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ABSTRACT 

In steady-state forward flight the cyclic variation of the aerodynamic loads acting on the blade generates 
forces and moments that are predominantly transmitted to the fuselage at the 𝑁! 𝑟𝑒𝑣 harmonic of the rotor 
frequency, where 𝑁! is the number of rotor blades. The Smart Spring is a semi-active device that allows 
actively modulating the blade pitch link axial stiffness throughout the indirect action of a piezoelectric 
actuator. It performs dynamic parametric excitation of the rotor system and introduces Individual Blade 
Control with the objective of reducing these harmonic cyclic loads transmitted to the fuselage. Previous 
experimental studies demonstrated that the transmissibility reduction of some harmonics could be greater 
than 90% for a given combination of the Smart Spring parameters. In this paper, the capability of the Smart 
Spring to act in the closed-loop control configuration is analytically explored for the first time. The control 
action results in the realization of an independent harmonic control of the rotor blade system, an 
improvement in the current state of the art of the technology. The fundamentals for the Smart Spring closed-
loop independent harmonic control concept are discussed.  

 
1 INTRODUCTION 

In steady-state forward flight, the cyclic variation 
of the aerodynamic loads acting on the helicopter 
blades generate harmonic loads that are transmitted 
to the fuselage. The vibratory hub loads are 
transmitted at their 𝑛𝑁! 𝑟𝑒𝑣 harmonics, where 𝑛 is 
an arbitrary integer, 𝑁! is the number of blades, and 
1 𝑟𝑒𝑣 is the fundamental frequency of the rotor. [1] 
These loads reduce the comfort of passengers, 
causes crew long-term health problems, and leads 
to the decrease in the fatigue life of airframe 
structural components. 

Individual Blade Control (IBC) concept has been 
introduced to mitigate these loads. [2,3] However, all 
current IBC systems attempt to actively alter the 
time-varying aerodynamic loads on the blade to 
suppress their vibration.  Successful implementation 
of these systems has been limited by either their 
complexity, or the necessity of delivering high power 
to the rotating system of the helicopter in a reliable 
manner, or else, by the electromechanical limitations 
of piezoelectric actuators associated with their small 
stroke. [4-6] All current IBC systems are based on 
direct active schemes that must rely in producing 
work against the aerodynamic forces. In direct-active 
schemes vibration is controlled by acting directly 
against the excitation force, thus requiring high 
actuation forces to counteract the vibratory forces. 
This fundamental issue is overcome by the indirect-

active or semi-active schemes such as the Smart 
Spring that reduces vibrations by modulating the 
stiffness properties of the system. [7] Indirect-active 
systems require much lower actuation forces and 
displacements with respect to the direct-active 
schemes. The Smart Spring device allows 
leveraging the micro displacements produced 
internally by a typical piezoelectric actuator to 
generate actuation that can mitigate much larger 
external vibratory loads. The primary advantage of 
the IBC Smart Spring system when compared to 
conventional IBC systems is that it does not rely on 
the actuators to achieve high stroke and force 
simultaneously (i.e. high power). This is because the 
Smart Spring concept relies on delivering power not 
to actuate against the blade aerodynamic loads but 
to change the axial spring constant of the pitch link, 
which directly modifies the flexural characteristics of 
the blade in its torsional degree of freedom 
(changing its corresponding boundary condition, a 
basic concept that was introduced in 1994). [8] This 
modification, which is done continuously in time, 
allows the control of the aeroelastic response of the 
blade. The energy is redistributed in the vibration 
spectrum: removed from the frequencies were the 
rotor transmissibility to the fuselage is desired to be 
low (i.e. at the frequencies integer multiples of the 
number of blades, 𝑛𝑁! 𝑟𝑒𝑣 and they immediate 
neighbors, (𝑛 ± 1)𝑁! 𝑟𝑒𝑣 and displaced at the other 
frequencies, characterized for lower transmissibility 



from the helicopter rotor. The Smart Spring IBC 
concept has been extensively studied both 
theoretically and experimentally over the past years.  
[9-12] The objective of this paper, however, is to 
develop the mathematical basis for the closed-loop, 
independent harmonic control of the Smart Spring. 
This concept would enable the attenuation of the 
vibrations transmitted from the rotating to the non-
rotating frame of the helicopter at determined 
harmonics without affecting the others, mainly the 
1 𝑟𝑒𝑣, associated with the rotor cyclic control. 

