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Abstract
This paper addresses the problem of vibration
reduction in helicopter fuselages using the concept
of Active Control of Structural Response (ACSR).
Considering the large size of the coupled gearbox-
flexible fuselage system dynamics, first a balanced
realisation based order reduction is employed to
reduce the size of the problem. Then using the
reduced order model, a closed loop controller is
designed to minimise the NB/rev vibratory levels in
the fuselage with the constraint that the controller
ensures stability of the original full order system.
The controller design is based on the concept of
disturbance rejection by internal model principle.
Employing a four block representation of the
problem and doubly coprime factorisation theory, a
stable controller is designed for this multi-input-
multi-output control problem. It is observed that this
controller yields a closed loop transfer function
which rejects the external disturbance not only at the
desired frequency of NB/rev but also in its
neighborhood. In addition, contrary to open loop
control, the present technique of closed loop control
reduces the vibratory levels both in the fuselage and
gearbox.

Nomenclature
[A], [B],[C] System matrix, control matrix and

output matrix respectively
[Af],[Bw],[Bu] System matrix, external disturbance

matrix and control matrix respectively
of the full order model

[A1],[Bw1], [Bul] System matrix, external disturbance
matrix and control matrix respectively
of  controllable model

[A], [B1], [B2] System matrix, external disturbance
matrix and control matrix respectively
of the reduced model

Ci, C
i Damping of the i-th gearbox mounting

[Cy ], [Cz ] Measurement and output matrices
respectively

[Cy1], [Cz1] Measurement matrix and output
matrix in transformed space
respectively

[C1], [C2] Measurement matrix and output
matrix in reduced space respectively

Fc , f Control force
Fx, Fy, Fz Vibratory forces at hub
G(s) Transfer matrix in Laplace domain

[G(s)=C(sI-A)-1B]
{Ixx, Iyy, Izz}GB Mass moment of inertia of gearbox
{Ixx, Iyy,, Izz}F Mass moment of inertia of fuselage
K Controller transfer function or gain

matrix
Ki, K

i Stiffness of  i-th gearbox mounting.
mB Rotor blade mass
mF Mass of fuselage
mGB Mass of gearbox
Mx, My, Mz Vibratory moments at hub
NB Number of blades in the rotor system
{p} State vector
P Controllability grammian
{ q } State vector in modal space

{ q } State vector in transformed space

Q Observability  grammian

TT , Transformation matrices

Tzw Closed loop transfer function relating
output z and input disturbance w

{u} Control input vector
{w} External disturbance vector
{x1}, {x2} Controllable (flexible) and

uncontrollable (rigid-body) state
vectors respectively

{y} Measurement vector
{z} Output vector
�F Structural damping coefficient
σi Hankel singular values
Ω Rotor angular velocity
ω0 Frequency of external disturbance
(^) Laplace transform

1. Introduction
The periodic variation of inertia and

aerodynamic loads of main rotor system is the major
source of vibration in helicopters and these loads
increase with increase in forward speed. The
vibratory rotor loads are transmitted to different
parts of the fuselage through complicated load path
and cause discomfort to pilot and crew, equipment
deterioration, fatigue damage to the structure and
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increased maintenance cost; thereby restricting the
operation and efficiency of the vehicle.

With increasing demand for high speed and
high performance helicopters, along with improved
system reliability and reduced maintenance costs,
vibration reduction has become an important design
criterion. The control schemes adopted so far to
reduce vibration in helicopters can be broadly
classified as either passive or active control
technologies. Passive vibration control schemes
include hub or blade mounted pendulum absorbers,
anti-resonant vibration isolation devices like
Dynamic Anti-resonant Vibration Isolation (DAVI),
Anti-Resonant Isolation System (ARIS) and Liquid
Inertia Vibration Eliminator (LIVE), structural
modifications and structural optimisation. Since
passive devices are turned to provide maximum
vibration reduction at specific frequency, for any
change in operating condition, their performance
will degrade considerably. It is generally accepted
that "jet-smooth ride" in helicopters would be
possible in future only with the incorporation of
active control schemes (Ref. 1). Active control
methodologies include Higher Harmonic Control
(HHC), Individual Blade Control (IBC), Active Flap
Control (AFC) and Active Control of Structural
Response (ACSR). While HHC, IBC and AFC
control schemes are aimed at reducing the blade
loads in rotating frame, ACSR is employed in the
nonrotating frame to cancel the effect  of vibratory
hub loads on the fuselage. A comparison of active
vibration control schemes is provided in Ref. 2.

