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Abstract 

The aerodynamics of acrofoils performing unsteady 
motions is important for the design of helicopter rotors. 
In tl1is paper numerical solutions of the Reynolds 
averaged Navicr-Stokcs equations are used to 
investigate the Howftcld around an aerofoil performing 
combined translation-pitch oscillations. Computed 
results arc compared with suitable experimental data for 
a NACA 0012 aerofoil undergoing both inplanc and 
pitching oscillations in transonic flow, generally 
reasonable agreement is found between the 
computations and experiment. In addition the results of 
calculations performed for cmnbined translation
pitching acrofoils are compared with those obtained for 
the individual motions. 

Introduction 

The prediction of the aerodynamic phenomena 
associated \Vith helicopters in forward flight presents a 
significant challenge for computational fluid dynamics. 
The rotor fiowt1eld is one which is dominated by 
unsteady effects arising principally as a result of the 
comPlex time dependent motion of the rotor blades. 
Despite significant advances over the last decade the 
routine solution of the Reynolds averaged Navicr
Stokcs equations for problems of this level of 
complexity is beyond the current capability of 
computational fluid dynamics. In order to achieve a 
bcltcr understanding of the dominant physical processes 
it is reasonable to study the aerodynamics of aerofoils 
which undergo representative motions. In this respect 
the aerodynamic performance of aerofoils undergoing 
inplanc and pitching oscillations arc of particular 
interest. 

In l'cmvard !light the motion of the rotor blade in the 
plane of the rotor disc can be represented by 
longitudinal oscillations. Maresca, Favier and Rcbont(t) 
and Gursul_, Ho and Lin('2,J,•I,S) investigated the influence 
of rdaHvdy low amplitude longitudinal oscillations at 
nxecl angles of incidence. In general only weak 
Lmstcnr1y effects were obsmved for angles of incidence 
below the static stall but when the static stall angle of 
attack was exceeded dynamic stall phenomena usually 
associated with pitching aerofoils were obsctvcd. For 
larger amplitude longitudinal oscillations Krause and 
Schwcitzcr(li) have demonstrated that inplanc motions 

c'm play an important role in the development of the 
fiowfield for angles of attnck below that of static stall. 
Morinishi and Muratu<7

l have presented solutions of the 
incompressible Navier-Stokes equations for oscillating 
<lcrofoils at high angles of attack in laminar now. 

The cxperlrnental investigations mentioned above have 
mainly demonstrated the influence of inplane 
oscillations at vety low free stream Mach numbers and 
high nngle of attacks. To the authors' knowledge no 
detailed investigations have been carried out for the 
corresponding motion in the transonic flow regime. 

Solutions of the Euler equations for a NACA 0012 
aerofoil undergoing inplane oscillations representative 
of helicopter fonvard flight were presented by Lerat and 
Sides1'l for compressible now conditions. Their 
calculations showed good agreement with three 
dimensional rotor test data. Habibie, Laschka and 
Weishaupl1'l and Lin and Pahlke1'0l have also presented 
solutions of the Euler equations for inplane oscillations. 

The use of the Euler equations to model helicopter 
rotors in high speed forward flight is questionable due 
to the increasing importance of shock-boundmy layer 
interactions in the development of the unsteady 
flowt1eld as the helicopter rotor approaches its 
maximmn advance ratio. Shaw and Qin° 1

) have 
recently presented the results of calculations performed 
using the thin layer Navier-Stokes equations together 
with the Baldwin-Lomax turbulence model. 
Comparison of the computed results with three 
dimensional experimental data is generally good 
provided that the shock-boundary layer interactions do 
not cause large scale separations. 

The aerodynamics of aerofoils in pitch have received 
considerable attention due to the importance of such 
motions in aeroelastics and dynamic stalL Calculated 
results obtained using the Euler equations for standard 
AGARD test cases have been presented by Gaitonde1'2l, 
Badcock"l, Richter and Leyland1"l and 
Paraschivoiu05

l. The calculated results-show a high 
level of consistency when compared with one another 
but generally only fair agreement is found when 
comparison is made \Vith experiment. 

