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Abstract 

Starting from a critical analysis of HHC (an intrinsically 
sampling and hold type technique), the problem of counterbalancing 
vibrations in helicopters is embedded in a continuous time setting. In 
this way, one can assess the performance of the HHC compensator 
and understand its lintitations. To improve performance, in this paper 
a continuous time controller based on observer concepts is proposed. 
The basic idea is to resort to a dynantic model to describe the effect of 
the swash plate commands on the hub force, and to enlarge the state 
of such a model by including a state-space model of the disturbance. 
Then, if one solves a state estimation problem by means of a suiiable 
observer, one also obtains an estimate of the disturbance. Such an 
estimate can be used to compensate for vibrations. Compared to the 
low flexibility of the HHC regulator, the new Observer Based 
Controller (OBC) looks better in terms of robustness, time 
responsiveness and frequency constraints. 

1. Introduction 

The problem of reducing the helicopter 
fuselage vibrations by means of active control 
techniques has received considerable attention in 
the last decade, see e.g. [1]-(4]. The most common 
approach to reduce helicopter fuselage vibrations 
is the so called Higher Hannonic Control (HHC). 
The basic rationale of HHC is to superimpose to 
the pilot's inputs (swash plate commands) a small 
signal consisting of a sinusoid whose amplitude 
and phase are designed so as to counteract the first 
and most important harmonic of the vibration. As 
is well known, [5], due to harmonic filtering 
effects, such a harmonic is the N!rev one, where N 
is the number of blades. 

HHC controllers are intrinsically sampling and 
hold type controllers where the control action is 
decided on the basis of a sinusoidal regime 
approach; as a consequence, notwithstanding the 
huge literature on HHC, it is still difficult to say 
on which controller parameters one could act to 
improve some basic dynamic properties of the 

control system, such as: 

1. Stability and robustness 
Is there a guaranteed stability margin against 
ntismodellings or modifications in the system 
dynamics? 

2. Disturbance rejection time 
How quickly can the control system 
counterbalance the effects of amplitude and/or 
phase variations in the vibration harmonic? 

3. Non-interaction 
To what extent does the active control system 
interfere with the pilot's action? 

To gain insight into the stability issue, in [6] 
the HHC approach is embedded in a continuous 
time domain dynantic context. In this framework 
the performance of HHC can be assessed via 
classical control theory methods. It is shown that, 
in most cases, HHC based control systems are 
asymptotically stable; however, due to the 
particular structure of the HHC compensator, 
there is an intrinsic lack of flexibility in the 
control scheme, so that it seems difficult to find a 
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way of improving the dynamic performances of 
the overall system within the HHC context. 

The mentioned limitations may be overcome if 
a continuous time approach is adopted from the 
very beginning, by resorting to suitable design 
techniques for the rejection of periodic 
disturbances. This has the advantage of giving 
transparency to the control design methodology. 

Along this route, a dynamic model of the 
influence of the swash plate commands on the 
vibrations is preliminary needed. Such a model 
can be obtained starting from the basic dynamic 
equations of the helicopters world, see e.g. [7]. or 
by (black-box) system identification techniques 
[8]. 

As for the control strategy, a possibility [9), 
[ 10), is to resort to optimal control methods with 
frequency shaping: by emphasizing the 
disturbance frequency in the performance index, 
the designed controller can provide disturbance 
rejection. However, this approach requires the 
availability of all the state variables of the rotor 
model and, if an accurate rotor model is used, 
there are so many state variables that the 
requirement to measure all of them looks 
demanding. 

In this paper, we consider the problem of 
reducing the mast total vertical Nlrev vibration by 
acting on the collective command. The basic 
control design strategy we propose is to resort to 
an observer to estimate the hidden vibration from 
the mast force measurement, and then to 
compensate for vibrations by adding a suitable 
countervibration term to the blade pitch 
command. We will call our controller Observer 
Based Control (OBC) system. Interestingly 
enough, the OBC controller can be given a form 
which presents structural analogies with the HHC 
scheme. This observation turns out to be useful to 
reinterpret the HHC philosophy, and to put it in 
contrast with the observer based rationale. The 
main conclusions which can be drawn are 
summarized as follows: 

• In the HHC context only a single frequency 
representation of the system is considered. On 
the opposite, the complete system dynamics is 
taken into consideration in the 0 BC approach. 
This enables one to probe the control system 
characteristics and evaluate its stability and 
robustness degrees. 