The concept of ACSR scheme is based on
the principle of superposition of two independent
responses of a linear system, such that the total
response is zero (Refs. 3-4). A schematic of a
helicopter with ACSR is shown in Fig. 1. The rotor
loads are transmitted to the fuselage through the
gearbox support structure. The support structure is
idealised as a spring, damper, and a control force
generator. In passive scheme, the control force
generator corresponds to a vibration absorber mass
(as in ARIS), whereas in the case of ACSR, the
control force generator can be an electro-hydraulic
actuator or a small-piezo actuator (Ref. 1). Due to
several advantages, incorporation of ACSR scheme
in helicopters is being pursued vigorously by
industries (Refs. 1, 3-5).

Some of the important aspects in practical
implementation of active vibration control schemes
are: (i) selection of sensor locations for vibration
measurement; (ii) selection of actuator locations and
(iii) formulation of closed-loop control scheme for
vibration minimisation. In the case of ACSR
scheme, the actuators are placed at the gearbox
support structure, whereas the sensors have to be
placed at optimal locations to maximise the effect of
vibration control in fuselage. Recently, in Ref. 6, a
systematic mathematical procedure, employing
Fisher information matrix (Ref. 7) has been

successfully applied to identify the optimal sensor
locations for vibration reduction in helicopter
fuselages. It was shown in Ref. 6 that irrespective of
the excitation frequency, these optimally selected
sensor locations experience high levels of vibration.

Since the frequency of dominant
component of fuselage vibration in helicopters is
always NB/rev (where NB is the number of blades
in the main rotor system), all vibration control
schemes aim to minimise the NB/rev component of
fuselage vibration. While applying ACSR schemes
of vibration reduction, the control forces were
evaluated by minimising a cost function in Refs. 3-
6. In Ref. 8, the control forces were evaluated by
equating the total steady state force across the servo
actuators to zero. It is noted in Refs. 6 and 8 that on
reducing fuselage vibration, ACSR scheme of
vibration minimisation increases the gearbox
vibratory levels (Ref. 6) and hub loads (Ref. 8). In
Ref. 9, while describing methods of active control of
vibration in helicopters, the authors have
highlighted the applicability of internal model
principle of disturbance rejection for the design of
closed loop controllers for vibration minimisation in
helicopter fuselages. The idea of disturbance
rejection of fixed frequency (NB/rev) signal is based
on the internal model principle (Ref. 10) wherein a
suitable reduplicated model simulating the dynamic
characteristics of the disturbance signal is
incorporated in feedback path. The purpose of
internal model is to provide closed loop
transmission zeros which cancel the poles of the
disturbance signal.

Dynamic analysis of complex structures, in
general, involves several stages of model order
reduction, namely, (i) the distributed parameter
system with infinite degrees of freedom is reduced
to a manageable finite element model with a few
thousand degrees of freedom; and  (ii) in the next
stage using undamped free vibration modes obtained
from an eigen analysis of the finite element model a
further reduction in the model order is achieved by
modal transformation with truncated number of
modes (considering only the first few modes of
interest). This reduced order model is then used for
response and stability analysis. In the case of
helicopters, due to high modal density of the
fuselage structural modes, even in the modal space a
large number of modes have to be considered
particularly for the vibration analysis. It is known
that a dynamic model with large number of degrees
of freedom will lead to numerical difficulties and
high computational costs. In addition for closed loop
control the design of controller for a high order
system will be difficult and the controller will have
reduced efficiency. It is always preferable to have a
low order system for the design of compensator;
with the constraint that the controller designed for
the small order system will ensure stability when
incorporated in the full order system. (Note: In this
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paper full order system implies the system in modal
space).

The technique known as model order
reduction via balanced state space representation has
been developed by Moore (Ref. 11). This technique
is highly suitable for large systems incorporating
multivariable control. In analysing model reduction
for flexible space structure, it was shown in Ref. 12
that balanced realisation based order reduction is
superior to modal truncation based order reduction
particularly when the natural frequencies are closely
spaced. A brief description of this technique is
provided here for convenience (Refs. 13 and 14). A
proper way to reduce the order of a dynamic system
for control purposes is to delete those states which
are least controllable and observable. For a
systematic approach to delete the least observable
and controllable states, one requires a measure of
controllability and observability. It is known that the
singular values of controllability and observability
grammians define a measure of controllability and
observability in certain directions of the state space.
Since the grammians are variant under a coordinate
transformation, it is shown that there exists a
coordinate system in which the grammians are equal
and diagonal. The corresponding space is denoted as
the balanced space. A reduced order model of the
system can be obtained by deleting the least
controllable and observable states in the balanced
space. Then for the reduced model, a suitable
controller can be designed. Of course, the efficiency
of the compensator has to be established by
analysing the full order system with the controller
designed for low order system.

