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As a basic research for an active vibration control using high 
frequency blade pitch oscillations, analytical and experimental 
studies to explore aeroelastic characteristics of the collective con-. 
trol responses of a rotor due to the harmonic blade pitch variations, 
with the hub fixed in space, are carried out. The steady state 
responses of dynamic hub vertical load are analyzed by modal integral 
methods using the Loewy's two dimensional unsteady airfoil theory for 
a rotor in hover, while in forward flight, the Miller's three dimen
sional one is utilized. To verify the computed results, force tests 
to measure the hub vertical loads over a wide frequency range up to 
fifth harmonics of the rotor speed are conducted with a one-bladed 
model rotor. Flow visualization studies are also made for a rotor in 
hover to disclose diversity of the wake geometries piled beneath the 
rotor under various pitch change frequency ratios. Both numerical and 
experimental results reveal their unique dependencies on the pitch 
change frequency as well as the modal parameters and for a rotor in 
forward flight, there may be the optimum blade pitch variations by 
which the hub dynamic vertical load could be minimized. 

1. Introduction 

Vibration is a problem of long standing in helicopter engineer
ing. Considerable progress have been made over the years in vibration 
control technology, still vibrations remain to be troublesome and 
difficult problems to deal with. 

Reichert in Ref. 1 and Loewy in Ref. 2 discussed various vibration 
reduction devices and methods for a helicopter and stressed a need to 
establish the practical hub load prediction methods with improved 
accuracy. 

On the other hand, in accordance with rapid progress in computer 
technology as well as modern control theory, a new vibration supression 
method utilizing the active control technology receives increasing 
attention. (3) {4) 

The higher harmonic control (H.H.C.) is a typical approach along 
this concept and its usefulness as a practical vibration control system 
have been demonstrated theoretically and experimentally by the wind 
tunnel tests on the model rotor(S) as well as flight tests on the 
actual machines. (6) 
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It is well recognized that the active vibration control has an 
advantage of significant weight saving to be coupled with the struc
tural optimization. (7) From design point of view, eliminating rotor 
induced dynamic hub loads at the ro·tor itself seems to be the most 
promising and reasonable concept. 

Nevertheless, because of its sophisticated nature, the physical 
reasons why such an active control system as the H.H.C. could reduce 
the vibration level so effectively and what are the key factors to 
govern dynamic control responses of a rotor undergoing such high fre
quency blade pitch variations have not yet been made clear. 

This will be attributed to the lack of knowledges concerning the 
aeroelastic behaviour of hub dynamic load induced by a rotor. In addi
tion, little experimental data is available for the verifications of 
theoretical results. 

In this research, as a basic study for the active vibration con
trol utilizing high frequency blade pitch oscillations, the steady state 
responses of the hub vertical load due to harmonic blade pitch varia
tions are investigated analytically and experimentally, both for a rotor 
in hover and in forward flight with emphasis placing on their aero
elastic behaviour. 

The responses of the hub vertical load due to harmonic blade 
pitch variations are selected as a simple but typical collective control 
response of a rotor executing arbitrary pitch change motions, with the 
hub fixed in space. 

The hub loads responses due to hub motions are referred to as 
the rotor impedances. In this regard, this study will be considered as 
a companion research to those given by K. Kato et al. in Ref. 7. The 
steady state responses of a flexible blade forced by sinusoidal blade 
pitch variations with arbitrary frequency are determined by the linear 
modal equations of motion. The generalized unsteady aerodynamic loads 
are computed based on the Loewy's two dimensional unsteady airfoil 
theory(B) for a rotor in hover, while in forward flight, the Miller's 
three dimensional theory(9) is utilized with modifications being made 
so as to be able to apply the theory to any rotor undergoing arbitrary 
frequency blade pitch variations, independent from harmonics of the 
rotor speed. 

Using these responses, together with unsteady aerodynamic loads 
which are composed of the circulatory and noncirculatory lifts, the 
frequency responses of the hub vertical load are obtained for a rotor 
in hover. 

In forward flight, the harmonic balance method is used to solve 
the modal equations of motion of a blade and unsteady aerodynamic 
equations simultaneously. The effects of sinusoidal blade pitch appli
cation on their steady state responses are numerically analyzed, because 
in this case, they will become a function not only of the rotor speed 
and its harmonics but also blade pitch change frequency. 
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Numerical results obtained for various flight conditions show 
that there may exist the optimum blade pitch variations by which the 
steady state responses of the hub vertical load could be minimuzed. 

