span to obtain wing aerodynamic flap
and pitch moments (about the elastic center), one
obtains in Laplace domain'
me = (A2 4+ sA1) G,

+ CO@) AT+ Aja, (4

The first wing aerodynamic model considered is
a quasi-steady approximation, obtained from eq.
(4) assuming the lift deficiency function C(s)
equal to unity. A more sophisticated model can
be obtained considering a finite-state approxima-
tion of the transcendental Theodorsen expres-
sions for generalized forces. Let us consider lift

deficiency function C(s) approximation presented
in [7]
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where transfer function zeroes and poles are given
by 2z, = —=0.135Ux/b, 2z, = —0.651 Ux/b,
p, = —0.0965Us/b, p, = —0.4555Us/b, Uso
is the tiltrotor advancing speed and b is the wing



semichord. Using such approximation, wing aero-
dynamics can be analytically obtained in finite-
state form,
ﬁ’law = (82 A2 + $A1) (zlw
+ 05(s—2,)(s—2,)F (6)

introducing the additional aerodynamic states r
defined by relation

(s—p)(s—p,)F = (sAT + Ajq, (7)

Hence returning to time domain one obtains the
finite-state approximation

Azaw + A1 qQu
+ For + Fir + For (8)
E2'I" —|— E]_I" + E()I‘ = Aiqw + A(c) qw

mgqy

of the 2-D unsteady model for wing aerodynamic
loadings, with obvious expressions for matrices
F;, E;. Forcing term my,, in equation (3) is fi-
nally obtained as m1, = {mZ 07}

3.1.2 Proprotor

Unsteady aerodynamic loadings on proprotor
blades have been obtained by a 2-D strip theory
based on the simple quasi-steady approximation
of Greenberg theory [8], which is an extension of
Theodorsen theory to pulsating free-stream ve-
locity. Greenberg theory is used to introduce in
the aerodynamic model the in-plane blade motion
(lag). Using the quasi-steady (low frequency) as-
sumption, C(s) = 1, airfoil aerodynamic loads
may be expressed, for a flap-lag blade model, as
functions of blade section velocity components
Uy, Up, tangent and perpendicular to blade chord
c (see, e.g., [9])

T :—%@—@W>

Clo
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where T and P are blade section aerodynamic
forces tangent and normal to blade chord, M,
is the aerodynamic pitching moment about the
airfoil aerodynamic center, ¢;, and c¢q4o are the
airfoil aerodynamic lift and drag coefficients, p is
air density, and a = pcey, /2.

From eq. (9) and blade sections twist distri-
bution, it is possible to derive the in-plane and
out-of-plane aerodynamic forces components, to-
gether with aerodynamic pitching moment about
the elastic axis, as functions of blade section kine-
matics, represented by U; and U,. Hence, con-
sidering blade section velocity as a function of

blade and wing degrees of freedom q and inte-
grating along blade span, one obtains the n-th
blade aerodynamic generalized forces b7 =

mT 7T . .
{f;" ,my" }, which approximated to second
order in & become

b = B + M (,a)d + C" (@) G
+ K"(t,d)a (10)

where blade mass, damping and stiffness aerody-
namic matrices are state-dependent, periodic ma-
trices. It must be noted that blade generalized
aerodynamic forces depends not only on blade
degrees of freedom, but also from wing degrees
of freedom.

3.2 Three-dimensional BEM Model

In tiltrotor aeroelasticity the complex unsteady
aerodynamic field generated by proprotor and
wing motion, plays a fundamental role. In par-
ticular, the velocity field induced by blades and
wing wake vorticity, their mutual aerodynamic in-
teraction, as well as 3-D effects due to wing and
blades finite aspect ratio, have a significant im-
pact on aerodynamic loading and hence on the
overall wing-proprotor aeroelastic response.

