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Abstract 

Digital techniques provide a system with high flexibility, but this 
imposes rigorous new procedures, firstly to pr-oduce formal specifications 
against system design, then to verify software against these specifications. 
wnen the software has been integrated within the hardware, the whole system 
must be validated against operational requirements. 

These procedures are mostly automatic, to increase software reliabi
lity, and occur for software modifications both during flight tests and for 
certification purposes. On the other hand, the application of these proce
dures leads to a quite considerable minimization of the flight-test period, 
whilst at the same time ensuring constant quality of the software. 

Basically, to ensure the quality of a digital A.f..C.S. software 
during all the phases of a project, the S.F.I.M. approach relies on a 
simulation of the whole system on computer, in closed loop on a quite accurate 
model of the aircraft. 
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1 INTRODUCTION : 

This paper is related to the development of a digital automatic flight 
control system on a helicopter. We shall suppose that during the different 
phases of such a project, a software methodology has been applied according 
to the state of the art (see DO 178 and GAM T17 standards) in order to pro
duce quality applications software with a priori reliability. 

We shall suppose equally that the hardware meets the system require
ments (I/O, memories, safety devices, microprocessors), so that the digital 
computer itself is considered as being completed and tested. Here also, well 
known standards of production are used to ensure high reliability of the 
hardware. 

The purpose of this paper is mainly to discuss the means of testing 
the system, dealing firstly with the software according to a given procedure, 
and then with the system itself (hardware and software) using specific tools 
and procedures. The latter will be used until the final integration phase 
of the system and also during the flight test period, in order to increase the 
a posteriori software reliability. 

However, we shall deal first with the production of the formal speci
fications document related to the system, for which an original approach is 
presented. This document is the basic milestone for all the procedures used 
at S.F.I.M. to build digital autopilots and flight director couplers for 
various types of helicopters. 

As a conclusion, an extension in using these procedures and tools for 
more exhaustive tests will be presented, so that a step in the theory of 
software reliability could be made. On the other hand, it is possible to 
foresee an attempt to match the software certification problems. 

2 FORMAL SPECIFICATIONS : 

2.1. -General overview and definitions 

Over many years, S.F.I.M. has developed an approach to take into 
account the various considerations which lead to an accurate definition 
of an automatic flight control system that corresponds both to a given 
aircraft and to the operational requirements of the customer. 

This approach is based on the svstem-state definition, which 
results from the functional and ergonomic characteristics of a system. 

. . • I .•. 
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Starting from the means of control (action) and the means of observation 
(annunciation), that are at the human pilot 1 s disposal, we have defined a set 
of activated-states. We can observe that a correspondence appears between the 
action and the annunciation. A main hypothesis for producing the formal spe
cifications is that for a given action of the pilot or of the system itself, 
in automatic modes, there is a set of given annunciations. We are dealing at 
the moment with the normal operations of a system : 

- normal engagement of a mode, by depressing a button on the system 
control panel. 

- setting of a reference value by the pilot on a potentiometer, before 
a mode is engaged. 

modification of hardware logics (relay~, by moving the control sticks, 
during fly-through handling. 

modification of a reference value by moving a potentiometer when a 
mode is in operation, or by beep-trim (kind of transparence). 

It is noticeable that all these actions are always sequential, and so 
far, they can be split and analyzed one by one. 

However, this idea can be extended to other operations of the system, 
which are not considered as normal, but which come from hardware safety devices 
(e.g declutch in case of emergency, or major failures) or from automatic rever
sionary modes(e.g generally in case of minor failures of sensors, which can be 
multiple). These actions are mainly automatic, but they are always annunciated 
through appropriate means (annunciator, dedicated warnings, E.F.I.S •••• ). 