To verify the accuracies of computed results, experimental 
studies for a rotor in hover and forward flight are conducted with a 
one-bladed rotor. Dynamic force tests are planned intentionally to 
measure the hub vertical load over a wide frequency range up to fifth 
harmonics of the rotor speed. Measured data are fed into a F.F.T. 
processor to obtain their averaged amplitudes and phases spectra. 

Flow visualization studies for a rotor in hover are also made 
using a smoke injection method. Pictures obtained show clearly the 
facts that the frequency responses of the hub vertical load are closely 
related to the wake geometries being piled beneath the rotor. 

The purpose of this research is to develop the methods, which 
can be able to predict precisely influences of unsteady aerodynamic 
forces on the hub vertical load responses, by taking the returning 
wake into consideration. In the following sections, discussions are 
made mainly on their frequency responses in hover with introducing 
computed and measured results for the steady state responses in forward 
flight subsidiary. 

2. Aeroelastic Response Characteristics of a Rotor in Hover Executing 
Arbitrary Harmonic Blade Pitch Variations 

2.1 Derivation of equations of motion and basic assumptions 

A linear modal analysis method to predict steady state aero
elastic responses of the hub vertical load for a hovering rotor due to 
si~usoidal blade pitch variations with arbitrary frequency, with the 
hub being fixed in space is described. 

The equations of equilibrium for the coupled flap bending and 
torsion of a blade excited by mechanically as well as aeroelastically 
in hover are derived by the Lagrange method based on the engineering 
beam theory, together with the Loewy's two dimensional unsteady airfoil 
theory. 

The following assumptions are made. 

(l) The rotor is a single-bladed one being cantilevered to the hub at 
an offset of e from the axis of rotation. At the blade root, 
there is no built-in twist nor precone anglo. 

(2) The hub is fixed in space. 
(3) The blade is composed of an isotropic and homogeneous materials. 
(4) The blade cross section is structurally symmetrical about the 

major principal axis and has two distinct points, center of 
gravity (C.G.) and center of elasticity (C.E.). 

(5) Both the elastic and the C.G. axes are assumed to be straight and 
in parallel with each other along the blade span. The offset 
distance between them is e 9 , positive when the elastic axis lies 
in the rearward. 
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(6) The blade can be deformed in flapwise bending normal to elastic 
axis and torsion around it. The inplane bending is neglected 
for simplicity, although the method used can be readily extended 
to treat the fully coupled blade dynamics. 

(7) During deformations, the cross sections normal to the elastic 
axis remain unchanged. 

(8) The blade pitch angle is varied about the feathering axis which 
is considered to be coincident with the e.G. axis. The blade 
pitch implementation is described as G = Go + ~G, where Go is 
the collective pitch and ~G is the sinusoidal excitation with an 
arbitrary frequency w, respectively. 

(9) There is no mechanical 63 coupling and dynamic interactions 
between control system flexibilities and blade torsional deforma
tion are neglected. 

(10) The section aerodynamic loads are computed by using the Loewy's 
unsteady two dimensional thin airfoil theory and integration is 
made in the blade element theory fashion. 

(ll) In constructing the two dimensional wake model, the vertical 
spacing of returning shed vortices for a successive rotor revolu
tion is assumed to be constant and be able to define simply by 
the average inflow velocity as a function of the static thrust 
for a given collective pitch. 

(12) Stall and compressibility are neglected. 

The coordinate systems used for describing the blade motions 
are shown in Fig. 1. 

Brief description of them are given below. 

x 1 , Y1 , z1 system is the inertial system with the origin at hub 
center. The blade rotates with XR, YR, ZR system which is the one when 
x 1 , Y1 , z 1 system rotates about the z 1 axis by w = Qt, Q is the rota
tional speed of the rotor and assumed to be constant. The XR axis is 
coincident with the blade e.G. axis, while the YR axis is pointing 
toward the leading edge in the hub plane. XE, YE, ZE system is the 
moving system obtained when XR, YR, ZR system rotates about the XR axis 
by G, then move the origin along the major principal axis by eg so as 
to coincide the XR axis with the undeformed elastic axis. 