• By tuning the loop gain of the 0 BC system, 
one can control the disturbance rejection time . 

• The OBC action is confined to a narrow band 
around the N/rev frequency, so that the 

remaining frequencies are subject to minor 
modifications only. As a consequence, the 
pilot's commands (acting at low frequency 
only) are not perturbed by the active control 
signals. 

1.HHC 

2.1 The HHC approach 

The classical HHC algorithm is based on a 
"quasi steady" model of the rotor: it is assumed 
that the helicopter can be represented by a 
constant matrix T. This matrix relates the N!rev 
sin and cos components of the N!rev swash plate 
inputs to the sin and cos components of the :VIrev 

response of the helicopter. 

As is well known, the harmonic filtering effect 
implies that the vibratory loads transmitted from 
the rotor to the hub are characterized by a 
discrete-frequency spectrum. In particular, vertical 
forces contain the Nlrev frequency and its multiple 
integers. Nevertheless, in many practical cases the 
higher harmonics give neglectable contributions to 
the total vibration, so that the analysis can be 
focused on the Nlrev frequency only. 

In the sequel, we will denote by D.rot the rotor 
angular velocity and by D.~ND.rot the fundamental 
vibration frequency. The HHC approach is based 
on the following model: 

y ~ Tu +a (1) 

where y~[yc y,]' and u~fuc u,]' are vectors 
(phasors) containing the sin and cos components 
at frequency D. of the vertical hub force y(t) and 
the collective command u(/) respectively, while 
a~ [ac a,)' the baseline vibration and represents 
the vibration to be rejected with the HHC 
compensator. The (2x2) matrix T relating u andy 
is known as gain transfer matrix. 

The relationship between u and y is 
schematically as follows: the D.~ND.rot 

component of the swash plate CQilective command 
produces harmonics in the pitch angle variations 
at frequencies (N-I)D.ro~ ND.ro1 and (N+I)D.ror. 
In turn, due to harmonic filtering effects, these 
variations result in a D.~NO.rot countervibration at 
the rotor hub. 

For a practical use of model(!), the time axis 
is to be partitioned into discrete intervals of length 
t (typically 't'=2fLU) during which data y(l) are 
collected to be Fourier transfonned. Denoting by J: 
the sampled time index, model ( 1) is then given 
the discrete time form: 
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Fig. 1 

y,~Tu,+d, 

where 

(2) compute the new sinusoidal segment over 
[(k+ /)1. (k+ 2)1), etc. 

kt 

JICOS lJ.t] 
sin D.t y(t)dt (3) 

(k-l)t 

is the vector containing the Fourier 
components at frequency n of the measured 
vibration, estimated over the last interval [(k-/)'t, 
k't). Analogously, uk is the vector of the sin and 
cos components of the actual swash plate 
movement at the same frequency. 

In order to simplifY the subsequent analysis it 
is convenient to rewrite Eq. (2) in an equivalent 
form: 

y,~ T(u, +d) 

where an d~T1 d. 

(4) 

Eq. (4) is at the root of the HHC approach: if T 
is known or suitably estimated, [11], and y, is 
evaluated over the last rev period from y( ·) by 
Fourier transform techrtiques, the term (-u,+T"Iy,) 
can be seen as an estimate d, of the disturbance 
phasor over the last period. To achieve the 
objective of zeroing the vibration at the hub over 
the subsequent rt!V period, the natural cure is to 
take: 

(5) 

By this way, should disturbance d keep 
constant when passing from (k) to (k+ 1), Yk+ 1 
would be zeroed. Notice that ( 5) is equivalent to 
updating the control action as follows: 

'iic(t) = [cosD.t sinD.t]·ut+1 

for t E [k't.(k+ /)'t) (6) 

This sinusoid is hold until the time instant 
(k+ l)'t, when all the procedure is resumed to 

In conclusion, HHC is just a Generalized 
Sample and Hold Function (GSHF) strategy [12]: 
in place of the classical Zero Order Hold (ZOH) 
strategy (consisting in keeping u constant over the 
sampling interval), in GSHF u is generalized to be 
any periodic function. 

The overall HHC control scheme is graphically 
depicted in Fig. 1, where blocks FT and FT1 

represent Eqns. (3) and (6) respectively. 