All these activated-states are alphanumerically encoded at the very 
beginn~ng of the system analysis and during writing of the formal specification, 
There is generally quite a large number of such states, according to the capa
bilities of the human pilot and of the systern.At this point, it is important 
to find .an equilibrium between the complexity of the system itself, because 
of these numerous possibilities, and the ease of implementing the application 
software. 

In fact, we have now proved for six different systems that azood basis 
is to associate one activated-state to the annunciation of 9ne normal mode, 
and as far as possible, when a more complex mode can be operated on more than 
one control axis at the same time, to define the corresponding activated-state 
with its related annunciations for this two or three axis normal mode. 

The next phase concerns the definition of the compatible activated-states 
matrix (also called static-matrix), which is related to the operational 
requirements of the system under development (see figure no 1). By studying 
the various combinations which are allowed in this static matrix (l by l, 
2 by 2, ••• (n) by (n), (n) being generally less than or equal to 4 for a 
complete helicopter A.F.C.S.), we are able to define the number of system-states 
which represent a set of normal modes (see figure no 2). One main goal is to 
minimize the number of system-statea,according to the complexity of the system 
itself, and in this way to simplify the implementation and test of the logic 
part of the whole system. On the other hand this is going to increase within 
some limits the complexity of internal logical tasks which have to be performed 
inside each system-state related software. 

• . • I ••• 
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The same problem occurs for reversionary modes and their related 
annunciations, and also for safety and transparent modes. They can be consi
dered as normal modes themselves or as sub-modes included in their respective 
normal modes. So this notion is relative, but quite useful for simplification 
of the implementation and also for testing of the system. This goal of mini
mizing the number of system-states is more or less complicated to achieve, 
according to the complexity of the system. 

For instance, if we observe figure n° 3, we can see that a very simple 
system can have only 4 system-states, but this number can grow rapidly to 78 
for a more sophisticated one. Nevertheless this number of system-states can 
be taken as a good measurement of the complexity of the system. 

Having defined the activated-states and the system-states, it is then 
possible to define the transition matrix (also called dynamic matrix) which 
shows all the transitions of which the system is capable from an initial 
system-state to a final one, when an activated-state is generated (see figure 
n° 4). It is sometimes possible for a very decoupled system, to have a tran
sition matrix per axis. This simplifies the implementation and the test and 
reduces the EPROM volume by minimization of tables of labels. 

Finally, to each system-state, which has been alphanumerically coded, 
we can associate an accurate definition of the tasks which have to be performed 
acquisition of the inputs, logical and analogical conditioning, control laws, 
transmission of the outputs, annunciations ••• This completes the formal 
specifications document. 

We have just presented the way in which we analyze the logical and 
functional part of an automatic flight control system, in relation to the 
operational requirements. We are now able to present the way in which we define 
all the tasks that will be implemented in the system itself for each normal 
mode, as soon as they have been defined. 

2.2. - System specifications related to the normal modes : 

S.F.I.M. has developed on a PDP 11/70 computer a whole simulation of 
a total automatic flight control system for helicopter, which is related to the 
type of aircraft to be fitted and for which we have all .. the aerodynamic data. 
This type of closed-loop simulation is produced for each kind of system. The 
FORTRAN IV plus, high order language is used. It increases the reliability 
of this simulation model and on the other hand, it facilitates the optimization 
of all the control laws, which are an important part of the system itself. 

This means that the entire helicopter environment has to be simulated, 
from the sensors (including their noise characteristics, drifts, bias, ••• ) 
to the actuators (with their non-linearities), and finally the flight control 
system itself (autopilot, coupler, navigation system). 

This simulation tool has various capabilities : introduction of failures 
on sensors and actuators, wind shear anq gust simulation, 3 D sea-state for 
Navy systems. On the other hand, the transition matrix and activated-states, 
related to the system in development, are programmed to be capable of easy 
and fast generation of evolution profiles that are compatible with operational 
requirements (see figure n° 5). It represents the possible operations of the 
system FDC 155 (modes, sequences of modes) •. 