The blade deformation processes referred to the XE, YE, ZE system 
are defined by following sequences. A point P on the undeformed elastic 
axis undergoes translational deformation u, v = 0, w in the XE, YE, ZE 
directions, respectively and occupies the position P 1 on the deformed 
elastic axis. 

The angular positions of the cross section containing P 1 relative 
to XR, YR, ZR system is given by the three Euler angles (G+~, -w', v'=O), 
where ( ) ' denotes a ( ) ;axE and G and ~ are the geometrical pitch> 
angle and torsional deformation, respectively. s, n, ' system is the 
local orthogonal system attached to the deformed blade such that the s 
axis is tangential to the deformed elastic axis and the n and ' axes are 
the major and minor principal axes of the cross section. XA, YA, ZA 
system is also the local one obtained by setting G + ~ = 0 in s, n, ' 
system, so the YA axis remains parallel to the hub plane. This system 
is used for the evaluation of aerodynamic loads. 
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After fairly cumbersome calculations to evaluate the Lagrangian 
function, the following coupled equations of equilibrium will be 
obtained as 

where 

(EIJw")"- (Tw')'- (Teg<P'l' +m(w+egijil =L 

-{(TkA2 + GJ)<j>'}' - (Tegwl' + mQ2 (kml 2 _ eg2 l<P 

+ mkm2iji + megw = M - m(km2 - eg2l (~ + Q20). 

and (•) denotes the differentiation with respect to time. 

(l) 

(2) 

Structural properties appeared in Equs. (1) and (2) are EI 1 : 
bending stiffness about the n axis, GJ: torsional stiffness, m: mass 
per unit blade length, km: mass radius of gyration of blade cross 
section, km = Vkml2 + km22 ~ kml• km2' principal radii of gyration of 
blade cross section, kA: polar radius of gyration of blade cross 
section, respectively. 

In deriving Equs. (l) and (2), additional assumption is made for 
the cross sectional integral, that is the offset distance between the 
elastic and tension axes, eA which is defined by eA = !AndA/A, is 
equal to eg, eg = !ApndA/m where p and A are the blade mass density 
and the cross sectional area, respectively. The motion of equilibrium 
given by Equs. (l) and (2) are reduced to those of Nagaraja and Pierce 
in Ref.lO by putting eA = 0 and eliminating the terms connected with e. 

L and M in the right hand sides of Equs. (l) and (2) denote the 
section lift and pitching moment, respectively. At present, a great 
variety of numerical methods to predict the aerodynamic loads in hover 
are available, however, Land Mare computed by the Loewy's theory in 
this study, by virtue of its ability to capture unsteady effects due 
to the returning shed wake analytically. 

Expanding w and <1> with the coupled natural mode shapes as 

(4) (5) 

where Wj, ~j and qj denote the jth coupled natural mode shapes and the 
jth generallzed coordinates, respectively. 

Substitute Equ. (4) into Equs. (l) and (2), and then discretize 
the spatial dependence of the equations of equilibrium using the 
orthogonality property with respect to jth natural mode shapes given by 

(6) 
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We can read the modal equations of motion which govern the 
aeroelastic responses for the jth generalized coordinates as follows 

Mjqj + Mj(l + igj)vj 2qj 

= ~R[LWj + M~j - m(km2 - eg 2l (G + Q20l~j]dXE 

(7) 

where gj and Vj are the structural damping and the natural frequency 
for the coupled jth natural mode shapes, respectively. 

The natural mode shapes and their natural frequencies can be 
determined numerically as the solutions of linear, coupled homogeneous 
differential equations which are gained by letting L, M and 0 in Equs. 
(1) and (2) to be zero with the appropriate boundary conditions. 

2.2 Aeroelastic response characteristics of hub vertical load in 
hover due to harmonic blade pitch variations 

As can be seen in Ref. 8, Loewy 1 s two dimensional theory 
represents the motions of a rigid airfoil section in terms of pitching 
a and heaving h motions, both of which are referred to the feathering 
axis located at a distance of ab after from the mid chord. 