2 THE SMART SPRING CONCEPT 

For the sake of completeness, the Smart Spring 
concept is introduced. More detailed information can 
be found in the previous publications. [9-14] The 
conceptual drawing of the Smart Spring is shown in 
Fig. 1, where it is modeled as two mass-spring 
systems denoted with subscripts 1 and 2. 
Specifically, 𝑘! and 𝑚! represent the primary load 
path system stiffness and mass, respectively, 
whereas the secondary load path system is 
characterized by 𝑘! and 𝑚!. The primary load path 
is attached to the “structure” (i.e. the blade horn) 
subjected to the external vibratory force induced by 
the blade aerodynamic loads, 𝐹(𝑡) and the “base,” at 
which low vibration transmissibility is sought (i.e. the 
swashplate). There is a built-in sleeve in the main 
structure that is simply a conceptual representation 
for the Smart Spring stiffness-switching element. In 
its new design this action is introduced by a bi-state 
structure that is used to replace the two springs 
bonded by a friction mechanism presented in the 
original Smart Spring configuration.  

Following this schematic, a piezoceramic stack 
actuator is attached to the secondary load path 
system, which is inserted into the sleeve.  

 
Figure 1: Fixed-base Smart Spring concept. 

When the actuator is off, the sleeve can move 
freely and only the primary load path determines the 
transmissibility of the loads from the main structure 
to the Smart Spring base; the two load paths are 
totally decoupled. Instead, when the actuator is 
powered on, the normal force, 𝑁(𝑡) is generated and 
it engages the two systems: the two load path 
systems become fully coupled if the resultant friction 
force, 𝜇 𝑡 𝑁(𝑡), where 𝜇(𝑡) is the kinematic friction 
coefficient, is sufficiently large. Therefore, activating 

the piezoelectric actuator, the resulting stiffness of 
the system increases from 𝑘! to 𝑘! + 𝑘!. It is 
worthwhile to stress once more that the present is a 
cartoonish representation for the Smart Spring 
stiffness-switching element. The basic elements of 
any Smart Spring are the multiple load paths and the 
corresponding switching devices for engaging and 
disengaging these load paths.  

3 MATHEMATICAL MODEL OF THE SMART 
SPRING  

The conceptual model presented in the previous 
section will be next used to derive the equations of 
the motion in the Smart Spring. The objective of the 
control action is to reduce the transmissibility of the 
dynamic loads throughout the primary load path. In 
the case of the shown fixed-base configuration, the 
external load is applied to mass 𝑚! and low 
transmissibility of that load is sought at the base of 
the Smart Spring.  

The equations of motion for the system shown in 
Fig. 1 are: 

(1) 
 

When the Smart Spring is unlocked, its two 
mass-spring systems are decoupled, and (1) 
becomes: 

(2) 

 
Therefore, the dynamic response is determined 

by the primary load path system (i.e. by the top 
equation only). When the Smart Spring is completely 
locked, the two mass-spring systems move in unison 
and, thus, their displacements (and accelerations) 
are identical, 𝑥! ≡ 𝑥!. In this case, the summation of 
the two equations in (1) reduces to:  

(3) 
 

However, in the general case, the summation of 
the two equations in (1) yields:  

 
(4)  
 
where: 

(5) 