I 

42 - 4 



,. 
of System•at:ates 

:oo 

a a 
' ' ' 

oo rn1 , 

I ' § ! 

~WI ' 
' g ' 9 ' 

I • ; ~ , 

i l ~ 

l i l 
I 

I 

' ~ 

' . ' I 

·I+ 

' , I , iJ, ' I : I ~I; i I i I ~ Jt! I , I 

E ' ~ l E I ' ' ~ il11iil . . , " . I I ' 'i / 

, I[!] ~ ' [I liD 'I' 
I 
~~~ 0 ,1,1, iii 'i ., ' ' l l ~ ~ . 

I' 
.... !t . 

§ E e ~ ; ~ ~ ~ i ' i i € ' . s ' ~ ' ,I, ' I"" . i ' • ' ' ' I 
::! ::::. 
,-

; i1 ; ' • l ' 1 ' l ; a ~ I. 
i l •I• ; i ' ' ' ' • i ' 

I , I 

~ ; i ! s i ; ; ' @]B) ~~ ' ; ; ~ l : ' tr:a Rill/·11' • • • l.:.! l.:J ~ ~ 

I I I ' 
' I ' ' 

; i l ~ ' l ~ l i g ; • ! ; ; 'l[·j 'I 'I' l"f' ' E ' ~;, ~I i 1 ~~~~~ ' ' ' ' i ' . 
I ' I 

' ~ ' ~ 'I' ~ l ' ~ ~ ~ ' ' ~ ~ ' 'I 'I 'I 'I :I 'I ',:.~, ' ' ' ' ! E ' c I~ ~ i .: ~ i ; ' E 1 ... ::.. •• ~ 
I · I " 

·I· l ' ·I !I· l ' lli ' l q~ 01 ' ' I ' I ' ! ' I ' : ! ·I ' i! ; ' ' ' 1- ., .. -,. 
I i ! , .. 1 i ! ., ! 

,1·, ,I,I,J,i1 I I I ! I 
I I i i I . ! , , I , I 'l+;"'l'l' ~ :1'1''''' : ii ~ ' iT· i ,. . I I " . ' n ~ ¥! 1: : I .. l 

! ' i I i I I ! I i j I I ; i : I ' I 

I 
I 

I 
I 

I 

! 

I 

I 

" . ::: . ' 
; } ' . 

~ ~ 

42 - 5 



" 0 

..., 
'1 
~ 

" "' .... ,., .... 
0 

" 3 
~ ,., 
'1 .... 
X 

0 

'"" 
d 
() 

Ill f f I~ I~ II ;1111 1111111 I IIIII I Ill~~ I II 111111 fill I ill 1111111 II~ 11111 ~I 

1 J,:..uL~~ LuGil.d•t~ u~.::> i:.l/'.1~ C(,uPLI:.Uk 
Ill f I~· Ill I I II Ill'' Ill i~ II I I 11.11 ~lfll I I If I I Ill II II f I II I I Ill II Ill I II I 

<<<~~~<<<<<<<<<<<<<<<<<ttttttftttttttttttttttt>>>>>>>>>>>>>>>>>>>>>>> 

•••••••••••••••••••••••••••••••••• 
I ~IATS LtlUGITU01HAUX • 
•••••••••••••••••••••••••••••••••• 

_LISlE Dt.S t:TATS : 

==================== 
=> AS 

4 => t;~A 

7 => AS-J.LTC 

2 => ALTl' 
!) => cs·r 

1:1 => A.s_vzc 

J => VZl 
b => GA 

CJ => GSA-A.S 
10 => L~A-AL"I"f 

13 => ~SA-A~-~ZC 
11 :;> GSA_n.1· 
14 => li.SC-AS 

12 => GSA-A.S_ALTC 
l:, => Oft'L 

_LlSlt DiS CU~MANil~S : 
======================= 

1 => AS HO 
2 => ACT "" 1 => '" "" • => GS kO , => GA "" b => V1 < 40 NUI:.UVS 

7 => Dt.TA < 5U HV 

Cw-!~AI'olJ~.: 

_e.·fA, 1 s_ 
I " ' 1 

I 
·I 9 
> 15 

• 6 
15 

b " ., 
lu " 
II ' 
" •I 

IJ ' I' .. 
'' 

" ' IV 
s 
L 

' 
" 
lu 

12 
,.; 
l 

' 
" II , 
6 

" 
II 
J 

I' 

' " 3 

• 
, 
lu 
II 

" b 

' " " 

' I• 

• • 
6 

• 
' .,· 
' ' 6 

' ' 6 
6 

' & 

6 

' 
' , 
' • 
1 
• 
'" ' 
' " I' 
I" 

" 

•••••••••••••••••••••••••••••••••••••••• 
I fTAT~ LA1~:-t-!;.U,l.. 

·················~······················ 

========~========== 

=> HUG 

' => VUH H 
7 => VAP H 
10 => LOC H 
13 => HC H 

-L>ll>ll:: D~.::, CUI\MANU~S : 
===================== 

IJ => H!JG ~0 
9 => VOk f(Q 

10 => VAl' NO 
11 => LlJC thJ 
12 => ~C RO 
IJ => ALl'.VlJK < 
14 => ALl-'.LOC < 
15 => GA kO 

-TAt!Lt: LOLHHJI:.: 

============== 

l:UHHAioD~·: 

_I:: rA'l'S-
1 
2 

' ' , 
6 

0 

• 
10 
11 
12 
I J 
>< 

50 MY 
no ~v 

' 
14 
J 
2 

0 , 
• 
' I 
12 
II 

' , 
b 

II 
14 

• 
j 

14 
I 

• 
2 
j 

7 
2 
j 

IU 
2 
3 

" 2 

=> vo~ • 
=> YAP A 
=> LUCA 
=> bC A 
=> OtfH 

10 II 

b • 5 • 
b • 
' 14 ' I • 
7 ' , H 

• I 
IU lu , 

b 

6 • 
" " , 

' 

j => 
b => 
> => 

" => 

12 

12 
II 
12 
4 
II 

" 7 
II 
ll 
IV 

" I 
1l 
II 

VII« 
YAP 
LU~ 

•c 

' 
' J 
) 

1 
8 

• 
1u 
II 

" I' 

" 

HL!GA 
hOG A 
tH.lGA 
II[.IGA 

14 " 
I 

' 14 
j 1 
4 14 , 14 
6 I 
1 H 

•• 14 
I u 
IV " " .. 
13 
I J I' 

" " 



When the optimization phase for the whole system has been completed 
on the computer, a complete set of values, which are the nominal adjustments 