Within a linear theory, we can express h, a. by a linear combina
tion of the elastic deformations w, $ as follows. 

a = 0 + $. (8) 

Using relations given by Equ. (8), we can obtain unsteady section lift 
L and pitching moment M in Equ. (7) as functions of elastic deforma
tions of the blade as well as the harmonic pitch variations. 

L aoParQbC' (k, n, d){rQ($ + 1\0)- (w + eg~l 

+ b(~ + t>!'J) <% a)} + Panb2 {rQ(~ + 1\fJ) - (;.; + eg~l 

- ab(<Jl + 1\Gl} 

M Panb 3[(a- egl (w + eg~l - rQ(% +a- egl (~ + 1\0) 

1 2 .. 
-b{~ + (a- e 9 ) }(~ + 1\0)] 

+ aoPab2rQ(a- e 9 - %>c' (k, n, d){(w + eg~l 

- rQ(~ + 1\0) - b(%- a) <i + 1\~)} 

(9) 

(10) 

where ao, Pa, b and a are section lift curve slope, density of air, 
blade semichord and distance between the mid chord and the feathering 
axis, positive aft., respectively. 

It should be noted that in Equs. (9) and (10) , the circulatory 
lift and moment due to the collective pitch, 0o are omitted as they are 
considered to be the time invariant component defining the trim states 
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about which the dynamic deformations could occur. C' (k, n, d) is the 
Loewy's modified lift deficiency function. For a single bladed rotor, 
c• is defined as the function of three nondimensional parameters, k, n, 
d, which are given respectively by 

bw w 2rru 
k = rn ' n = Q ' d = b() (ll) 

where d denotes the wake spacing for a two dimensional wake model. 
The wake spacing is assumed to be constant for the rotor with a given 
collective pitch Go, and can be defined by the average inflow 
velocity u. 

Let us define the harmonic blade pitch excitation, ~e as 
~e = eeiwt and assume the steady state responses of the jth generalized 
coordinates to be 

then the complex amplitudes qj can be gained in a matrix form as 

[H] 

[H]{q} = {s}e , {er} = [HJ- 1{s}e (13) 

-w2(Mj-Ajj)-iWBj) 

+MjVj 2 (l+igl)-Cj) 

w2Aj)-iWBjl 

-Cjl 

2 . w AN 1-1WBNl 

-CN) 

w2A1 j-iwB1 j 

-Clj 

-w2 (Mj-Ajj)-iwBjj 

+Mjvj 2 (l+igj)-Cjj 

w2ANriwBNj 

-CNj 

(15) 

w2A1N-iWB)N 

-clN 

w2AjN-iWBjN 

-CjN 

-w2 (MN-ANN)-iWBNN 

+MNvN 2 (l+igN)-CNN 

(14) 

(16) 

Ajt• Bjt• Cjt (j, t = l, 2, .•• , N) and Dj, Ej, Fj (j = l, 2, ... , N) 
in Equs. (14) and (15) denote the jtth elements of the squire matrices 
[A], [B], [C] and the jth components of the vectors {D}, {E}, {F}, 
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given by the following modal integral, respectively. 

-

Aj£, J0R7Tpab2 1 (-W,Q.- eg<l>t - ab<I>,Q.)Wj + b[ (a - eg) (W,Q. + eg'~,Q.) 

-b{i + (a- eg) 2}<I>,Q.J<I>jjdXE 

Bj.Q. J0RpaVbl [a0c• (k,n,d) {-w.Q.- eg<l>~ + b(%- a)<I>R.} + 7Tb<l>t]Wj 

2 1 - 1 { + [-7Tb (2 + a - eg)<I>.Q. + a 0b(-a + eg + 2 )c' (k,n,d) -W.Q. 