 
Taking into consideration that the mass of the 
secondary path in the Smart Spring, 𝑚! is negligible 
with respect to the mass of the main structure, 𝑚!  
(i.e. the blade), 𝑚!𝑥! 𝑡 ≪ 𝑚!𝑥! 𝑡 , and the 
Smart Spring turns out to be a stiffness modulation 
device that performs parametric excitation of the 



system: 

(6)  
 

4 FREQUENCY DOMAIN MATHEMATICAL 
MODEL AND ITS ANALYTICAL SOLUTION 

The mathematical model is solved in the 
frequency domain using the harmonic balance 
method, assuming that the solution should also be 
harmonic on the exciting harmonic frequencies. It 
can be proved that the Smart Spring transmissibility 
characteristics at a certain frequency depends only 
on two dimensionless design parameters: the 
stiffness ratio between the primary and secondary 
systems and the natural frequency associated with 
the primary system besides its operational 
parameters: the control frequency and phase.  

4.1 The Smart Spring control function 

It has been determined in the previous section 
that only the stiffness of the Smart Spring system is 
a function of time and that it involves (1) the ratio 
between the displacements of the secondary and 
primary path systems and (2) the spring constants 
associated with the primary and secondary paths 
(5). The control function that modulates this ratio 
from the value of the main spring 𝑘! to the value of 
the coupled system, 𝑘 = 𝑘! + 𝑘!, is now introduced. 
The control function model depends fundamentally 
on the design of the switching mechanism of the 
Smart Spring. In the cartoonish Smart Spring 
operation scheme presented in this paper a friction-
based mechanism is represented. In a previous 
work this system was numerically simulated by a 
typical representation of the dry (Coulomb) friction 
effect where the dynamic friction coefficient, 𝜇(𝑡) 
was a function of the material and the absolute value 
of the relative speed between the two elements of 
the sleeve, 𝑥! − 𝑥! . [10] In these time-domain 
simulations that were supported by experimental 
verifications, [11,12] it was determined that if both the 
applied piezoelectric normal force and the 
piezoelectric stroke are sufficient large to guarantee 
perfect locking and unlocking between the primary 
and the secondary load paths during the operation 
of the Smart Spring, the square wave is a good 
approximation for the switching process. This is 
equivalent to following an on-off control law. Hence, 
the square-wave control function shown in Fig. 2 is 
considered to perform such a modulation of the 
stiffness by the Smart Spring in this work. When the 
control function, 𝑓 𝛼 = 𝑥! 𝑥! is equal to 0 (or 1), 
the stiffness of the system assumes the value of 𝑘!  
(or 𝑘 = 𝑘! + 𝑘!), as it can be verified from (5). 
However, the locking and unlocking of the switching 
mechanism has been verified in experiments to be a 
concern in the design of the switching element, 

thereof requiring the necessary attention in the 
selection of the piezoelectric material and stacking 
procedure. [11] For this reason, in its new version, the 
Smart Spring switching mechanism was changed to 
a bi-state smart structure that does not rely on 
friction for its operation. However, the mathematical 
model represented by (6) and the following are still 
appropriate.   

The time dependence of the control function is 
introduced by a dimensionless angular parameter:  

(7) 𝛼 = 𝑟𝜓 + 𝜙 

so that  the system stiffness in the frequency domain 
is modulated as 𝑘 𝛼 = 𝑘! + 𝑘!𝑓(𝛼), where ψ = Ωt is 
the non-dimensional time (blade azimuth angle), Ω 
the reference frequency (the fundamental rotor 
frequency) and φ the control phase angle (control 
delay from a reference azimuth value). In (7), the 
parameter 𝑟 = 𝜔! Ω represents the harmonic 
number of the fundamental frequency, Ω targeted for 
the control action (i.e. 𝑁! 𝑟𝑒𝑣), where 𝜔! is the 
control frequency. 
 

 
Figure 2: Smart Spring control function. 

4.2 Closed mathematical solution by the 
harmonic balance method 

The harmonic balance method is the basis for the 
mathematical model of the Smart Spring in the 
frequency domain. It allows the study of the 
response of the system in terms of its harmonic 
components and it was derived in a previous work. 
[13] It is summarized in this section for the sake of 
completeness.  