of the automatic flight control system, can be generated and automatically 
formatted and transferred into a special file, which is used later for gene
ration of DATA EPROM. 

It is also possible to estimate the sampling rate of all the algorithms, 
the format of variables and constants (number of useful bits) compatible with 
the performances in closed-loop, that are requested by the customer. 

At this stage, all the alphanumeric codes of all the dynamic variables, 
constants, inputs, outputs of each FORTRAN software modules are fixed. Thus, 
the overall architecture and connections between modules of the application 
software are fixed and will be found to be the same in the host computer, 
which is used for real-time software development of the system. 

On the other hand, all the constants associated with each module, which 
are related to the type of helicopter that we intend to fit with a system, 
are part of the formal specifications. This represents the starting point of 
the optimization phase that will take place during the flight test period. 
Moreover, it is possible to associate a set of tests with each module or task 
that is specified this way. These tests are organized in files which can be 
easily generated by running the complete non-linear simulation, placing the 
system in a 11 real 11 situation, in so far as our simulation is a closed-loop 
simulation. These tests are memorized on magnetic media such as floppy disks 
or mag tapes. 

It is important to point out that we do not need a very accurate model 
to produce a formal specification of this kind. If, as we hope, this is the 
case, our approach will minimize the flight test period, as far as optimization 
of all the control laws is concerned. For a highly sophisticated system this 
is a huge advantage. 

On the other hand, this formal specification is totally independent 
from the real-time software language which will be used in the digital A.F.C.S. 
(assembly, specific macro-assembly, ~ascal, ••• ). 

3 VERIFICATION PLAN : 

This phase follows the coding and preliminary testing of the applica
tions software on the software development host computer. It is supposed, at 
this stage, that this software, which is produced according to a given metho
dology, meets the formal specifications and it has been debugged using white 
box test procedures at module level. The verification plan is prepared inde
pendently, using the formal specifications described previously, in order to 
help to increase the reliability of the applications software. No hardware 
test is involved during this phase. 

3.1. -Verification of the logical and functional part of the system: 

Given that the listing of the source code has to be understan
dable and easily readable, it is possible to read through all the 
tables and labels (system datas, transition matrix, coding of system
states and activated-states, ••• ) to verify that they are totally 
compatible with the formal specifications. 

It is equally possible to verify that each system-state label 
is correctly associated with its tasks, which have been named, and 
that the inputs/outputs of each task are all accurately named and 
connected. 

I .•. 
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3.2. -Verification of tasks or modules 

In the formal specifications, we have seen that a set of tests 
was associated with each task or module. These tests have an operational 
meaning in the way they place each module of the system in a 11 real 11 