The investigation of combined translation-pitch 
oscillations has largely been confined lo incompressible 
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flow. Favier ct al06
'
17

) have presented experimental 
measurements for a NACA 0012 aerofoil. For moderate 
reduced frequencies and amplitudes velocity variations 
were found to be domimmt when the fluctuations were 
in phase, while for out of phase motions incidence 
variations dominated the development of the flow. For 
angles of attack through and beyond the static stall 
angle of attack the influence of coupling incidence and 
velocity fluctuations was found to be more complex. 

The use of analytical methods to predict the influence 
of combined pitching and translation oscillations was 
reviewed by Van der Wall and Leisehman1181 

Expressions for the lift transfer function were obtained 
for incompressible flow which show good agreement 
tvith low Mach number Euler calculations. Numerical 
results obtained using the Navicr-Stokes equations have 
been presented by Pascazio ct al1191 which capture the 
salient features of the unsteady flowficld. 

In the present work a l1nitc volume method based upon 
Oshcrs flux difference splitting is used to solve the 
compressible thin layer Navicr-Stokes equations for the 
transonic flow around aerofoils undergoing inwplane and 
pitching oscillations. The method has been used to 
study the unsteady aerodynamics of a NACA 0012 
acrofoil at flow conditions representative of the high 
speed fonvard flight of helicopter rotors. Results of 
calculations performed for a NACA 0012 aerofoil 
undergoing inplanc and pitching oscillations are 
compared with experimental measurements. In addition 
the results of combined translation-pitch oscillations arc 
compared with the individual motions. 

Governing Equations 

The Navicr-Stokes equations express the conservation 
of mass, momentum and energy and may be written for 
curvilinear co-ordinates as, 

80 i!(E - E ) 3(F. - F) _:::::_ + I !' + I !' 0 (l) 
Dt u; Or! 

in ·which Q is the vector of conserved variables, Ei and 
Fi arc the convective flux vectors and Ev and Fv arc the 
viscous flux vectors in the S and 11 directions 
respectively. 

In the current worlz the thin layer form of the Navier
Stokes equations arc solved. Under the thin layer 
approximation derivatives in the tangential direction 
arc neglected in the viscous flux terms. The viscous 
flux vector in the S -direction is neglected and the 
remaining terms in Equation (1) arc given by, 

[
pU ] [pV ] puU +sxP puV +11xP 

E ~ ,F, ~ 
' pvU +s,P pvV +11,P 

U(e+P) V(e+P) 

(2a) 

0 

(2b) 

here, 
2 2 

(1.1 = llx + "Yly 

a, ~s!+s; 

and p, u, v, P, c, Re, Pr are density, Cartesian 
components of velocity, pressure, speed of sound, 
Reynolds number and Prandtl number respectively. U 
and V are the contravariant velocities calculated from, 

u ~ s.," +s,v 

V = 11.,Jl + 1lyV 
(2c) 

In order to represent tlw effects of oscillations in botl1 
translation and pitch Equation (1) is extellded for 
arbitrarily moving bodies in the following manner. 
Consider the one dimensional continuity equation, 

iJp o(pu) 
-+--~o 
Dt iJx 

(3) 

Integrating for a control volume whose boundaries 
move over time we obtain, 

(4) 

After differentiation of tl10 first tetn1 with respect to 
time and some furtlwr m;:mipulation Equation (4) may 
be rewritten in the following form, 

J x(<,) x(<,) 3 ( l ) 
!.._ f p<LY + f .;,o U- <X dx ~ () 
dt x(t,) x{l,) Dx dt 

(5) 

· l.ldx.tl 1· 111 W UC l -IS lC VC OCitY with which the control 
dt . 

volume surface moves, referred to as the grid velocity. 
Similar results follow for the momentum and energy 
equations. 
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The governing equations may therefore be rewritten for 
arbitrarily moving bodies by replacing the velocity in 
the convective flux terms (Equations (2a)) with the 
relative velocity of the fluid with respect to the moving 
grid. The convective flux vectors become, 

[

pU l pttU +~xp 
E.= 

' pvU +C,,P 

U(e-1-P}+C,,P 

(Ga) 

[

pV l puV +YJ_,P 
F:::: 

1 pvV + 11yP 

V(e+ P) +11,P 

in which the contravariant velocities arc now calculated 
from, 

U "( dx) "( dy) =s. u----.· +s. v--
·' dt J dt 

(Gb) 

( dx) ( dy) v = 11.-.: ll- - + 11y v - ~ 
dt dt 

Numerical procedure 

Osher's !1ux difference splitting method is employed for 
the spatial discretisation of the convective flux terms, 
Equations (Ga). Higher order spatial accuracy is 
obtained using Ml!SCL interpolation together with a 
flux limiter. The viscous terms arc discrctiscd using 
central differences. The algebraic turbulence model 
proposed by Baldwin and Lomax is used to provide a 
turbulent contribution to the viscosity. 