2.2 HHC revisited 

In [6] the HHC approach is embedded in a 
continuous time domain context as briefly outlined 
in the following. 

In view of Eqns. (3), (5) and (6), it is possible 
to write: 

kt 

JI
COS lJ.t] 
sin D.t y(t)dt 

(k-l)t 

kt 

JICOS lJ.t] 
sin D.t y(t)dt 

(k-2)t 

K't 

'['I JICOS lJ.t] 
~ -- I I 

't sin D.t y( )d 

and then 
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{ 
T-1 lr cos Dl] } 

uc(t) ~ [cosDJ sinD.!). --:;-- LLsin D1 y(t)dl 

IE (k1:, (k+ /)1) (7) 

By simply eliminating the "sample and hold" 
structure implicit in Eq. (7) one gets 

rotor dynamic model; 

up( f) is a signal which takes into account 
the pilot's action. 

2.3 A critical view on HHC 

{ 
r-1 JI' cos nr] } uc(t) ~ [cos nr sin Dl). - . ,-,. y(t)dt 
't Sin lo.Ll 

The interpretation of HHC given in Fig. 2 is 
enlightening from the control theory viewpoint. 
From it, the following main points are in order: 

• Disturbance rejection 

The HHC regulator provides asymptotic 
rejection of the n component of the 
vibration. This is due to the presence of two 
poles in :!;iQ in the regulator, which result 
in two zeros at the same frequency in the 
closed loop transfer function relating the 
disturbance to the output. 

Vt 

In [6) it has been shown that the so-<:omputed 
control uc(t) can be seen as the output of a 
continuous time-invariant regulator fed by y(t) 
and characterized by a transfer function 

- 2 (as+~Q) 
R(s) ~ 1: i' + n2 

where, if 

so that 

1 r a -b J 
T-l = ;;+i;'i,_ b a 

(8) 

(o:.~) are exactly the elements of the first row 
of matrix T-l 

The overall control scheme can then be 
represented as in Fig. 2, where 

G(s) indicates the transfer function of the 

d(t) 

+ 

A 

uc(t)•- d(t) 

sin nt 

• Disturbance rejection time 

The HHC scheme does not provide any 
tuning knob to control the length of 
transients in disturbance rejection. 

• Non interaction 

Apparently, there is no guarantee that the 
HHC regulator does not interfere with the 
pilot's action. Indeed, the guidance 
commands involve the low frequency 
helicopter dynamics, so that a non-in
teracting regulator should not affect the 
behavior of the machine at these 
frequencies. On the contrary, the insertion 
of regulator (8) in the control loop (Fig. 2) 
causes a modification of even the gain of 

G(s) 
y(t) 

R(s) 

Hg. 2 
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Disturbana 
11IO<Ul 

u.p(t) + u(t) +~ d(t) 'i -----, y(t) 

___;{\r-rt-~~,______.,~ I G( s) !-----,-----.. 
A 4+1 +~ I 

uc(t)--d(Q I '-----~ 
~+--------------------~~ 

~ 

I '- :}j.,_J-----'" " w 
I - ""''Q ~ ~b-~:~ __ ;..: 1--------' 

I OBC Controller 

Fig. 3 

the transfer function between the pilot's 
command and the total vertical force at the 
hub: such a gain changes from gop<• =G(O) 

G(O) , 
to gc,_a= 1 +G(O)R(O) (observe that, if, as 

it often happens, G( 0) assumes large values 
then g<Wua becomes approximately equal to 
I ;R(O) which is almost independent of 
G(O)!). 

3.0BC 

3.1 Active control of vibrations bv OBC 

Consider now a dynamic model of the rotor in 
a state-space form: 

{
r(f) =A x(l) + B u(f) 
}'\1) = C x(l) + D u(l) + Ci(1) 

(9) 

where (A.B. C,D) are matrices of dimension 
(nJ(II), (nXI), (lxn) and (lxl) respectively. The 
pair (A,C) is supposed detectable, (A,B) 
stabilizable and matrices B and C with full rank. 
Moreover, we assume that (A,B,C,D) has neither 
zeros nor poles in :!;iO. Disturbance Ci(l) is 
modeled as a generic sinusoid at frequency n with 
unknown amplitude and phase. 