situation, as we have seen previously (§ 2.2). On the other hand, con
cerning the system, we have implemented the same overall software 
structure on the PDP 11/70, which provides the closed-loop simulation 
environment, and on the real.time software development host computer, 
which, in our case, is a TEXAS 990-10. 

Our procedural philosophy is as follows : 

a) from the results file of the closed-loop simulation, we 
create a software input data file through an analog-to
digital conversion model, which organizes these data in the 
format expected by the real-time applications software, in its 
acquisition block related to the hardware inputs (aircraft 
wiring). 

b) This file is then transferred onto the software development 
host computer. 

c) The operational software runs using these data, and creates 
an output data file containing inputs/outputs and some inter
nal variables of each module or task being in the verifica
tion process. This is a kind of grey-box test procedure. 

d) This output file is then transferred back to the PDP 11/70 
computer and decoded from a fixed digital representation into 
physical units. 

e) Finally, the expected results of the tests, which had been 
previously stored in the PDP 11/70 computer during the test 
generation,are automatically compared with the respective 
outputs coming from the real-time applications software. 
The result is represented on a graphic console. 

All the differences are analyzed and errors are corrected. Thus, 
the reliability oi the software increases. To illust'rate this procedure, 
let us take an example (see figure n• 6 : formal specification of the 
" TRVI " task, part of FDC 155 system). 

The most important part of such a procedure is to define the 
minimum number of tests that is necessary to go through all the paths 
of a given tas:k. This represents an important part of the formal spe
cifications. For instance, for the 11 TRVI 1t task, we have generated 
a dynamic test on the TEXAS 990-10 host computer. This test can examine 
several paths (here not all) and many times the same path, but with a 
lot of different values on the analog inputs (see figure n• 7) within 
their total variation range (VIE (.42 m/ s ; 60 m/ s] and GAMAXC E 
G 1.5 ms-2 ; + 1.5 ms-2] ) and for various combinations of discrete 
inputs (VLGAXC, CTRAIN). 

Such tests are very easy to generate with our automatic procedure 
and the results can be analyzed according to the simulation results and 
the formal specifications. Here (see figures n° 7 and 8) we are interest 
in testing the continuity and the evolution of (VIX) and its derivative 
(VIP), variables which are used in some control laws, in case of non
validity of the compensated longitudinal accelerometer (GAMAXC, VLGAXC). 

I .•. 
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On the other hand, we have tested the generation of flags which are used 
for some reversionary modes (see figure n° 8). 

3.3. - Verification of modes and sequences of modes 

As we have implemented the transition matrix associated with the 
system under test in the simulation environment, we are easily able to 
generate a dynamic test in order to verify the validity of a mode or even 
of a sequence of modes. The procedure is exactly the same as the one pre
sented before. The test is more a black-box test, as we are at an upper 
level in the structure of the applications software, but we could make it 
more precise, like a grey-box test, if we so wish. It would be only a matter 