Arter spatial discretisation the governing equations arc 
reduced to a system ot' ordinary differential equations 
which arc integrated in time using a first order Euler 
implicit scheme. One implicit step of the method can be 
·written as, 

(7) 

DE. DF 
in which --' and -' nrc the inviscid nux Jacobians in 

DQ iJQ 

I < I 1· . . I I DF,,. I t.1e s- anc 11- c trectwns rcSf)CCttvc y anc -Is t lC 
- DQ 

viscous flux Jacobian in the 11-dircction. The flux 
Jacobians arc calculated using analytical expressions. 
Turbulent contributions to the nux Jacobian arc 

neglected because of the difficulties posed in linding 
analytical expressions from the Baldwin-Lomax model 
which exhibit a sparse stn1cture. 

Equation·(?) represents a sparse, system of linear 
equations of the form, 

IAI{x} = {b} (8) 

·which can be solved using cor~jugate gradient methods. 
In this work restarted GMRES 1201 is employed. The 
system of equations represented by Equation (8) is 
g~ncrally ill-conditioned which has severe 
consequences for the convergence of coqiugate gradient 
methods. 

In order to improve the condition of the system matrix, 
and hence the convergence behaviour of the linear 
solver, preconditioning is required. We seek a 
preconditioning matrix which when used to pre
multiply Equation (8) results in a new system of linear 
ec11mtions, 

[C][AI{xHCI{b} (9) 

which is more amenable to solution by iterative 
techniques. The pre-conditioner used in this work is 
based upon ADI factorisation. Badcock and Richards <21

) 

have demonstrated that such an approach provides a fast 
and effective pre-conditioner for the two-dimensional 
Navicr-Stokcs equations. 

The method described in the proceeding 
sections has been applied to the calculation of steady 
and unsteady flows for several aerofoils. In order to 
help establish confidence in the present numerical 
method the results of steady state computations for the 
RAE 2822 acrofoil arc presented. The ability of the 
method to predict unsteady flows is demonstrated by 
comparison of calculated results with experimental 
measurements for the unsteady flow around a NACA 
0012 aerofoil undergoing both inplane and pitching 
oscillations. Finally calculations of the unsteady 
nowlield around a NACA 0012 aerofoil undergoing 
combined translation-pitch oscillations arc prcsctltcd. 

Steady flow around RAE 2822 aero foil 
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Steady state calculations were performed for the RAE 
2822 aerofoil at a Mach number of 0.73, a Reynolds 
number of 6.5 million and an angle of attack of 2.79 
degrees in order to establish the overall accuracy of the 
numerical method. Calculations were performed on a 
relatively coarse grid having 159 grid points in the 
strcamwisc direction (100 on the aerofoil surface) and 
48 grid points in the normal direction. CcJlculated 
pressure distributions arc compared vvith the 



experimental data of Cook ct al1221 in Figure (1). The 
computations show good a.£,'!"cemcnt with cxpetiment 
over the entire aerofoil, although the location of the 
shock wave is slightly downstream of tl1at observed in 
the wind tunnel tests. The calculated lift coefficient of 
0.791 is in fair agreement with the experimental value 
of 0.803. 
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Figure (1) RAE 2822 Acrofoil: 

« = 2.79',M,, = 0.73,Re, = 6.5 million. 