The aim of this present study is to address
the problem of vibration minimization using ACSR
scheme in helicopter fuselages, by integrating
several independent concepts in a novel manner.
The main objectives of this study are:
•  Formulate a reduced order model for the coupled
gearbox/fuselage helicopter model using balanced
realization;
•  Design a closed loop controller for vibration
minimization using ACSR scheme, by disturbance
rejection approach. For this multi-input-multi-output
control problem, the controller is obtained by
employing four block representation and doubly
coprime factorisation theory (Ref. 15);
•  Evaluate the efficiency of the controller for the
full order model.

2. Mathematical Formulation
The mathematical formulation consists of:

a) equations of motion of the coupled
gearbox/fuselage dynamical system, b) balanced
realisation based order reduction and c) design of
closed loop controller for disturbance rejection. A
brief description of these items is presented in the
following. The details of the formulation can be
found in Refs. 16-17.

2.1 Equations of motion
A simplified dynamic model of a coupled

rotor-gearbox-fuselage system is shown in Fig. 1.
The gearbox is supported on the top of the fuselage
at four nodes. Rotor blade dynamics are not
included in the model; however, the vibratory rotor
loads are assumed to be acting at the top of the
gearbox. The gearbox support is represented as a
combination of linear spring, viscous damper and an
active force generator for vibration minimization.
Several simplifying assumptions have been made
while formulating the equations of motion.
•  The gearbox is assumed to be rigid and has only
vertical translation, pitch and roll degrees of
freedom.
•   The fuselage is assumed to be undergoing rigid-
body vertical translation, pitch and roll motions as
well flexible deformation due to elastic modes.
•  Rigid body motions of fuselage and gearbox are
assumed to be small.
•  Products of inertia of the gearbox and fuselage are
assumed to be zero.
•  Gearbox supports are assumed to be uniaxial
members, providing forces only in vertical (z)
direction.

The equations of motion of coupled
gearbox-fuselage system can be grouped into three
sets. Set I corresponds to the rigid-body equations of
the gearbox; Set II presents the rigid-body equations
of the fuselage; and Set III represents the equations
of motion of the elastic modes of the fuselage. The
elastic modes have been obtained from an eigen
analysis of a 3-dimensional finite element model of
the fuselage. The details of the formulation of the
equations are given in Ref. 16.

The equations of motion of the coupled
gearbox-fuselage system can be written in state
space form as
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Where, {q} denotes the state vector of modal
degrees of freedom; {w} is the vibratory hub loads
(or external disturbance); {u} represents actuator
forces (or control forces) acting at four locations at
the top of the fuselage; {z} is the output vector to be
minimised; and {y} represents the response at
preselected sensor locations which are used for
feedback to obtain the control forces. The size of the
state vector is 52X1, corresponding to three rigid-
body modes of the gearbox + three rigid-body
modes of the fuselage + 20 flexible modes of the
fuselage. Figure 2 shows a block diagram of the
system represented by Eq. 1 and Fig. 3 represents
the closed loop system.
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In Eq. 1, rigid-body modes and flexible modes
are highly coupled. Since the control forces are
internal forces to the total system, from a control
theoretic point of view, rigid body modes are
weakly controllable by actuator control inputs. Due
to this reason, there are difficulties in deriving a
suitable control law. Practical difficulties arise due
to ill-conditioning while computing grammians and
they lead to very high values of gain in the resultant
control law (Ref. 18). A practical way to avoid this
difficulty is to separate the rigid-body modes from
the other flexible modes before proceeding towards
designing control law. The decoupling of modes
into uncontrollable rigid-body modes and
controllable flexible modes is carried out by the
following step-by-step procedure.

1. Find a transformation T of the state space

as }{}{ qTq = to convert Eq. 1 to the
form
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Where 2A  is a 6X6 matrix whose eigenvalues
(=zero) correspond to the rigid body modes.