of analyzing many more data and dealing with much more information. 

To illustrate this comment, we give an example of such a test which 
has been performed on the PAN 1 system (see figures n' 9, 10, 11, 12). For 
each of figures n' 9, 10, 11, on the upper part we find the dynamic test 
issued from the simulation and on the lower part, the result of the same 
test which has been run on the operational software, in the TEXAS 990-10 
host computer. 

We can observe the evolution of the attitude references in pitch 
and roll (see figure U

0 9) for a succession of transparent modes. We can 
also see the evolution of the direct terms of the pitch and roll control 
laws (see figure n' 10) and the evolution of the derivative terms of the 
pitch and roll control laws (see figure n° ll),for the same succession of 
transparent modes. On this last figure, we can notice that a discontinuity 
problem arises in the calculation of the derivative terms in the operational 
software, which in this case had no effect on the helicopter itself. 
Figure n° 12 shows the succession of transparent modes used for this test, 
and the acquisition of GAMMAY measurement (lateral acceleration), as an 
example. 

4 - VALIDATION PLAN 

Until now, the hardware was not involved in our procedures and dynamic 
tests were not performed in real-time. On the other hand the hardware and 
software inputs/outputs interfaces with the outside world (the helicopter 
wiring itself) had not yet been tested. The validation phase is then neces
sary to complete integration of the software as well as po,ssible and to 
improve the operationality of the whole system, implemented within the target 
computer. However, it is supposed at this stage, that all the hardware 
resources have been correctly produced and tested independently, above all 
real-time operation and safety devices. 

4.1. -Real time test bench : SILENE 

The SILENE configuration (see photo n' 1) has been especially deve
loped by S.F.I.M. to study digital A.F.C.S. for helicopters in real-time. 
A sharp snalysis of the operational software of the system in test can be 
made by stimulating compatible evolution profiles of the helicopter in real
time, taking into account sensors, perturbations and servo models. It is 
then necessary to generate a magnetic tape with all input data files, concer
ning each mode or each sequence of modes related to the system in test, and 
coming from the simulation environment. 

We use the same procedure as the one presented for the verification 
plan (cf. § 3), but the number of tests can be greater, in order to stimulate 
the system automatically with as many operational profiles as possible. 
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The SILENE configuration is driven by two microprocessors. One is used 
to stimulate all the specifia hardware interfaces to the A.F.C.S. with values 
from input magtape. The other one is used for acquisition of all the results, 
formatted on the output magtape. A conver9ational programme with the human 
operator has been specially developed, to facilitate the testing operations. 
The output magtape is then data processed on the PDP 11/70 computer. The 
results are observed on Benson drawings and statistics can be made automati
cally. It is possible with such a tool to observe a large set of selected 
internal variables of the applicationssoftware, running in real-time in its 
digital computer. 

4.2. -Application of this validation procedure : 