NACA 0012 aerofoil with in-phme motions 

The normal component of Mach number for a 
rotor blade section located a distance r :from the axis of 
rotation is given by, 

(12) 

in which R is the radius of the rotor blade, Mt;, is the tip 
Mach number in hover, ~l~ is the ratio of forward flight 

. [}! 
speed to the rotational velocity, i.e. ~~ =---,and \)J - r 

·R·U,ip 

is the azimuth angle. Neglecting three dimensional 
effects Equation (12) provides a basis for calculating 
the aerodynamics of helicopter rotor blades using the 
in-plane motions of acrofoils. Under this approximation 
the rotational speed of the rotor blade provides a mean 

r 
flovv Mach number,- M,. , while the fonvard flight 

R 'I' 

·Mach munber can be represented by n grid velocity 
term, 

dx r M •. (k' .) - = - . 'L Slll . I 
dt R ''~' 

here, ~t· = R ~L and the non-dimensional frequency, 
r 

is obtained from, 

(!3) 

//'' 

k" = IJJC/ocal = IJJC/ocal = Clocal (!4) 
U 0 wr r 

Unsteady flow calculations have been performed for 
the NACA 0012 aerofoil on a fine grid containing 251 
nodes in the streamwise direction (200 on the aerofoil 
surface) and 96 nodes in the aerofoil direction, see 
Figure (2). In the remainder of this section results are 
presented for inp1ane oscillations described by, 

M
0 

= 0.5113, fl. = 0.5263, k' = 0.1976 

These conditions represent the Dow at !__ = 0.84 on t11e 
R 

rotor blade tested by Tauber et al1"J at a hover tip Mach 
number of 0.598 and an advance ratio of 0.45 . 

Fi!,,'ln·e (2) Detail of the Fine (251x96) Computational 
grid for NACA 0012 aerofoil. 

Figure (3) shows the development of the unsteady 
pressure distribution over the advancing side of the 
rotor disc, additionally results at azimuth angles of 30, 
60, 90, 120 and 150 degrees arc shown in Figure (4). At 
low azimuth angles the calculated Dowficld is 
dominated by a rapid expansion of the flow at the 
leading edge, this is a characteristic feature of the 
relatively blunt NACA 0012 aerofoil. As the free 
stream Mach number increases with increasing azimuth 
angle a region of high pressure gradient develops 
towards the trailing edge, this region grows in extent 
until eventually shock waves form on the aerofoil 
surface close to the mid-chord point. The shock waves 
then migrate towards the trailing edge grO\ving in 
strength. The maximum Mach number is achieved at 90 
degrees azimuth while the maximum shock strength is 
obtained at an azimuth angle slightly beyond 90 degrees 
as the Dow begins to decelerate. As U\C Dow decelerates 
further the shock waves move back towards the aerofoil 
mid-chord point decreasing in strength before finally 
disappearing. 

55.4 



The importance of dynamic effects can be demonstrated 
by comparing unsteady pressure distributions at 
symmetric azimuth '-mgles, i.e. azimuth angles which 
have the same instant<meous Mach number. For 
instance, comparing Figures 4(b) and 4(d) we observe 
dramatic differences, without and with a shock wave 
respectively. The influence of flow unsteadiness is 
further demonstrated when unsteady results arc 
compared with steady calculations performed for the 
same instantaneous Mach number. In Figure (5) such a 
comparison is made for azimuth angles of 60 and 120 
degrees. From this Figure we sec thal for the uHsteadv 
flovv shock strength is reduced when compared with th~~ 
steady solution, while for decelerating now dvnamic 
effects arc unfavourable. -

The flow physics which were expected have been 
reproduced qualitatively by the unsteady calculations. 
No corresponding experimental data has been found in 
the open literature and consequently the physical 
accuracy or the current method cannot be properly 
demonstrated. [nsteacl comparison is nwde between the 
calculated two dimensional results and experimental 
data obtained by Tauber ct. al(n) in helicopter rotor tests. 
Agreement between calculated and measured pressure 
distributions is generally good for cases in which there 
is no strong shock wave, sec for example Figures 
4(a),(b) and (c). At 90 degrees azimuth, Figure 4(c), the 
calculated shock wave c1ppears to be moderately weaker 
than that obsetved in the experiment and is slightly 
downstream of lhc experimentally determined position. 
Results at 120 degrees azimuth, Figure 4(d), compare 
poorly with experiment upstream of the shock wave. 
The calculated shock wave is more than 10<% of the 
chord length aft or that recorded in the experiment and 
is of mucl1 greater strength. 

In order to investigate the numerical accuracy of the 
results calculations \verc performed to dctcn~1ine the 
influence of time step and grid resolution. It was found 
that the current time step (corresponding to 0.25 
degrees azimuth per iteration) was acceptable. 
Comparison of calculations performed on the fine grid 
;md a coarser grid containing 153x4~ grid points show 
small differences, sec Figure (4), which arc associated 
with improvements in resolving the shock wave more 
accurately. 