In order to include an accurate description of
these phenomena in the aerodynamic model we
use a Boundary Element Method for potential
flow incompressible aerodynamics. Indeed, under
irrotational flow assumption, the perturbation ve-
locity field due to wing and blades elastic motion
is given in terms of velocity potential ¢, obtained
solving the boundary integral equation (see, e.g.,
ref. [5])

4
. 0¢ 0G
¢ = ;ﬁim <G6n ¢8n>d‘s
4
- > / Ad 9G 45 (11)
i=1 Sw; on
where G is the unit source, Sg, and Sy, (i = 1,4)

represent respectively body and wake surfaces of
wing and blades.



S

ARG

Figure 1: Bodies and wakes surfaces BEM dis-
cretization

Boundary conditions are obtained imposing body
surface impermeability

%(x) = v, (x)-n(x) Vxe€Ss (12)
where v, is the i-th body surface velocity field
(see, e.g., ref. [5] for details on wake boundary
conditions). Pressure field on each body surface
is obtained from velocity potential ¢, through
Bernoulli’s theorem. Then, integrating pressure
field on rigid-body modes, aerodynamic general-
ized forces mg,, for wing and b{™ for each blade

have been determined.

4 Aeroelastic Analysis

The nonlinear aeroelastic system, approximated
to second order in ¢, is obtained substituting in
equation (3) the generalized aerodynamic forces
from 2-D analytical models or 3-D BEM model.
For each of these approaches a different aeroe-
lastic system representation is obtained. Using
quasi-steady aerodynamic models, equations (3)-
(4)-(10) may be recast as

M(t,q)q + C(t,@)a + K(t,@)q = wo + bo (13)

where M, C, K are the aeroelastic, state-
dependent, periodic matrices, given by the
superposition of structural matrices and
wing/proprotor aerodynamic matrices, and

3
by = > N™(£0)b™(0)

n=1

(14)

represents blades aerodynamic forcing term rel-
ative to the undeformed configuration. It must
be noted that, after summation over the three
blades, by become time-invariant.

The time-invariant equilibrium solution q. has
been obtained neglecting blade weight terms on
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structural stiffness matrix, and solving the non-
linear equation

Ke(qe) qe = Wo + bO (15)

by an iterative Newton-Raphson algorithm,
where K, is obtained by the superposition of
structural and aerodynamic stiffness matrices in
equilibrium condition. Then, for the analysis of
perturbation dynamics we have assumed q
qe + q and linearized equation (13) about the
equilibrium solution q,

Me(t)fl + Ce(t)q + Ke(t)q = Ge(t)vg (16)
where mass, damping/gyroscopic, and stiffness
matrices are given by M, = M(q.), C. = C(q.),
K, = 2K(q.) — K(0), and where an aerodynamic
forcing term due to a gust atmospheric distur-
bance has been added.

If the 2-D unsteady wing aerodynamics is consid-
ered, eq. (3) is changed into the following equa-
tion for the aeroelastic dynamics

M(t,a)q + C(t,@)q + K(t,@)q =

wo + by + Foit + Fi i + For  (17)
where the dynamics of the additional states, r, is
governed by

E2i‘+E1i‘+E0r=Aiﬁ+A8q (18)

where FT = [FT, 0T] and AT = [AT, 07]. For
the definition of the perturbation dynamics, a
procedure similar to that decribed for the quasi-
steady aerodynamic case has been applied.

Finally we consider the 3-D unsteady BEM aero-
dynamic model. In this case the generalized
forces myg,, and b{™ are not given as analytical
functions of structural degrees of freedom, and
the aeroelastic solution must be obtained with
a direct integration of nonlinear equation (3) or
linearizing about the equilibrium solution and in-
tegrating the following aeroelastic perturbation

equation
M(6)d + C(H)d + K2(t)q = gy

3 3
+ Y NW@bBM + 3 N bl
n=1 n=1

+  Ge(t)vy (19)
All of the linearized aeroelastic models presented
above, may be recast in the form of as a set
of first order differential equations that in this
work have been integrated by using the Crank-
Nicholson unconditionally-stable algorithm.



5 Numerical Results

Preliminary numerical results obtained with the
formulations described above, are presented in
this section. In the present work the emphasis
is on the impact of the aerodynamic model, on
the aeroelastic response to atmospheric gust dis-
turbance.