- eg<I>.Q. + b(%- a)<I>,Q_}l<l>jldxE 

Cj,Q. ~Ra 0 paV2bC' (k,n,d)<I>,Q_{Wj + b(-a + eg + %><1>j}dXE 

Dj ~R7TPab3lawj + [b{i + (a - eg)2} + m(km2 - eg2)]<1>j,dXE 

Ej = J
0
RpaVb2[{ao(%- a)C' (k,n,d) + 7T}Wj + {a 0b(-a + eg + %> 

1 1 -
x C' (k,n,d) (2- a) - 7rb(2 +a- egl<l>jldXE 

Fj ~R[aoPaV2bc' (k,n,d)Wj + {a0 PaV2b2(-a + eg + %>c' (k,n,d) 

- m(km2 - eg2)~2}<1>jldXE 

(j,J>, =1, 2, ••• , N) 

where eg is nondimensioned eg by b, eg = eglb· 

It is understood that the amplitude and phase responses of the 
rotating blade due to the harmonic pitch excitation defined by Equs. 
(13), (14) and (15), are largely dependent upon not only the modal 
parameters, Wj, Wj, vj and 9j but also the frequency ratio, n as well 
as the collective pitch angle, 0o through the modified lift deficiency 
function C' (k,n,d), thus indicating the importance to take the return
ing shed wake into account for the \vake modeling. 

When q.!', (.!', = 1, 2, ... , N) are determined from Equ. (13), the 
blade elastic deformation along the C.G. axis can be written as 

wc.G. 
N 
E (Wt 

R-=1 
(17) 

Because the dynamic hub vertical load, T can be obtained as the 
total summation of the distributed inertial loads due to blade elastic 
deformats given by Equ. (17) and the unsteady section lift by Equ. (9), 
the steady state responses of the hub vertical load per unit harmonic 
blade pitch excitation can be defined as 

T 

0 

(18) 
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3. Experimental Studies 

The apparatus at the low speed wind tunnel test section is shown 
in Fig. 2. The wind tunnel testings are conducted with a one-bladed 
rotor arrangement so that the wake geometries and their induced effects 
may be simplified. 

The blade is a hollow, wooden 
laminated F.R.P. skin. The planform 
850mm and a constant chord of lOOmm. 

spar and rib'structure with 
is a rectangular with a radius of 

The cross section is NACA 0014 
and there is no precone and pretwist angles. With respect to the cross 
sectional properties, both the e.G. and elastic axes are almost straight, 
however, they are separated each other with a offset distance of 30mm. 
The typical mass and elastic properties of the blade are listed in 
Table l. The first four natural mode shapes and frequencies, which are 
computed for Q = 360 R.P.M. and 0o = 0° by the finite element method 
are shown in Fig. 3. 

The apparatus is equipped with two different kinds of d.c. motors, 
one to drive the rotor and the other for the blade pitch control, so as 
to realize arbitrary blade pitch excitations over a wide range of normal
ized frequency. The blade pitch angle is forced to vary sinuisoidally 
around the feathering axis which is coincident with the C.G. axis. 
The applied blade pitch variations around the collective pitch angle are 
measured by a potentiometer. The hub vertical loads are measured by 
strain gages banded on both surfaces of the thin phospherous bronze 
plate (0.3mm thick) which is designated to able to detect the dynamic 
loads acting on the blade not as the moments but the total reaction 
shear forces acting at the integrated hub flexure flame. Measured hub 
loads as well as blade pitch motions are picked up through a slip ring 
and after amplified, they are fed into a two channel F.F.T. processor to 
obtain their amplitude and phase spectra. 

Force tests for a rotor in hover are made at the constant rotor 
speed of 360 R.P.M. for five different collective pitch settings 
(Go= 0°, 3°, 6°, 9°, 12°), with varying blade pitch exciting frequency 
by a increment of l Hz, while the hub vertical loads are measured at 
every frequency ranging from 2 Hz to 30 Hz, the fifth harmonics of the 
rotor speed. 

For a rotor in forward flight, measurements are made at four 
different tip speed ratios, w from 0.1 to 0.4 with the collective pitch 
being fixed to Go = 6°. In this case, sinusoidal blade pitch variations 
are applied with arbitrary combinations of the amplitude, frequency and 
phase angle, however, efforts are concentrated to the hub load measure
ment at rather narrow frequency ranges close to the integer multiples 
of the rotor speed. The reduced frequency at the 75% radius correspond
ing to the test conditions cover a range of 0.02 ~ 0.41 and typical 
Reynolds number is 105 at the 75% radius for n = 360 R.P.M. The section 
lift curve slope of the blade is deduced to be ao = 4.27 from the static 
hover tests which will be used in numerical analyses instead of the 
theoretical one, 2rr. 