Notice that, coherently with the HHC model 
(2), the disturbance is supposed to act on the 
system output However, here too it is convenient 
to consider a model similar to ( 4) where a 
sinusoidal disturbance acts on the system input: 

{
:i:(l) =A x(l) + B ( u(l) + d(l)) (lO) 
}'\1) ~ C x(l) + D ( u(l) + d(l)) 

The first step in the design of the controller 
consists in providing a dynamic model of the 
disturoance d(l). One possibility is to describe it as 
the output of a second order autonomous system 
with two imaginary poles at ±jO: 

{
i(f) = J z(l) 
d(I)=H z(l) 

where 

;{_~ ~2 } H=[l 0] 

(II) 

( 12) 

Eqns. (I 0) and ( ll) give rise to the augmented 
system with state [x(l) z(l)], Such a state can be 
estimated by a suitable observer. Denoting by 

[ x(t) z(t) l the estimate of the augmented state, 
the typical structure of an observer is: 

iu> o J U(l) + o u(l) + AJ e(l) {[
;(I>]{A BH]rX(1)] [B] [Ll 

e(l) = (y{I)-C X( I)· D u(l) • Da(l)] 

(/(I) • H Z(t) 

(13) 

L and II. are the observer gain vectors (of 
dimension (nxl) and (2xl) respectively) and play 
the role of design~ in the controller, as 
will be shown later. 

A 

Once an estimate d(t) of the disturbance d(t) is 
available, it can be subtracted from the pilot's 
action to caned the disturbance effect: 

A 

u(l) = u/1) • d(l) ( ~~) 
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The block diagram of the resulting control 
system is depicted in Fig. 3. Eqns. (13) and (14) 
together are a state-space description of the 
resulting control law. Laplace-transforming all 
terms in the above equations, (with zero initial 
conditions), one obtains: 

U(s) ~ {I+H(sf..J)· 1A(l-C(sl-A+LC)"1L)D+ 

C(sl-A + LC}1 B]} U,<s)+ 

-H(sf..J)·1 A[I-C(sl-A + LC)· 1(s)LJY(s) (15) 

sA [ N(s) D(s) J 
+ s'+O'+ sA.f!_(s) N(s) U(s)- ,V(s/(s) 

N(s) 

( 17) 

where 

N(s) = /1s" + l,s"·' + .. + /" 

If one makes the assumption that the system is 
improper (order of N(s) equal to order of D(s)) 
and minimum phase (all the zeros of N(s) have 

Filter F(s) 

0.9-

0.8~ 

0.7-

" 0.6-

~ 0.5-"§-
~ 0.4-

O.J-

0.2:... 

0.1-

lli• 

Now, let 

G(s) = ~ ~ C (sl-A)·1 B 

:i. 
I. 

I 
I".:. 

, .. 
/· .. ' 

/_./ 

j()-l !(}l "" 
w {rad] 

Fig. 4 

be the rotor transfer function, and select the 
observer gains as: 

A= (0 A]' AER 

L= [11 12 ... /"] 

t,eR, i=Ln (16) 

The structural zero introduced in the 
expression for A is necessary in order to achieve 
non interaction with the pilot's conunands (Sect. 
3.5). 

Then, after some computations one can show 
that Eq. (15) can be given the following form: 

U(s)= U,(s) + 

tO' 

negative real part), then it can be proven that it is 
possible to select parameters {I,} so that 

N(s) = N(s). 

Then, Eq. (17) can be rewritten as 

U(s)= U,<s) + F(s) [ U(s)- G~s) Y(s)] 

where 

SA 
F(s) = s'+ SA+ O' 

3.2 OBC versus HHC 

( 18) 

(19) 

OBC and HHC present strong analogies. 
Indeed, compare expression (18) of the OBC with 
Eq. (5) of the HHC. In both cases, the expression 
in brackets is made up of two terms: the ftrst one 
is obtained by filtering the output y dlrough the 
inver>e of the rotor model (cithet- 7'"1 or G{s)'1). 

The second one is simply the control itself (which. 
in the HHC context, is computed by Fourier 
transforms over the prcce.d.i.ng rev period). The 
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main structural difference between the two 
equations (apart from the guidance signal U/s) 
which has been introduced in Eq. (18)) is the term 
F(s), given by Eq. ( 19). This is the transfer 
function of a narrow band filter centered on the 
frequency Q (Fig. 4). Since F(ii1)= I, a sinusoid at 
frequency Q is transformed, by F(s), into a 
sinusoid with the same frequency, amplitude and 
phase. If the filter is given a non-purely sinusoidal 
inpu~ the regime output will contain the input 
component at frequency n, while all other 
harmonics will be strongly reduced. 