2. Partition }{q into controllable state vector
{x1} and uncontrollable vector {x2} and
also partition all the corresponding
matrices.

3. Expressing the model pertaining to the
controllable (flexible) part of the dynamics
as
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It may be noted that the output vector {y} and
measurement vector {z} in Eq. 2 contain the effects
due to only the flexible (or controllable) part of the
dynamics of the system. The size of the model given
in Eq. 2 is 46-th order which is still very high from
the point of view of control design problems. In
addition all the states of this model will have
different levels of controllability and observability.
Hence it is desirable to reduce the order of this
model by eliminating weakly controllable and
observable states (note that here weak or strong is
only relative) in comparison to other states.

2.2 Balanced realisation based order reduction
A balanced realization based order

reduction is applied to Eq. 2 to reduce the size of the
problem particularly for the design of closed loop
control law. A brief description of the concept of
balanced realization is provide for the sake of
convenience. The details of the procedure can be
found in Refs. 11, 13 and 14.

Let a stable linear system with transfer
matrix )(sG be realized in state space form as
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                              (3)

The transfer matrix )(sG  in Laplace domain

between input }{u and output }{y of the system

given by Eq. 3 is denoted as ),,()( CBAsG =
and this notation implies that

BAsICsG 1)()( −−= . The Controllability
Grammian for the state equation (Eq. 3) is defined
as the matrix

∫
∞

=
0

dteBBeP tATAt T

and can be shown to be the positive semi-definite
solution of the Liapunov equation

0=++ TT BBPAAP
Similarly, the Observability Grammian of Eq. 3 is
defined as the matrix

∫
∞

=
0

dtCeCeQ AtTtAT

and is the positive semi-definite solution of the
Liapunov equation

0=++ CCQAQA TT

The eigenvalues of P and Q are always non-
negative. (Since P and Q are square symmetric
matrices, their eigenvalues are identical to their
singular values. It may be noted that singular values
of any matrix provide a measure of its closeness to
being singular or rank deficiency.) If P and Q have
zero eigenvalues, then it indicates that there is lower
order realization of the transfer matrix )(sG . On
the other hand, Controllability and Observability
Grammian matrices P and Q are positive definite iff
(A,B,C) is minimal realization (Note: Minimal
realization implies that the ranks of the observability
and controllability matrices are equal to the order of
the system). The magnitudes of the eigenvalues of P
indicate the relative dominance of corresponding
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states being influenced by the input (in other words
the input-to-state influence); similarly the
magnitude of the eigenvalues of Q indicate the
dominance of the corresponding states in
influencing the output (i.e., state-to-output
influence). For a general realization given in Eq. 3,
the eigenvalues of Controllability and Observability
Grammians will not be same. Therefore, the states
which are influential in input-to-state relation (i.e.,
controllability aspect) may not be influential in
state-to-output relation (i.e., observability aspect)
and vice-versa. From this viewpoint, the eigenvalues
of the Grammians P and Q of an arbitrary
realization do not give a correct picture of how
much dominant a particular state is, in the input-
output response relation. Such a picture is correctly
provided by the balanced realization in which both P
and Q are equal and diagonal. Therefore if a reduced

order system ),,()( 1111 CBAsG = is obtained by
removing from Eq. 3 (general realization) those
state variables corresponding to very small
eigenvalues of either P or Q, the two frequency

responses )(sG and )(1 sG do not necessarily have
close gains and phases. On the other hand, if a
reduced order system is obtained from a balanced
realization, then the frequency responses of the
original system and the reduced system will have
close gains and phases. The reason being that in
balanced realization case, the reduced order system
is obtained by deleting those states which are
equally weak in both controllability and
observability aspects. Since Controllability and
Observability Grammians vary under a coordinate
transformation, the balanced realization is obtained
by performing a coordinate transformation. The
details of the procedure can be found in Refs. 17
and 19.

It is to be noted that during coordinate
transformation the eigenvalues of grammians P and
Q change; whereas the eigenvalues of the product
PQ are invariant. The positive roots

},....,{ 21 nσσσ of the eigenvalues of PQ are called

as Hankel singular values of (A,B,C). If

ki σσ > then it can be said that the state variable

ix  is more influential than kx in the input-output

response relation. Therefore the state variables of
the balanced realization play an important role in
understanding the relative significance of all the
states of the state space model. A reduced order
model of the original system (A,B,C) (having G(s)
as transfer function) can thus be obtained by
deleting the equations corresponding to the
dynamics of those state variables which are of weak
significance. Let the state variables are ordered in

such a way that nσσσ ≥≥≥ ....21 . Let (A1, B1,

C1) be the reduced model obtained by removing

those state variables corresponding to nr σσ .....1+ .