The flow visualizations using a smoke of evaporating kerosine are 
also made with another one-bladed model rotor with a radius of 800mm and 
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a chord of 55mm. The blade is made of solid plywood and has a hollow 
groove through which a smoke is guided to the blade tip. A smoke is 
injected into the air through the special smoke injection unit utiliz
ing leading edge separation vortex of a delta wing, by which a smoke 
could be confined within the core structures of the tip vortices and 
long term tip vortices behaviour would be observed. 

4. Comparisons between Numerical and Experimental Results 

4~1 Frequency responses of the hub vertical load for a rotor in hover 

Typical examples of data reductions by an F.F.T. processor are 
shown in Fig. 4. These are the three dimensional displays of the ampli
tude spectra for the applied blade pitch motions (Fig. 4.a) and the hub 
vertical loads (Fig. 4.b) for 0o = 0°, respectively. It is observed 
that reliable input and output relations can be realized over the fre
quency range to be concerned. 

Comparisons between computed and measured frequency responses of 
the hub vertical load for a rotor in hover are shown in Fig. 5 for 
0o = 0° and in Fig. 6 for 0o = 6°. The top and bottom figures in Fig. 5 
and Fig. 6 are the nondimensioned amplitude and phase spectra for steady 
state responses of the hub vertical load, respectively. 

The computed results depicted in these figures are obtained by 
approximating the blade elastic deformations with the first two natural 
mode shapes (Fig. 3). The exclusion of the torsion dominated modes 
(3rd mode) is justified because their natural frequencies are fully 
separated from the frequency range to be tested. The modal damping 
coefficients (Table 1) which are obtained for the stationary blade using 
an experimental modal analysis are introduced into numerical analyses. 

By observing Fig. 5 and Fig. 6, the contributions of unsteady 
aerodynamic forces due to the returning shed wake and inertia forces due 
to the blade elastic deformations on the dynamic hub load responses are 
clearly understood. Significant features of them are (1) conspicuous 
amplitude decrease and rapid phase shift near the integer multiples of 
the rotor speed, (2) marked amplitude increase due to the resonance at 
the first natural frequency (3) alleviation of the returning wake 
effects with increasing collective pitch angles. The computed results 
based on the Loewy's two dimensional rigid wake model show quite well 
agreement with experimental ones and the importance to include the 
returning wake effects for the accurate hub dynamic loads prediction is 
ascertained. 

4.2 Wake visualizations 

Pictures obtained by the wake visualization for a rotor in hover 
whose blade pitch angle varied sinusoidally with arbitrary frequency 
are shown in Fig. 7. Test conditions are fixed to Q = 150 R.P.M., 
0o = 6° and five different normalized frequencies of n = 0, 0.5, 1.0, 
1.5 and 2.0. The pitch control amplitude is set to 3.5°. 
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Fig. 7.1 gives a wake geometry for n = 0, that is, for rotor in 
static hover condition where the tip vortex trajectory up to seven 
revolutions of the rotor can be clearly recognized. Pictures for 
integer n are shown in Fig. 7.2 (n = l) and Fig. 7.3 (n = 2), while 
for non-integer n, those are shown in Fig. 7.4 (n = 0.5) and Fig. 7.5 
(n = 1.5), separately. 

The behaviour of tip vortices and their spacial arrangements 
are quite different depending on whether blade pitch change frequency 
is a integer multiples of the rotor speed or not. When normalized 
frequency, n is non-integer, the tip vortices system show remarkable 
instabilities due to their nonlinear interactions and regular and 
stable wakes cannot be observed. It is not difficult to suppose that 
such unique dependencies of the hub vertical load responses on the 
normalized frequency as those depicted in Fig. 5 and Fig. 6 must be 
heavily related to their wake dynamics and structures, several of 
which are declared by pictures shown in Fig. 7. 

4.3 steady state responses in forward flight 

As a typical example of numerical analysis for a rotor in for
ward flight, computed results for steady state responses of the hub 
vertical load at ~ = 0.3 are introduced in Fig. 8 ~ Fig. 11. These 
are obtained based on the Miller's three dimensional unsteady theory 
with a semi-rigid wake model. 