NACA 0012 nerofoil with pitching motion 

Tl'-_: <Jbilit.y or the present numerical method to predict 
the unsteady nowficlds or acrofoils performing 
pitching oscillations has been investigated. In the 
present paper unsteady calculations arc presented for 
AGARD test case 512

·1) For this test <:>Jsc a NACA 0012 
aero foil is pitched harmonically about the quarter chord 
axis at a free stream Mach number of 0.755. The 
oscitlatory motion is described by, 

(15) 

in which a 0 = 0.016 degrees is the mean angle of 

attack, 6t" = 2.51 degrees is tlw amplitude of the 
oscillation and k=0.0814 is the reduced frequency based 
upon semi-chord. No artificial transition mc~hanism 
was utilised during the experiments, consequently 
calculations were performed with a fully turbulent 
boundary layer. 

The development of the unsteady flowficld with time is 
shown in Figure (8). The flovv can be characterised by 
the periodic appearance and disappearance of shoci.:: 
waves on the upper and lower surfaces. Initially at low 
incidences, weak shock waves exist on both tit~ upper 
and lower surfaces. As the angle of attack is increased 
the. upper sur1~tcc shock wave increases in strength, 
wh1lc that on the lower surhcc diminishes before 
t1nally disappearing. The shock wave on the upper 
surface continues to increase in strength and migrates 
towards the mid-chord position as the incidence is 
increased further. After the maximum incidence is 
achieved the shock wave on the upper surl~1ce begins to 
diminish in strength and move back towards the leading 
edge position. On the lower sur1~1ce a region of high 
pressure gradient develops over the aft region of the 
aero foil chord. As lhc angle of attack is reduced further 
this region gro\vs in extent until finally a shock wave is 
formed close to the 30'X, chord positi~n. The upper and 
!ower surface shock waves move in opposite directions, 
towards and ;_rway from the leading edge rcspectivcty, 
with decreasing incidence. The computed flowficld has 
been found to be almost symmetric, this can be 
demonstrated by close inspection of the curve of 
calculated normal force coefficient presented in Figure 
(G), and consequently the flow behaviour obsCivccl over 
the first half of the acrofoil motion is repeated in the 
second half of the cycle. 
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Calculated normal force and pitching moment 
coefficients are compared with experimental 
measurements in Figures (G) and (7). While the 
comparison between calculation and experiment is good 
for low angles of attack and during the upstroke 
agreement during the down stroke is disappointing. The 
differences observed between calculation and 
experiment for normal and pitching moment 
cocf11cients arc also evident when the calculated 
pressure distributions arc compared with experiment, 
sec Figure (8). In general the comparison with 
experiment is favourable. During the up stroke both 
shock position and shock strength arc well predicted 
while for the down stroke the shock is stronger and 
further forward than observed in the experiments. 

ll should be noted that while the calculations show the 
expected symmetry' between the nrst and second halves 



of the cycle (symmetry is expected due to the low 
amplitudes of the motion and proximity of the mean 
incidence to zero) the experiment does not. There are 
several possible explanations for this apparent 
diserep<mcy. Firstly in tlte cmrent calculations both tlw 
low amplitude, higher harmonic content of the unsteady 
incidence and the low amplitude Mach number 
oscillations observed by Landon123

l have been ignored. 
Of perhaps even greater importance is that the 
experimental data has not been corrected for unsteady 
wind tumtel interference effects, it is likely therefore 
that both the mean angle of incidence and the amplitude 
of the motion used in the current calculation do not 
tmly reflect the behaviour of the model in the wind 
tmmel experiment. 

Combined translation-pitch oscillations 

While the aerodynamics of aerofoils performing inplane 
and pitching oscillations provides physical insight into 
the behaviour of the flowfield it must be remembered 
that the fl1IC motion of the rotor acrofoil in forward 
flight is composed of simultaneous inplane and pitching 
oscillations. A more complete model of the unsteady 
aerodynamics of helicopter rotor aerodynamics must 
therefore include coupling of the two rigid body 
motions. In the remainder of this paper the behaviour of 
a NACA 0012 acrofoil subjected to combined 
translation-pitch oscillations is investigated. 
Calculations have been performed for aerofoil motions 
described by the equations, 

ivl o= MTip (I + iJ- ~ sin(k ,., ) ) 

(16) 

with the following flow conditions: 

k' = 0.1976 

Note that the Mach number and incidence variations 
match those of the inplane and pitching moments 
presented above. 