The following complex Fourier series 
representations for the exciting force and for the 
response of the primary load path system, 
respectively, are assumed: 

 

(8) F(t) = Fne
inψ

n=−∞

+∞

∑ ; x1(t) = x1ne
inψ

n=−∞

+∞

∑  

 
where 𝑛 = 𝜔 Ω is any harmonic of interest of the 
fundamental rotor frequency. The square-wave 
control function can be likewise represented in 
complex Fourier series: 

(9) 
 

  f 



where p is any integer number. Hence: 
 

(10) 
 

 
where 𝑘! = 2𝑘! + 𝑘! 2 is the average value of the 
Smart Spring stiffness in time, according to Fig. 3: 
  

 
Figure 3: Smart Spring stiffness modulation in 

time. 
 

Using (8) and (10) into (6), the equation of motion 
for the Smart Spring can be converted into the 
frequency domain: 

(11) 

 

 
 
where 𝑥!! represents the new equilibrium position of 
the primary load path due to the operation of the 
Smart Spring, that is slightly changed from its static 
value, 𝐹! 𝑘!.  

Using (7) and the identity 1 𝑖 = 𝑒!!"/!, (11) can 
be rewritten as: 
 

(12) 

 
 

Because both 𝑝 and 𝑛 are dummy indices, noting 
that 𝑝𝑟 + 𝑛 → ±∞ as 𝑛 → ±∞ and 𝑝 → ±∞, the 
following transformation applies:  

 

(13) 

𝑥!!𝑒
! !"!! ! 

!!

!!±!,±!,⋯

!!

!!!!

= 

 

= 𝑥! !"!! 𝑒
!"#

!!

!!±!,±!,⋯

!!

!!!!

 

Equation (13) allows that (12) can be reduced to:  
 

(14) 

 
 
that corresponds to an infinite set of Complex 
Frequency Response Functions (CFRF): 
 

(15) 
 

 
  
for 𝑛 = 0,±1,±2,⋯. The CFRFs relate every 
harmonic of 𝐹! to the corresponding harmonic of 𝑥!!. 

It is convenient to obtain the non-dimensional 
form of (15) by dividing the expression by 𝑘!, the 
primary path stiffness. Noticing that the natural 
frequency of the primary load path is given by 
𝜔! = 𝑘! 𝑚! and introducing the dimensionless 
parameter 𝜅 = 𝑘! 𝑘! one obtains: 

(16) 
 

 
It is important to understand the physical 

meaning of (16). The summation appearing in the 
second term of (16) is related to the Smart Spring 
control function. Because the control function is a 
square wave, the amplitude of the harmonics 
decrease as the inverse of 𝑝, meaning that the 
harmonics more distant from the target (controlled) 
harmonic, 𝑟 will be lesser affected by the Smart 
Spring operation.  More importantly, this is the only 
term that is dependent on the control phase angle, φ 



and it represents the coupling among the harmonics 
introduced by the operation of the Smart Spring. As 
such, this term is also responsible for the spreading 
in the spectrum of the vibration energy, away from 
the targeted frequency for control, and ultimately the 
control objective. Without this effect, the Smart 
Spring control is represented by the first term of 
(16): 

(17) 

 

4.3 Simplified solution – understanding the 
physics of the Smart Spring operation 

The over-simplified situation represented by (17) 
is explored in this Section only for the sake of better 
understanding the physics involved in the Smart 
Spring operation. Rearranging this expression:  

 

(18) 1− Ω
ω1

⎛

⎝
⎜

⎞

⎠
⎟

2

n2
⎛

⎝
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⎞

⎠
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⎟ 1+

κ
2
1− Ω

ω1

⎛

⎝
⎜

⎞

⎠
⎟

2

n2
⎛

⎝
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⎜

⎞

⎠
⎟
⎟

−1⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥x1n =

Fn
k1

 

 
and observing that: 