Parameter/.. plays a double role in determining 
the characteristics of the filter F(s). On one hand, 
/.. is directly connected with the responsiveness of 
the filter: suppose, e.g., to select 

{
0 I< 0 

i(l)= A sin(ili) t ~ 0 

as input of F(s). The corresponding output will 
be 

{
0 I< 0 

o(l)= A sin(ili) + k e·Wl [sin (O't + '!')] I~ 0 

where Q'= \)n2-/..214 (20) 

with k and 'V suitable constants. Therefore the 
response transients are characterized by an 
exponential decay with time-constant 2/A. Large 
values for /.. result in rapid filtering transients. On 
the other hand, Fig. 4 reveals that the band of the 
filter enlarges as /.. increases, so that the 
attenuation effect of frequencies different from n 
is reduced. 

Disturbance 
t7lOdel 

u(t) d(t) 

HHC scheme, through the cascade of the 
Fourier Transform block (Fl) and the Inverse 
Fourier Transform block (ff 1). As a matter of 
fa~ also the block (FT+ff1) of Fig. 1, extracts 
from an input signal tile component at n, while 
cancelling all other harmonics. 

In view of the preceding observation, one can 
go further in comparing the continuous time HHC 
compensator structure (Eq. (8)) with tile OBC one. 
The apparent asymmetry between Eqns. (5) and 
(18) is due to the fact that the classical continuous 
time HHC regulator leaves out the necessary link 
between the discrete time and the continuous time 
world. Taking into account such an interface, 
(FT+FT-1), it surprisingly comes out that the two 
algorithms, though stemming from very different 
frameworks, are characterized by the same 
functional blocks. This can be graphically 
observed in Figs. 1 and 5. 

3.3 Stability 

With reference to the continuous time 
interpretation of the HHC algorithm. given in [6] 
and here outlined in Sect. 2.2, the dynamic 

behavior of the feedback compensator is examined 
by looking at the root locus of the closed-loop 
system. In [6]. the conclusion is drawn that HHC 
provides a high gain margin <= 90°). However. 
this algorithm is based on the assumption that 
input and output of the helicopter rotor are linked 
by a purely algebraic relationship (the matrix 7). 
If just part of the dominant dynamics of the rotor 
is taken into account, there might well be poles 
driven unstable by the feedback regulator, as 

y(t) 

G(s) 

-G(s) 
-1 

OBC Controller 

Fig. 5 
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schematically represented in Fig. 6. 

Let's now analyze the stability of the control 
system based on the OBC controller. From Eq. 
(18), one can derive the relationship linking U(s) 

to U/s) and Y(s): 

U(s)~P(s)UP(s)- R(s)Y(s) (21) 

where 

s4 A.s H12 

P(s) ~ s' + !1' 

and 

can be applied to this case too, to conclude that, as 
A increases, the poles of the feedback system move 
from the open loop ones (located at :±:/!1) into the 
left half plane with an angle of about 180°. Even 
more so, one can see that the closed loop poles 
are stable for any gain value. This fact depends 
primarily on the cancellation between the model 
and its inverse transfer function. 

The Nyquist plot of L(s) will present a phase 
jump of 180° (introduced by the two imaginary 
poles) approximately at 90°; this has the direct 
consequence of a good phase margin, so leading to 
a more than acceptable robustness degree in 

A.s I 
R(s} ~ s2 + !1' G(s) 

(22) terms of phase margin. 

The block P(s) is just a filter modifying only 
the n frequency content of the pilot's action: 

System dominant "- · . 
poks " 

In conclusion, the phase margin propenies 
claimed for the HHC scheme on the basis of 
considerations relative to a "sinusoidal regime" 

Fig. 6 

considering that such a frequency is very high 
with respect to the low frequency dynamics of the 
pilot's commands, this should not be seen as a 
significant modification of the u pC t) signal. 

Let us now focus on the effect of Y(s) on U(s). 
From Eq. (21) it follows that R(s) is the regulator 
producing the feedback term added to the pilot's 
command in order to achieve the rotor control 
action. In view of (22), the open loop transfer 
function 

L(s)~G(s)R(s) 

simpiy becomes: 

As 
L(s) ~ s2 +!1' 

The root-locus type analysis c.arried out in [6] 

model of the rotor, are in fact valid for the OBC 
feedback system. 