Then the error in the frequency response between
the original transfer function G(s) and the reduced
system transfer function G1(s) is given by

)....(2)()( 11 nrHsGsG σσ ++≤− +∞

In practice, the parameter r is chosen in such a way
as to make the right hand side of the above
inequality as small as possible.

2.3 Control law for disturbance rejection
The reduced order model can be

symbolically written as
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Where }{},{},{},{ zuwx  and }{y denote
respectively the reduced order state vector,
disturbance input, control input, measured output
and measurements for feedback control. A block
diagram, as shown in Fig. 3 can represent the above
set of equations. For the present problem on
vibration minimisation in helicopter fuselage, {z}
represents the vibratory levels at pre-selected
optimal sensor locations to be minimised. In
general, the measurement quantities {y} used for
feedback can be different from the quantities to be
minimised. However in the present study, the
measurement quantities are assumed to be same as

{z}. Hence in Eq. (7), one has 21 CC = . Taking
Laplace transform of Eq. (7) and assuming zero
initial conditions, the standard four block
representation can be written as
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Where the variables with hat symbol are the Laplace
transforms of the corresponding time domain
quantities. For the present case, one has
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For the four block representation of the reduced
order system, the vibration minimisation problem is
cast as follows: Design a closed loop controller with
transfer function K such that the effect of the
external disturbance {w} is asymptotically reduced



30.6

to zero in the output {z} while providing closed loop

stability. (i.e., Determine a controller yKu ˆˆˆ = such
that the closed loop system with the four block plant
is stable). The controller is obtained as a solution of
the following problem.

2.3.1 Disturbance rejection problem
The closed loop transfer function between

input {w} and output {z} can be expressed as

[ ]
wTz

wPKPIKPPz

zw ˆˆ

ˆˆ)ˆˆ(ˆˆˆˆ 3
1

421

=
−+= −

              (10)

The idea of disturbance rejection requires to satisfy
the condition that the transfer function Tzw has a
zero at the frequency of the external disturbance

{w}, which is revNB /0 =ω ,

i.e., 0)( 0 =ωjTzw . Since Tzw is a nonlinear

function of the closed loop gain K̂ , solving the

above equation for K̂  is difficult.
A solution to the above problem can be

found by using the factorisation theory of feedback
system synthesis (Ref. 15). In this approach the set
of all controllers which provide closed loop stability
are given by the following equivalent formulae

1))((ˆ −−−= QNXQMYK
or (11)

)
~~

()
~~

(ˆ 1 MQYNQXK −−= −

Where, MNMN
~

,
~

,, are stable transfer matrices
and are obtained from doubly coprime factorisation

of 4̂P ; YXYX
~

,
~

,, satisfy Bezout identity; and

Q is an arbitrary stable proper transfer matrix of
conformable size. The advantage of the above
formula is that on substitution in Eq. (10), the
transfer matrix of the stable closed loop system can
be expressed as

321 TQTTTzw −=           (12)

The details of the formulation and the expressions of
T1, T2 and T3 (which are known quantities) can be
found in Refs. 15 and 17. In the modified form
given by Eq. (12), the transfer matrix Tzw is linearly

related to the matrix Q . Therefore, the requirement
on asymptotic disturbance rejection on vibration
minimisation is satisfied by finding a stable transfer

function Q such that
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        (13)

Any transfer matrix )(sQ which is stable, proper
and satisfying the above equation, thus provides a

closed loop controller K̂ which meets the
requirement of disturbance rejection at the specified

frequency 0ω . In the present study, the matrix Q is

evaluated by representing each element (say ij-th
element) by a second order stable transfer function
of the form

2

2

)1( +
++=

s

bass
Qij  (14)

The two unknown quantities a and b are solved by

first substituting 0ωjs ±=  in Q and formulating

two sets of algebraic equations by equating each
element of the matrix Eq. 13 to zero, separately for

0ωj+ and 0ωj− .