(19) G0 (n) = 1− Ω
ω1

⎛

⎝
⎜

⎞

⎠
⎟

2

n2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

=
ω1
2

ω1
2 −ω 2  

 
is the usual Frequency Response Function (FRF) of 
an undamped single-degree-of-freedom system, 
(18) can be written as: 
 

(20) G0
−1(n) 1+ κ

2
G0 (n)

⎡

⎣⎢
⎤

⎦⎥
x1n =

Fn
k1

 

Solving for 𝑥!!: 
 

(21) 
x1n
Fn k1

=G(n,κ ) = G0 (n)

1+ κ
2
G0 (n)

 

 
Equation (21) can now be identified to the unit 

feedback closed-loop system shown in in Fig. 4, for 
which the open-loop transfer function is G0(n) and 
the gain is 𝜅 2 (one-half the ratio between the 
secondary and primary spring constants in the 
Smart Spring). This means that when the loop is 
open, 𝜅 = 0 (i.e. when 𝑘! = 0 and the secondary 
system is unlocked) and the Smart Spring acts as 
filter for the axial loads acting on the primary path. 

If 𝑚! and 𝑘! are respectively identified as the 
effective inertia of the blade in pitch and the stiffness 
of the pitch link, 𝜔! = 𝑘! 𝑚! is approximately the 
natural frequency of the rigid body pitch mode of the 
blade. Then, when the Smart Spring is not operating 
the harmonic components of 𝐹(𝑡) are fully 

transmitted to the swashplate, either dynamically 
attenuated or amplified according to the open-loop 
FRF, G0(n). However, when the Smart Spring is 
operating and the stiffness of the pitch link is 
modulated in time, these harmonics shall be further 
attenuated according to the fundamental principle of 
the closed-loop regulators. This attenuation is given 
by the closed-loop transfer function, G(n,κ).  
 

 
 
Figure 4: Characteristic Single-input, single 
output (SISO) feedback closed-loop control 
action introduced by the Smart Spring operation 
on individual harmonics of the external loads 
neglecting the square-wave control function. 

4.4 Rigorous solution – the influence of the 
Smart Spring control function 

In this Section, the summation in the second term 
of (16) is explicitly developed for 𝑝!"# = ±5 that 
includes the most affected harmonics introduced by 
the control function of the Smart Spring: 

 

(22) 

 
 
Introducing Euler’s formula, 𝑒!" = cos 𝜃 + 𝑖 sin 𝜃 

in (22), considering the real and imaginary parts of 
each harmonic present, the CFRFs between the real 
and imaginary parts of the harmonics 𝑥!! and their 
corresponding counterparts originated from exciting 
force, 𝐹! are obtained: 

 

(23) 

 



Equation (23) is conveniently expressed in matrix 
form, which allows for the solution of all harmonics 
of 𝑥!! as a function of any given exciting frequency 
spectrum when the Smart Spring is operating: 

(24) A(n)x1(n) = F(n)  

for 𝑛 = 0,±1,±2,… ,±∞. 

If 𝑁 = 𝑛 + 𝑟𝑝!"#, x1(n)  and F(n)  are vectors of 
dimension 2N. They collect the real and the 
imaginary parts of the harmonics of 𝑥!!  and 𝐹!, 
respectively in their upper and lower halves, as 
shown in (25): 

(25) x1(n) =

!

Re x1n+1( )
Re x1n( )
Im x1n( )
Im x1n+1( )
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⎪

⎫
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⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

 

 
and A(n)  is the square matrix of dimension 2N : 
 

(26) A(n) = 1+ κ
2

⎛

⎝
⎜

⎞

⎠
⎟I−

Ω
ω1

⎛

⎝
⎜

⎞

⎠
⎟

2

`n2 + 2κ
π
B(n)  

 
where I is the identity matrix and `n is the diagonal 
matrix collecting the harmonic numbers (the grave 
accent denotes diagonal matrices in the present 
paper), as follows:  
 

(27) `n =

!
n+1

n
n

n+1
!