As for the gain margin, it is consequent to the 
root locus behavior that, whatever large value is 
assumed by parameter A, the closed loop poles 
both move in the left half plane so giving a 
limiting infinite gain. 

3.4 Disturbance refection time 

In Sect. 3.2 it has been outlined how parameter 
A affects the rapidity of the filter F(s) in 
recovering an input sinusoid. Not surprisingly, 
this nice propeny reflects on the behavior of the 
closed loop system in rejecting tlle harmonic 
disturbance. 
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As a matter of fact, suppose that u/1)~0 and a 
sinusoidal disturbance suddenly enters the system 
"on its output", i.e.: 

- { 0 d I ~ - -(/ A sin(lli+'f) 
I < I 

I :0: I 

then, recalling that the closed loop transfer 
function between d(t) and y(t) is 

s' + Ql 

GJ,.(s) = s' + ),s + Ql 

the regulator output results 

y(t) = k e -W2 (cosO'!+ ii/) 
where k and iif are suitable constants and 0' is 

given by Eq. (20) _ Therefore, in the closed loop 
case too, the disturbance rejection transients are 
characterized by exponential decays with time 
constants 2\A: the higher the value of A the faster 
the disturbance rejection action. 

3.5 Non Interaction 

As outlined before, an important feature of 
active controllers is that their action must not 
interfere with the pilot's commands, which involve 
the low frequency dynantics of the system. 

In tltis connection, recall that the control 
action up)= - d(t) is added to the pilot's action 
u (I) to produce the actual swash plate command 
u(t) (Fig_ 3). Therefore, the "non - interaction" 
requirement is equivalent to imposing that uc(t) is 
such that signals u(t) and u (t) have the same low 
frequency behavior. This P property is indeed 
enjoyed by the OBC regulator of Eq. (22). As a 
matter of fact, the zero in the origin, which 
automatically appears in R(s) thanks to the 
zeroing of the first element of A (see Eq. (16)), 
makes the regulator act as a high pass filter, thus 
guaranteeing that the control action has poor 
content at low frequencies. 

In particular, differently from what happens to 
regulator (8), the gain of the transfer function 
between the pilot's command u;<t) and the mast 
force y(t) does not change when switching from 
an open loop to a closed loop configuration. 

3. 6 Generalizations 

Among the assumptions underlying the 
analysis above, we underly the following two: 

i) Disturbance with a single harmonic ; 

ii) Function G(s) improper and minimum phase. 

The case of multi harmonic disturbances can 
be simply faced by considering more complex 
models of the form given in Eqns. (11) and (12), 
where d(t) could be a sum of sinusoids at different 
frequencies. This would lead to regulators 
characterized by more than one couple of 
imaginary poles. 

If assumption ii) is not met with, then the 
cancellation philosophy behind the simple OBC 
design technique discussed above cannot be 
applied any more. The observer parameters can 
then be tuned by resorting to optimal control 
techniques, as discussed in [ 13]. 

Last, but not least, a few words on the S/SO 
character of our analysis. This is due to the fact 
that only the collective command was taken as 
control variable, and only the force at the rotor 
hub was considered as controlled variable. 

A natural generalization concerns the input 
variable: better performances are obviously 
expected if the cyclic command is also used. 
Moreover, measurement points distributed along 
the fuselage could be considered in place of a 
unique measurement at the mast only. This would 
lead to a Multi Input Multi Output (M!MO) 
model. In tltis connection, it is worthwhile noting 
that, notwithstanding the obvious increase in 
computational complexity, the OBC approach, 
which originates from a state-space analysis. does 
not suffer of the passage from the S/SO to the 
M!MOcase. 

In tltis case, as well as in the other ones 
mentioned above, the design of the observer can 
be dealt with by means of optimal filtering theory 
(Kalman Filter). It is worthwhile mentioning that 
the above presented OBC approach leads to a non 
standard Linear Quadratic Gaussian (LQG) 
control problem. In [13], the theoretical approach 
to the solution of such a problem is addressed in 
some existing techniques to counterbalance 
periodic disturbances are revisited and enhanced 
in order to concisely present a complete method 
for incorporating disturbance rejection capabilities 
in optimal controllers. 
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