We would now like to present a typical test that has been made for 
the PANl system, in order to show the differences between the verification 
phase and the validation phase, according to the way these phases have been 
defined previously. 

Figure n• 13 shows one test from the simulation file on PDP 11/70 
(input = pitch attitude TETAPA, outputs = pitch attitude command DTETAC, pitch 
attitude reference TETARF, integration of DTETAC)together with application of 
the test to the operational software for verification. We can notice the 
effect of the sampling rate and the resolution on the DTETAC output. 

Figure n° 14 shows the same test performed on the target computer 
through the SILENE real-time test bench, for validation purposes. We can 
notice the poor evolution of DTETAC and the resultant poor evolution of 
TETARF, which is due to poor conditioning of one input in the PAN1 hardware 
interface. On the other hand, we can see that the TETAPA signal generated by 
SILENE, is a little more noisy than the corresponding signal in the simula
tion file. This is a normal consequence of introduction of a real-time bench 
in the test loop. 

5 CONCLUSIONS : 

S.F.I.M. has developed all these tools and automatic procedures in 
order to increase the reliability of the applications software for helicopter 
A.F.C.S. These procedures, verification and validation plans, are commonly 
used, even during the flight test pe~iod, in order to ensure constant quality 
of the software. We have proved that, for major modifications in the opera
tional software of the CASM 2000 system during flight testing, very few tiny 
errors had been pointed out. 

By using such procedures, we can ensure a high reliability of the 
software but, although they are applied through automatic tools, it can take 
quite a long time to integrate major modifications with sucess. At the moment, 
we have applied these procedures to five different systems, three of which 
have already completed all their flight tests, and we have obtained good 
results. 

From the point of view of certification, we think that our procedures 
are well adapted and can be used to demonstrate critical software in a digital 
A.F.C.S. 

Moreover, we think that it could be possible to use the SILENE bench 
in order to test the system extensive~y. A great amount of tests, representing 
the various configurations in which the system will operate as soon as it is 
placed in the helicopter, can be easily generated throughout our simulation. 
This represents a near exhaustive tests method, which is based on a combined 
utilization of the formal system specifications document and of the simulation 
environment. 
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We are working at the mo~ent on this method which could demonstrate 
the quality class of an application~software. The tests are generated 
throughout our simulation according to the possible evolution range of all 
the inputs, taking into account the operational profile of the system itself. 
This notion permits us to elaborate tests proportionally to the ocurrance of 
the system-states, during a .typical, misSion Of' the' sy's-tem. The reliability 
of the software is then defined as : 

Where 

h= 

N 

.2:. Pc ·= 1 
n 

1 

= total number of tests 

Pi 0 /~ occurrance of system-state n° i, during 
the mission. 

number of tests, for system-state no i n. 
' 

N = number of system-states, related to the system 
under evaluation. 

index j test no j is running, j E. (.1, ni 1 