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

Also in (26): 

(28) B(n) = B11(n) B12 (n)
0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 
where 0 is the null matrix. In (28), B11(n) and B12(n) 
are sparse but full square matrices of dimension N, 
dependent on both the controlled harmonic, r and 
the control phase, φ. They follow the multiple 
diagonal structure discussed in the Appendix. 
 
 
5 OPEN-LOOP NUMERICAL SIMULATIONS  

The mathematical model derived in Section 4.4 
was fully implemented in previous works to analyze 
the harmonic response of the fixed-base and the 
based-excited Smart Spring configurations. [13,14] 

The open-loop harmonic response was calculated 
for different values of Ω 𝜔! as a function of κ and φ. 
A flat unitary spectrum for the excitation force was 

considered in the simulations, k1F(n) = !,1,1,1,!⎢⎣ ⎥⎦
T

and then (24) was solved for x1(n).  
In Fig. 5, a sample result from these parametric 

studies is shown. In particular, the normalized 
magnitude plots for the harmonics n = 3, 4 and 5 of 
the primary path dynamic response with respect 
their corresponding uncontrolled case are exhibited 
for two values of the Smart Spring design 
parameter: Ω 𝜔! > 1 and Ω 𝜔! < 1. The control 
frequency is set at r = 4 (i.e. at the 4th harmonic of 
the rotor fundamental frequency, or 4 𝑟𝑒𝑣, aiming at 
dynamic loads reduction of a 4-bladed rotor).  

In these plots both the relative stiffness between 
the secondary and primary paths (the closed-loop 
control gain, κ) and the Smart Spring control phase 
angle, φ are varied. It is verified that substantial 
reductions in the transmissibility, notably at the 
harmonic targeted for the control occur if the “right” 
combination of the Smart Spring parameters is 
chosen. Significantly higher reductions were verified 
in general for 𝜔! > Ω. However, it is also seen that 
ample spillover happens at harmonics not targeted 
by the control action. High sensitivity of the response 
to the control and design parameters is noticeable, 
producing amplification of the transmissibility at 
harmonics that should targeted for rotor-induced 
vibration control as well, such as 3 𝑟𝑒𝑣 and 5 𝑟𝑒𝑣.  

This behavior was supported by experimental 
work conducted with a scaled helicopter blade 
model, from which one result is depicted in Fig. 6. 
[11,12] It should be noted, however, that there is no 
direct relation between the simulated cases and the 
tested cases to support a quantitative validation of 
the model. This is due to the different excitation 
spectrum used in the experimental tests. These 
were performed in a whirl tower with a single blade 
rotor using a fan placed underneath the apparatus to 
excite the blade. [11,12] However, it is clear from the 
results that the sinusoidal variation of the dynamic 
response with the control phase angle is observed 
both in the test and the simulation results.   
 

 



 

 

 

 

 

Figure 5: Open-loop parametric simulations: 
normalized magnitudes of the 3rd to 5th 
harmonics of the fundamental rotor frequency 
when the Smart Spring is operating at the 4th 
harmonic. Results for two different values of the 
Smart Spring design parameter Ω/ω1 and for 
different gains and control phases. [13,14] 

 

 

Figure 6: Open-loop experimental results for 
Smart Spring transmissibility control of the 
peak-to-peak levels obtained with a 1-blade 
rotor. The control frequency set at 2/rev with 
variable control phase angle. Results are shown 
for the first 8 harmonics of the rotor fundamental 
frequency (negative values represent vibration 
amplification with respect to the baseline value). 
[11,12] 

6 INDEPENDENT HARMONIC CONTROL OF 
THE SMART SPRING 

All the previous results indicate that a closed-
loop action that provides a “right” combination of the 
Smart Spring parameters should be sought to 
guarantee continuous reduction in the 
transmissibility of the target controlled harmonic 
without producing significant spillover at other 
important harmonics for rotor vibration control. In 
this Section the fundamentals for the closed-loop 
independent harmonic control of the Smart Spring 
will be identified.   