The characteristics of the wing-proprotor refer to
the Boeing experimental model presented in [2].
The three bladed proprotor has a radius of 3.97 m,
and a rotational speed of 386 RPM . The propro-
tor is mounted on the tip of a rectangular wing,
having a semispan of 5.08 m, a chord of 1.58 m,
and an advancing speed of 50m/s. The geomet-
rical twist distribution of the blades is given in
order to obtain a thrust coefficient C', = 0.0045.
The atmospheric perturbation is assumed to be
a (1 — cos)-type vertical gust, whose effects are
present within a time interval 5 times larger than
the proprotor revolution period T, = 0.15s.

In the aeroelastic models presented, the equi-
librium solution has been always obtained using
quasi-steady aerodynamic model, whereas pertur-
bation solution has been obtained with the three
different aerodynamic models (2-D quasi-steady,
2-D unsteady, 3-D BEM). Note also that in the
case of the BEM model the wake shapes are de-
fined as the surface swept by the lifting body
trailing-edges.

Figures 2, 3, 4, 5, depict the comparison be-
tween gust response obtained using a 2-D strip-
theory and a 2-D unsteady model respectively
for wing flap and pitch, blade flap and lag la-
grangian variables. As expected, the wing shows
significant differences on the aeroelastic response,
being directly influenced by the different aerody-
namic model (quasi-steady/unsteady). The max-
imum value of lagrangian variables (which for this
semirigid model are proportional to root elas-
tic moments) is almost unchanged, whereas the
unsteady model predict a more damped aeroe-
lastic solution, especially for flap degree of free-
dom. Blades response, being undirectly influ-
enced through wing different dynamic response,
shows slight variations in flap response, and sig-
nificant variations in lag response.

Figures 6,7,8,9, represent gust response obtained
using quasi-steady model and 3-D BEM model
for the aforementioned wing and blades degrees
of freedom. In this case it is possible to observe
that the two responses are very different, both in
terms of amplitude and damping. This is partic-
ularly evident in the blade response depicted in
figs. 8 and 9. This is only a preliminary analysis
obtained through BEM code, but it seems that,
for an accurate aeroelastic description of a tiltro-
tor system, in addition to a sophisticated struc-
tural model it is important to take account of all
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unsteady and 3-D aerodynamic effects.
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Figure 2: Gust response. 2-D Quasi-steady (QS)
vs 2-D Unsteady (FS). Wing flap
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Figure 3: Gust response. 2-D Quasi-steady (QS)
vs 2-D Unsteady (FS). Wing pitch
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Figure 4: Gust response. 2-D Quasi-steady (QS)
vs 2-D Unsteady (FS). Blade flap
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Figure 5: Gust response. 2-D Quasi-steady (QS)
vs 2-D Unsteady (FS). Blade lag
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Figure 6: Gust response. 2-D Quasi-steady (QS)
vs 8-D BEM. Wing flap
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Figure 7: Gust response. 2-D Quasi-steady (QS)
vs 8-D BEM. Wing pitch
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Figure 8: Gust response. 2-D Quasi-steady (QS)
vs 3-D BEM. Blade flap
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Figure 9: Gust response. 2-D Quasi-steady (QS)
vs 3-D BEM. Blade lag

6 Conclusions

The aeroelastic analysis of a tiltrotor aircraft,
perturbed from the cruise steady flight condi-
tion by an atmospheric disturbance has been per-
formed. The aeroelastic response has been ob-
tained using three different aerodynamic models
(2D quasi-steady and unsteady strip-theories, 3-
D unsteady BEM).

Preliminary result have been obtained indicating
that, for the cases considered, the aeroelastic re-
sponse is strongly dependent on the aerodynamic
model used. This suggests that, in combination
with the sophistication of the structural model,
it is worth developing also an aerodynamic model
having an equivalent accuracy.

Hence future work and developments will be dedi-
cated to the introduction, in the structural model,
of wing and blades elasticity, as well as to further
developments of the aerodynamic model and fi-
nally to the direct integration of nonlinear equa-
tions of motion.
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