index i = system-state no i is tested, iE[l, NJ 
Yij run characteristic (if test is correct, 

Yij 0). 

We know that the choice of (n), number of tests, is a major issue. 
It has to be quite large (?{~test) to provide a reliable measurement of 
R (n). Some more work has to be done in this area but we"think that this 
approach is of considerable value in the field of software reliability. 

REFERENCES : 

(1) - Estimating software reliability from test data 
Eldred Nelson TWR defense and space systems group 

(2) - The art of software testing 
Glenford I. Hyers ISBN wiley interscience publication 

(3) - TRW series of software technology 
Thomas Thayer, Myron Lipsow 

(4) - Testing software design modeled by finite state machines 
TSUN S. CHOW 

(5) - The many facets of quantitative assessment of software reliability 
J.C. Rault (IRIA) 

. • • I 

42 - 12 



(6) - Quantitative software reliability models - data parameters 
Dorothy Swearingen - John Donahoo 

a tutorial 

(7) - How to measure software reliability and how not to 
Bey Littlewood. 

(8) - In search of software complexity 
Dr Bill Curt is 

(9) - Elements of software science 
Halstead M. H. 

(10)- A complexity measure 
Me Cabe 

(11)- Software modeling studies 
M.L. Shooman 

(12)- Doc SFIM n• 12 468/S.D.-Ed. 3 - Preetude sur l'estimation de la 
fiabilite des logiciels. 

(13)- Doc SFIM n• 12 377-JCD/NC - Systeme SAP. (SAWARI) - Analyse fonctionnelle 
du projet. 

42 - 13 



~---~--··-

'-·-~ 

--,, \\ 

I i 

' I f (~~ 1: : , __ _ 

'" 

I' 
\ ' 

\ \ 

Figure n .. 7 

\ 
\ / 
\ I 
I / 
'-..... ..... ---"' 

/ 

"t•t 

1', 

' 

~.~.·=:.;;~ -~- ,. 

,I 

L. 

-- -cr,""'~-.-.--~-· --
. 'tl· J :i ' • ,~ 

- -~'.C.:. 

fJ 

\\1 
I 

Verification of TRVI Task (FDC 155) 

·--------
' - ~--,--------. --.-~~-

. ~· 

. ·~ . 

. '~ . 

."1 

• c"( 

.. ,. 

--------.-----:------,---.--. -·-,---.-

Figure n• 8 : Verification of TRVI Task (FDC 155) 
42 - l4 



-··' 

(, 

·l 
I 

t 
' 

II 

;· 

\ 
' ; 

\ 
\ I 

\J 
. "' 

j~ 

FII;.t:ESSAr' TEIAS NO:tz 

----·-·----- -----------·--·---

i. =r l FJG,,,ESSAI TEHS ''"'12 
L... 

Flgure na 9 Verification of Se~uence of Modes (PANl) 

... ~ 

g .... 

' f\N 

'\ i 
'"\] 

Figure n• 10 

. '· 

20-0EC-82 

f\ 
I 
I 
I r 

... .,[ 

- 1 •• 
FiG.S:ESS\1 7EHS >;0:'!2 

I 
" i~ tl,. 

I l' I . 

Verification of Sequence of Modes (PANl) 

I 
! 

,, 
,. 
I 

20-CEC-82 21: S:9: .:s 

I 

' I l :: 

\ 

42 - ::s 



FtG.3:ESSAI TEX:\5 :IJO: t2 

'I; ': i 
I;, j 
' ~. 

~ ,; ' I. ,, ' 

'"'' ' 

Figure n• 11 Verification of Sequence of Modes (PANl) 

,--
. 'l:l ''' ' 

' \ ';' i ){ 

I . I 
'' 

.. , . 

j ~ ff :--
' ''-. --;------;-----;. . -~-

··----,---~--~-

Figure n• 12 Verification of Sequence of Modes (PANl) 

! ' 
11 1 ,, 

1: , I 
'', •! ' 

' .: '_; 

: i 
' 

! ' . I 
,, 

42 - '6 



~· ' ! .... ~ 
~e ' 
~~ "l 
't'~ ' 

.... ~ i I 
,j! 

.. [ . 
"i 

• :r 
' J 

! 
~ I r 

I 
~ 

I 

' 

' 

\! 
~ 

; 

I 
I 

I 
i 

I v 
FIG .. 1:SirlUL ESSAI NO 11 

Figure n• 13 

Photo n• 1 SILENE 

/ 

·-~~--~ . ....... ~ 

.>.<L 

i 
<>I 

J 
I 

.... l 
! 

ftb.1:ESS.O.J fEXJ\S ~JO 11 
_I__ ----· 

\ 

\ 
\ 

/ 
r 
r 

I 

.',, ., 

I 
I 

Verification test (PANl) 

.... ~ 
i 

-i 

~~ I 
' •.•L 

'I : /1 I! 
'·' ~ ! \ 

ii'J 
'-t 
. \, •.•l ' i 

I • 
~J 

... I 
I 

-I 
-· 

j 

Figure no 14 

\ r-.. , 
:,, '' \~i 

!\;-~\ 
'!'I ,., 

. I 
·rJ 

T.llll' 

I . ", 

1111 I I ! I I I 

I l . i . 1: 
! '11 I II! 

I 
I 

Validation test (PA111) 

42 - J 7 