6.1 Closing the loop 

Starting from (26), this expression is rearranged 
as: 
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The first term is factored out to produce: 
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Similarly to Section 4.3, the first term is now 

identified to the open-loop transfer matrix:  
 

(31) G0
−1(n) = I− Ω

ω1

⎛

⎝
⎜

⎞

⎠
⎟

2

`n2  

  
which is notable diagonal. This yields for (30): 
 

(32) A(n) =G0
−1(n) I+ κ

2
G0 (n) I+
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⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  

 
Using the latter result into (24) and solving for 

x1(n): 

(33) x1(n) = I+ κ
2
G0 (n) I+

4
π
B(n)

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

−1

G0 (n)
1
k1
F(n)  

 
Recognizing that B(n) is also a function of the 

control frequency and phase introduced by the 
control function of the Smart Spring, the feedback 
matrix is now defined: 

(34) H(n;r,φ) = I+ 4
π
B(n;r,φ)  

 
Equation (33) is then simplified to: 
 

(35) x1(n) = I+ κ
2
G0 (n)H(n;r,φ)

⎛

⎝
⎜

⎞

⎠
⎟
−1

G0 (n)
1
k1
F(n)  

 
Equation (35) can be directly identified to the 

closed-loop transfer matrix, G(n;κ,r,φ) of the 
feedback system depicted in Fig. 7 that relates the 
harmonics of 𝑥!! to the harmonics of the excitation 
spectrum, 𝐹!: [15] 

(36) x1(n) =G(n;κ, r,φ)
1
k1
F(n)  

   
where closed-loop matrix is: 
 

(37) G(n;κ, r,φ) = I+ κ
2
G0 (n)H(n;r,φ)

⎛

⎝
⎜

⎞

⎠
⎟
−1

G0 (n)  

 

 
 
Figure 7: Multiple-input, multiple-output (MIMO) 
feedback closed-loop control system 
characterizing the Smart Spring operation.  

6.2 Closed-loop IBC for the Smart Spring 
independent harmonic control  

From the previous Section, it can be seen that 
the design of the Smart Spring closed-loop control is 
based on a simple and conventional feedback 
control system. The spillover coupling effect 
introduced by the Smart Spring control function is 
represented by the feedback matrix transfer function 
H (in the feedback branch of the control loop), which 
in a conventional feedback control theory plays the 
role of a sensor system. This matrix is, as indicated 
in the Appendix, a sparse but full matrix whose 
structure is dependent on the controlled harmonic 
number, r and the control angle, φ. As such, this 
matrix is in the present case the only component of 
the closed-loop system responsible for the coupling 
among the harmonics introduced by the operation of 
the Smart Spring. If this matrix were diagonal, the 
multiple-input multiple-output (MIMO) feedback 
system would collapse into a collection of 
independent single-input single-output feedback 
systems (SISOs) relating the harmonics 𝑥!! to the 
corresponding harmonics of the excitation spectrum, 
𝐹!; every SISO system resembling to the one 
depicted in Fig. 4. Therefore, the objective of 
achieving an independent harmonic control using 
the Smart Spring falls into the task of diagonalizing 
the matrix H(n;r,φ). This is equivalent to determine 
the linear transformation of generalized coordinates 
that is able to decouple the system. The original 
(physical) generalized coordinates are associated 
with the harmonic components of the response, 𝑥!!. 
The new coordinates will be a linear combination of 
these harmonic components. The process is 
identical to decoupling any linear multi-degree-of-
freedom dynamic system into its natural modes of 
vibration by solving the eigenvalue problem 
associated with the dynamic matrix of that system. 
By analogy, in the present case, the dynamic matrix 
is the feedback matrix H(n;r,φ). Then, the following 
identity holds: [16] 