Instantaneous pressure distributions and Mach number 
contol1rs obtained ror the second cycle of the unsteady 
calculation arc displayed in Figures (9) and (10) 
respectively, while in Fignrc (II) the unsteady lift 
coefficient is plotted. For the pmposcs of Figure (10) 
the local Mach number is measured with respect to the 
moving grid, this frame of reference has the advantage 
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that regions of 'forward' and 'reverse' flow relative to 
the aerofoil arc easily identifiable. 

Initially the flowfield is found to be almost symmetric, 
Figure lO(a), and no shock waves are evident. For low 
azimuth angles the pressure distributions and variation 
of normal force indicate that tltc development of the 
flow is dominated by changes in angle of attack. As the 
free stream Mach number nears the critical value 
appreciable pressure gradients develop on both the 
upper and lower surfaces of the aerofoil. The pressure 
gradient grows most rapidly on the lower surface and it 
is here that the shock wave forms. The growing 
importance of variations jn Mach number as the 
acrofoil enters the transonic regime arc emphasised by 
the delay in the formation of the shock wave beyond tltc 
(steady flow) critical Mach number. This delay in shock 
formation is attributed to the favourable dynamic 
effects of accelerating flow seen previously for inplane 
oscillations alone. Further evidence of the importance 
of Mach number related dynamic effects is seen in the 
behaviour of normal force coefficient which appears to 
decrease more rapidly for higher :tv1ach numbers. By an 
azimuth cmgle of around GO degrees a weak shock wave 
has formed on the lower surface close to the mid-chord 
point, this shock wave grows in strength as the 
incidence and free stream Mach number increase 
further and moves gradually towards the trailing edge, 
as the azimuth angle approaches 90 degrees a small 
degree of trailing edge separation flow separation 
becomes apparent in the solution. The boundary layer is 
obsetvcd to thicken as the shock strength increases. 

At an azimuth angle of 90 degrees the maximum Mach 
number (M,.o=O. 78) and minimutn angle of incidence 
(o:=-2.494) arc attained, at these conditions a small 
separation bubble is formed at the foot of the shock 
wave. The shock wave continues to move slightly 
downstream and increase in strength until the separation 
bubble extends from its foot to the trailing edge, this 
behaviour is reflected by a small plateau in the normal 
force coefficient. Once the t1ow downstream of the 
shock wave separates fully from the aerofoil surface the 
nature of the shock-boundary layer interaction changes. 
For further increases in azimuth angle the shock
boundary layer interaction is much stronger and this is 
reflected in the increasingly oblique angle which the 
shock \vave forms to the aero foil surface. 

As the azimuth angle increases further we observe that 
the shock wave moves towards the leading edge and 
reduces in strength while the free shear layer, which is 
clearly evident in the Mach number contour plots .. 
moves away from the aerofoil surface. The movement 
of the free shear layer ultimately leads to the formation 
of a stall vortex, rotating in an anti-clockwise direction, 
close to the lower surface of the aerofoH. The presence 
of this vortex is clearly evident in the pressure 
distributions for azimuth angles in the range 110 to 140 



degrees. The stall vortex travels towards the trailing 
edge of the aerofoil. Close to the trailing edge 
secondary separation is observed fmward of the 
primary vortex This region of recirculating How 
quickly becomes separated from the acrofoil surface 
and travels with the primary vortex towards the trailing 
edge. The vortices have been shed into the wake by au 
azimuth angle of 155 degrees. The devctopment and 
shedding of the stall and secondary vor!iccs causes 
large fluctuations in the normat force (and also pitching 
moment) coefficient, \vhich changes rrom 
approximately -0.4 to O.l very rapidly ~1s the vortices 
form ;mel then reduces again as the vortices move along 
the aerofoH and arc shed into the wake. 

Following the shedding of the vortex, and final 
disappearance of the shock wave, the boundary layer 
becomes rutty attached once more. Unsteady effects for 
azimuth angles corresponding to the retreating blade arc 
weak, this is reflected by the small level of hysterisis 
observed it the normal force coef11clcnt for positive 
angles of attack. 