3. Results and Discussion
Using the dynamic model of the coupled

gearbox-flexible fuselage system shown in Fig. 2,
an order reduction based on balanced realisation
approach is performed. Then a closed loop
controller is designed using the reduced order
model. The controller design is based on disturbance
rejection scheme, using doubly coprime
factoraisation theory. The output measurements
used for the controller design are the vibratory loads
at pre-selected sensor locations. The effectiveness of
the controller is evaluated by performing the
vibratory response of the full order system
incorporating the closed loop controller designed for
the reduced order model.

Figure 4 shows a finite element model of
the helicopter fuselage. The length, height and width
of the model are respectively 8.25m, 2m and 3m. the
fuselage is 4m long, having a width of 2.5m and a
height of 1.5m. The tail boom length is 4.25m and
the span of the horizontal stabilizer is 3m. Lumped
masses representing two engines, tail gearbox, and
two end plates are also attached to the structure at
appropriate nodes. The total number of nodes and
the degrees of freedom are 64 and 356 respectively.
The details of the structural properties and other
data are given in Ref. 20. It is shown in Ref. 20 that
the undamped natural frequencies and mode shapes
of this model are similar to those of a realistic
helicopter.

Assuming that the main rotor system
consists of four blades, the vibratory hub loads will
have a nondimensional excitation frequency of
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4/rev. For the fuselage model, the nondimensional
frequency of the 20-th flexible mode is 6.41 (Ref.
20), which is 50% more than the excitation
frequency (4/rev) of the hub loads. The coupled
gearbox-fuselage model shown in Fig. 2,  has the
gearbox mounted on the roof of the fuselage at four
nodes (39, 48, 46 and 37). The vibration analysis is
performed by applying vibratory loads at the top of
the gearbox. Since the vibratory load in the vertical
direction is more predominant, without loss of
generality, it is assumed that the sensors measure
only the vertical (z) component of fuselage
vibration. The total number of degrees of freedom is
26; these include three rigid body modes (pitch, roll
and heave) each for the gearbox and fuselage, and
20 flexible modes of the fuselage. In state space
form the order of the system is 52 and this model is
treated as the full order system. The data used for
the analysis are given in Table 1.

3.1 Sensor locations
A key aspect in vibration control is the

choice of sensor locations for measurement of
vibratory levels in the fuselage and for feedback in
the closed loop control scheme. In Ref. 6, following
the mathematical procedure involving Fisher
Information matrix and Effective Independence
Distribution Vector (EIDV), 23 optimal sensor
locations were identified. In was also shown in Ref.
6 that irrespective of the excitation frequency, these
optimally selected sensor locations measure high
levels of vibration. Assuming a 4/rev vibratory force
in the z-direction, baseline vibratory levels in the
fuselage at all nodes are shown in Fig. 5. Node
number 0 refers to the gearbox c.g. location. The
arrows in the figure indicate the locations of the 23
optimal sensors. The peak vibratory response occurs
at node 33. Even though, optimal selection
procedure does not identify node 33, there are two
sensors at nodes 32 and 34 measuring the second
highest level of response.

In the present study, several sets of 5
sensor locations are considered for order reduction
and closed loop vibration control. The reason for
choosing 5 sensors is to provide redundancy for the
closed loop problem in determining the control
forces for the four control actuators. However for
conciseness, results corresponding to only one set 5
of sensors are presented here. The sensor locations
are 8, 17, 23, 34 and 39. These locations are selected
from the optimal set of 23 sensor locations
providing high levels of baseline vibratory response,
as shown in Fig. 5.

3.2 Reduced order model
The 52-nd order full system is first

decomposed into controllable (46-th order) and
uncontrollable (6-th order) subsystems, by
performing a transformation of states to obtain
block diagonal form of system matrix, as described

in Sec. 2.1. The uncontrollable subsystem
corresponds to rigid body modes having zero
eigenvalues.