 

(38) HU ≡U`V⇒ `V =U−1HU  

 
where U is the modal matrix associated with H (i.e. 
collecting the eigenvectors of H along its columns) 
and `V is the spectral matrix associated with H (i.e 



collecting the corresponding eigenvalues of H along 
its diagonal). Using this transformation (37) yields: 
 

(39) `G(n;κ, r,φ) = I+ κ
2
G0 (n)`V(n;r,φ)

⎛

⎝
⎜

⎞

⎠
⎟
−1

G0 (n)  

 
where the closed-loop transfer matrix is now 
diagonal. It is worthwhile to mention that the gain of 
each individual harmonic component in the 
independent harmonic control situation is fully 
determined by the eigenvalues of H, as indicated in 
(39). These are also a function of the control 
harmonic number, r and the control phase angle, φ 
following the matrix H structure. 

Realization of this independent harmonic control 
system physically requires the introduction of a 
frequency analyzer in the feedback loop that reads 
from the Smart Spring primary path the transmitted 
signal harmonic components and performs a 
combination of these components according to the 
pre-established eigenvectors of H (Fig. 8).  

 
 

Figure 8: Realization of the independent 
harmonic control using the Smart Spring IBC 
concept.  

7 CONCLUSIONS 

The present work developed the individual blade 
closed-loop control approach for the Smart Spring 
device in the frequency domain using the harmonic 
balance method. The closed mathematical solution 
for this feedback control system was derived. The 
fundamentals of an independent control for the 
harmonics of the vibration spectrum transmitted 
through the pitch link from the rotating to the non-
rotating frame using the Smart Spring were 
established. The basis for the realization of this new 
concept in practical systems was discussed.   
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Appendix – Structure of the feedback matrix
 

Matrix B(n;r,φ) presented in (28) is composed by two null matrices and two square sparse matrices 
having a multi-diagonal structure, as follows: 

 
B = B𝟏𝟏 𝐁𝟐𝟐

𝟎 𝟎  
 

 

B𝟏𝟏 =

⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯
⋱ ⋯ !

!
𝑠!! ⋯ 𝑠! ⋯ 0 ⋯ 𝑠! ⋯ !

!
𝑠!! ⋯ !

!
𝑠!! ⋯

⋯ !
!𝑠!! ⋯ !

!𝑠!! ⋯ 𝑠! ⋯ 0 ⋯ 𝑠! ⋯ !
!𝑠!! ⋯ !

!𝑠!! ⋯

⋯ !
!𝑠!! ⋯ !

!𝑠!! ⋯ 𝑠! ⋯ 0 ⋯ 𝑠! ⋯ !
!𝑠!! ⋯ ⋱

⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯

 

 
 

B𝟐𝟐 =

⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯
⋯ !

!
𝑐!! ⋯ !

!
𝑐!! ⋯ 𝑐! ⋯ 0 ⋯ 𝑐! ⋯ !

!
𝑐!! ⋯ ⋰

⋯ !
!𝑐!! ⋯ !

!𝑐!! ⋯ 𝑐! ⋯ 0 ⋯ 𝑐! ⋯ !
!𝑐!! ⋯ !

!𝑐!! ⋯

⋰ ⋯ !
!𝑐!! ⋯ 𝑐! ⋯ 0 ⋯ 𝑐! ⋯ !

!𝑐!! ⋯ !
!𝑐!! ⋯

⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯ ⋰ ⋯

 

 
where 𝑠! = 𝑠𝑖𝑛𝜗 and 𝑐! = 𝑐𝑜𝑠𝜗. The spacing between the diagonals (indicated by the horizontal dots) is filled 
with zeroes and determined by the controlled harmonic, r. The dimension of all matrix components is given 
by 𝑁 = 𝑛 + 𝑝!"#𝑟, where 𝑝!"# is the number of terms retained in the complex Fourier series that describes 
the Smart Spring control function (9).  