Separated riO\\' was not observed for pitching and 
translation oscillations alone. This creates some 
difficulties when relating the aerodynamics of the 
isol<llcd motions with those of the combined motion 
for which boundary layer separation did occm. lt is 
clear hcnvcvcr from the present calculations that the 
unsteady flow development is dominated by variations 
in M-ach number while the flow is transo11ic, this 
conclusion is reached because of evidence ror the delay 
of both shock formillion beyond the (steady) critical 
Mach number and large scale flow separation, which is 
not observed until Mach number begins to decrease. At 
azimuth angles for which the flow is subsonic and fully 
altachec\ the flow development appears to be dominated 
by changes or ineiclc:nce. Only weak unsteady effects 
nrc evident for retreating side azimuth angles where the 
tvt1ch tlutnbcr is small. This finding is consistent with 
the findings or a !lumber of authors, sec for example 
Lcrat0 ), who have found similar behaviour for acrofoils 
performing !ow amplitude pitching ·oscillations at 
COllStant velocily in incompressible r!OW. 

!\ method lws been presented for the solution of the 
Reynolds averaged thin lnycr Navicr-Stokes equations 
for <lCrofoils performing inplanc and pitching aero roils. 
Til,: method lws been used to study the <lerodynamics of 
; ... -ro!'oils performing isolated pitch and translation 
osci i !;1! ions. Fair agreement is observed when the 
calculated results arc compared with experiment. The 
present method was also applied to the calculation of 
the flowl'iclcl about a NACA 0012 aero foil performing a 
combined pitch-translation oscillation representative of 
the motion performed by helicopter rotor aero foils. 

Calculations for the combined motion indicate How 
sepmation over a wide nmgc of azimuth angles from 
approximately 90 - 150 degrees azimuth. This feature 
was not observed in calculations for the individual 
motions and clearly illustrates the need to consider 
interactions between the two rigid body motions when 
designing aerofoils for high performance helicopter 
applications. 

The relative importune of the dynamic eJTccts due to 
changing Mach number and incidence has also been 
demonstrated. It seems clear from the present 
calculations that the unsteady flow development is 
dominated by variations in Mach number while the flow 
is transonic, this conclusion is reached because of 
evidence for the delay of shock formation beyond the 
(steady) critical Mach number and the promotion of 
large scale now separation which is not observed until 
Mach number begins to decrease. At azimuth angles for 
which the flow is subsonic and fully attached the flow 
dcvc!opmcnt appears to be dominated by changes of 
incidence. Only \Veak unsleacly c[fccts arc evident for 
retreating side azimuth angles where the Mach number 
is small. 

The Baldwin-Lomax turbulence model is generally 
aeknmvledgcd to produce poor estimates of turbulent 
viscosity for large scale separation due to difficulties in 
determining a suitable length scale. In addition the 
model contains no mechanism for including historical 
information about turbulence. In view of these remarks 
the use of such a model in the present work casts some 
doubt over the quantitative results obtained for the 
combined motion. In order to obtain a more physically 
valid representation of turbulence work is currently 
underway to implement more modern turbulence 
models [or the present problem. 
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Figure (3) ])evclopmcnt of advancing side pressure 

distribution for inplanc oscillations. 
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Fib'llre (lOa) 'I'= 10 degrees. Figure (lOd) 'I'= 85 degrees. 

Figure (lOb) 'I'= 50 degrees. Figure (lOe) 'I'= 90 degrees. 

Fi!,'llre (Hlc) 'I'= 70 degrees. Figure (1 Ot) 'I' = 95 degrees. 
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Figure (lOg) 'If= 1!0 degrees. Fil,'llrc (10j) 'I'= 130 degrees. 
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Fi),>tn·c (I Oh) 'V = 115 degrees. Figure (101<) 'If= 135 degrees. 

Figure (lOi) 111 = 125 degrees. Figure (Hil) 111 = 145 dcgtccs. 
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Figure (10m) 'I'= 150 degrees. Fij,•ure (lOp) 'I'= 170 degrees. 

Figure (10n) 'I'= 155 degrees. Figure (1 Oq) 'I' = 175 degrees. 
Figure (Hl) Instantaneous Mach number contours. 
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