It may be noted that the reduced order
model depends on the measurement matrix Cy,
which is related to sensor locations. The Hankel
singular values of the grammians in balanced space
of the controllable 46-th order system are observed
to vary in the range 0.5 to 0.002, indicating the
effectiveness of the states in the input-output
relation. Initially, (by trial) the system was truncated
to a 10-th order model. This 10-th order model
provided a good approximation of the frequency
response of the original system. But the controller
designed for the 10-th order reduced model could
not effectively stabilise the full order system. The
reason could be attributed to spill over instability.
Then the size of the reduced order model is
increased one at a time till closed loop stability of
the full order system is ensured. An 18-th order
model is found to provide both a good
approximation to the frequency response and a
stable controller for the full order system. A
comparison of the frequency response (both gain
and phase) of the 18-th order reduced model (+6
uncontrollable rigid body modes) with that of the
full order system (46 controllable +6 uncontrollable
states) at the five nodes (8,17, 23, 34 and 39) is
shown in Fig. 6. At these five sensor locations, the
frequency response of the reduced order model
matches very well with that of the full order system
up to a frequency 5/rev. Considering that the
controller will be designed to reduce the fuselage
vibration at the excitation frequency of 4/rev, it can
be stated that in the frequency range of interest the
18-th order reduced model (+6 rigid body
uncontrollable modes) is an excellent approximation
to the 52-nd order full system.

3.3 Closed loop vibration control
Using the reduced order model and

following the disturbance rejection approach based
on factorisation theory, a controller is designed to
minimise the vibration in the fuselage. This
controller is incorporated in the feedback loop of the
full order system and the vibratory level of the
fuselage is calculated at all nodes. The results are
presented in the following.

Comparison of baseline and controlled
vibratory levels at all the 64 nodes is shown in Fig.
7. The arrows in the figure indicate the locations of
the five sensor locations. Node number 0 indicates
the c.g. of the gearbox. For the baseline
configuration, the peak vibratory level is 0.27g at
node location 33 and the lowest level is at node 57
with a value of 0.00017g. With closed loop control,
the peak vibratory level is reduced to 0.036g at node
33. Tough closed loop control reduces the vibratory
levels in the fuselage substantially, there is an
increase in vibratory response at the tail portion. For
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example, at node 64, the vibratory level is increased
from a baseline value of 0.0032g to 0.0145g. The
reason for this increase can be attributed to not
having a sensor in the tail portion. It is interesting to
note that with closed loop control, vibratory level at
the gearbox c.g (node 0) is reduced from a baseline
value of 0.06g to 0.019g. This observation seems to
be contrary to the vibration reduction schemes using
open loop control (Refs. 6 and 8), where a reduction
in fuselage vibration increases the vibratory level in
the gearbox (or hub). In the present case of closed
loop control scheme, the vibratory levels at both
fuselage and gearbox are reduced simultaneously.

The frequency response of the gain for the
uncontrolled and the controlled full order system at
the five sensor locations are shown in Fig. 8. It can
be seen that the controller is effective in reducing
the vibration not only at the desired frequency of
4/rev but also in the neighbourhood of the desired
frequency, indicating robustness of the control
scheme.

4.  Concluding remarks
Application of balanced realisation based order

reduction has been carried out to obtain a reduced
order model for a coupled gearbox-flexible fuselage
dynamical system. Using the reduced order model, a
closed loop controller is developed using
disturbance rejection approach based on internal
model principle and stable coprime factorisation
theory. Most important conclusions of this study are
summarised below.
•  A 46th order controllable subsystem of the

coupled gearbox-flexible fuselage model is
reduced to an 18th order model. The frequency
response of the reduced model closely matches
the full order system in the frequency range of
interest.

•  The controller designed for the reduced order
model provided a substantial reduction in
fuselage vibratory levels. The controller is
found to provide vibration reduction not only at
the desired frequency but also in its
neighbourhood.

•  Contrary to open loop control, it is observed that
closed loop control reduces not only fuselage
vibration but also the vibratory level in the
gearbox.
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Table 1: Data used for analysis
Reference quantities for nondimensionalisation
mb=65kg,   R=6m,   Ω =32 rad/sec

Nondimensional quantities
Ki =60.01, Ci =0.033, mF =33.846, mGB =4.615
IxxF =0.6838,  IyyF =2.735,  IxxGB = IyyGB =0.0171
Fz / (mb Ω2 R) = 0.0001

Fuselage c.m from nose of fuselage (origin):
  x =0.5632, y =0, z = 0.0833

Gearbox c.m from nose of fuselage (origin):
  x=0.5632, y = 0, z = 0.3333
Structural damping of fuselage elastic modes
βF =0.005
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Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5
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- - - - - Reduced Order System             ——— Full Order System

Figure 6 Comparison of Frequency Response of Full and Reduced Order Models
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Figure 7
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___   _  ___  _  Uncontrolled System          ___________   Controlled System

Figure 8 Frequency Response of Uncontrolled and Closed Loop Controlled Full Order System
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