In this case, in contract with a rotor in hover, the phase 
angles of applied pitch variations play a critical role for hub vertical 
load responses. Hereafter, the blade pitch variations are defined by 
G =Go+ 8 sin (n~- ~),where 8, n, wand~ are the pitch change 
amplitude, normalized frequency, blade azimuth angle and phase angle, 
respectively and effects of n and ~ on the hub vertical load responses 
are predicted numerically with setting Go= 6° and 8 = 3°. 

The measured and computed results for n = 0 are shown in Fig. 8. 
Upper two figures labelled (a) and (b) are the measured and computed 
time histories with the abscissas being time in sec and the blade 
azimuth angle in degrees, respectively, while lower two (c) and (d) 
are their F.F.T. results where the abscissas are the frequency in Hz. 
It should be noted that the abscissas in (a) are scaled to about 60% 
of those in (b). Owing to the fact that there is no blade pitch 
excitation for n = 0, frequency contents in the time histories are 
only limited to the rotational speed of rotor and its harmonics. 

The computed and measured results for n = l are presented in 
Fig. 9 with the control phase angle, $ being fixed to 191°. This 
phase angle of 191° is selected as one at which the computed hub 
vertical load amplitude can be minimized under a given operating con
ditions. By comparing Fig. 9 with Fig. 8, it is reasonably antici
pated that for a rotor in forward flight, the hub vertical load 
responses could be remarkably reduced by a proper application of the 
harmonic blade pitch variations. 

To clarify the effects of a discrepancy between the blade pitch 
variation frequency and that of rotor on the hub vertical load responses, 
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computed and measured time histories and their spectra for two differ
ent non-integer normalized frequencies are shown in Fig. 10 (n = 0.9) 
and Fig. ll (n = l.l). Distinctive features to be identified in the 
hub load responses for non-integer normalized frequencies are the 
beating phenomena in their time histories which, in turn are resulted 
in the spectra with frequency contents not only at the rotor speed, its 
harmonics and the pitch control frequency but also the sum and sub
straction frequencies between them. 

Generally speaking, it may be said safely that the computed 
results based on the Miller's three dimensional unsteady theory give 
fairly well predictions for the hub vertical load responses due to the 
harmonic blade pitch variations with arbitrary frequency, however, the 
most important finding in this study is that a slight discrepancy between 
the pitch control frequency and that of rotor as well as an ill suited 
control phase angle may bring undesirable large increase in the hub 
vertical load responses. 

5. Conclusions 

Basic analytical and experimental researches to explore the 
aeroelastic behaviour of the hub vertical load due to the harmonic 
blade pitch variations with arbitrary frequency are conducted. 
Analytical model to predict the steady state responses of the hub 
vertical load are developed using the Loewy's two dimensional unsteady 
airfoil theory for a rotor in hover and the Miller's three dimensional 
one for in forward flight. 

To verify the theoretical results, force tests in hover and 
forward flight and wake visualization studies in hover with a one
bladed rotor are carried out. Comparisons between measured and com
puted results show quite well coincidence and validity and usefulness 
of the proposed hub load prediction method are substantiated. 

It is clearly understood that the wake dynamics and structures 
play an essential role for aeroelastic behaviour of the hub loads 
responses. For a rotor in yaw, there may exist the optimum blade pitch 
variations which could be minimized the hub vertical load responses. 
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Table 1 Mass and elastic properties 

Blade radius R = 0. 85m 

Blade chord 2b = O.lm 

Offset between feathering axis and ef = 0.03m 
elastic axis 
Offset between e.G. axis and elastic axis e = g, -0.03m 

Blade cross-section moments of inertia I 1 = 4.21 X l0-7m4 

about elastic axis I2 = 4.71 X l0-9m4 

Mass of blade m = 2.57 X l0-2Kg 

Blade moment of inertia about elastic axis IEA = 5.15 X l0-5Kgm2 

Bending stiffness EI 2 = 40.96Nm2 

Torsional stiffness GJ = 42.l4Nm2/rad 

Structural damping coefficient in the jth gl = g2 = 0.025, g3 = 0.06 
vibration mode 
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Fig.l Experimental apparatus 

Fig.2 Coordinate systems 
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Fig.7.1 Tip vortex geometry (n=O) Fig.7.2 Tip vortex geometry (n=1) 

Fig.7.3 Tip vortex geometry (n=2) Fig.7.4 Tip vortex geometry(n=0.5) 
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