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Abstract 

This paper develops a method for modifying control 
law parameters to improve system performance and 
stability where the control system is general and real­
ized by a set of multiple input and single output filters 
arranged in an arbitrary fashion. The method is based 
on reformulating the original control problem as a con­
stant gain optimal output feedback tracking problem 
where the parameters in the control system that are 
designated as variable are separated into a constant 
diagonal matrix. Results using the method to modify 
control system parameters for a higher harmonic rotor 
control system are presented. 

1. Introduction 

The rotorcraft control law design process, like most 
other design processes 1 is iterative in nature and is 
initiated with some form of a baseline design. The 
baseline design is typically created by seasoned engi­
neers using past experience to furnish the control law 
structure and initial parameter values. As a result, the 
baseline control laws tend to evolve from an already 
existing control system. Indeed, for aircraft modifica­
tion programs, this is generally the case. A generic flow 
chart of the control law design process in given in Fig­
ure 1. Once the baseline control laws are defined, the 
combined plant and control system is modeled, simu­
lated, and tested in a wide variety of ways including 
batch simulation using a simple six degree of freedom 
linear or non linear fuselage model, batch simulation 
using a linear or non linear high fidelity and high order 
dynamic model, real time pilot in the loop simulation, 
hardware in the loop simulation, full scale component 
simulation, full scale combined plant and control sys­
tem functional testing, and/or a combination of the 

•Presented at the Nineteenth European Rotorcraft Forwn, 
September 14-16, CERNOBBIO, Italy. 

fThe author would like to acknowledge H. Strehlow and D. 
Teves from Eurocopter Deutschland for providing and explaining 
in detail their higher hannonic rotor control system linear model. 
Also, the author would like to a.cknowledge M. Wasikowski, M. 
Heiges, and S. Turney from the Aerospace Laboratory a.t Georgia. 
Tech for their &Ssista.nce in the completion of the paper. 

above. If system performance is not satisfactory, con­
trol law parameters and possibly control law structure 
are modified and reevaluated. This loop continues until 
satisfactory control laws are achieved. 

A common format for presenting detailed control 
laws is through scalar block diagrams. It is impor­
tant to note that even modern control strategies, such 
as model following controllers, are ultimately cast into 
scalar block diagram form. In scalar block diagram 
form, the main purpose of individual control law elew 
ments are obvious and separate from other control law 
elements. Also, implementation of the block diagram 
into hardware is straightforward and efficient. 

Due to the complex geometric and dynamic nature 
of rotorcraft systems, mathematical models depicting 
the behavior of such systems tend to involve a large 
number of state variables. Moreover, improvements in 
the fidelity of a particular mathematical model are usu­
ally accompanied by an increase in the number of state 
variables describing the system. For example, a math­
ematical model of a single main rotor helicopter which 
includes rigid body dynamics of fuselage motion, main 
rotor blade flap and lag rotation, main rotor inflow ve­
locity, drive train flexibility, actuator motion, and con­
trol systems electrical signals could easily contain in 
excess of 75 state variables. If fuselage structural dy­
namics, main rotor blade elasticity, or tail rotor blade 
flap and lag motion are also reflected in the mathemat­
ical model, the order of the system could climb to well 
over 150. 

There are a multitude of control law design tech­
niques available to the control system engineer, how­
ever few are particularly well suited to the control sys­
tem design process mentioned above. For example, op­
timal observers seek to minimize an integral quadratic 
performance index based on weighted state and control 
deviations. Unfortunately, the resulting estimators are 
of the same order as the plant, an obvious disadvantage 
when considering the order of a reasonably sophisti­
cated rotorcraft model. More importantly, the method 
is not conducive to a fixed control law structure nor to 
decentralized and evolutionary design processes since 
all control system parameters are modified each design 
iteration. 

Standard practice in industry is to perform exhaus-
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Figure 1: Control Law Design Flow Chart 

tive control system parametric studies to arrive at 
satisfactory control system performance and stability. 
This paper provides a methodology rooted in optimal 
control theory that can be used in concert with cur­
rent control law design practice to help facilitate con­
trol law parametric studies. The control system is gen­
eral and realized by a set of multiple input and single 
output filters arranged in an arbitrary fashion. With 
this realization of the control system, practical rotor­
craft control systems with any predefined structure can 
be modeled with a minimum of input data. The pa­
rameter optimization scheme is based on reformulating 
the original control problem as a constant gain optimal 
output feedback tracking problem where the parame­
ters in the control system that are permitted to vary 
are separated into a constant diagonal matrix. The 
method builds on current control law design practice, 
starting from a baseline set of control laws and modify­
ing specified parameters to improve performance with­
out altering hardware implementation. 

The paper is organized as follows. First, the different 
systems which are used throughout the development 
are given followed by the control system parameter 
modification algorithm. In Section 4, the methodol­
ogy is highlighted with the application of the control 
law modification process to a higher harmonic rotor 
control system. 

2. System Realization 

The uncontrolled rotorcraft system plant is assumed 
to be given by a linear time invariant system of the 
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Figure 2: Plant and Control System Connection 

form, 
:i:Ae = AAeXAe + BAeuAe 

YAe = CAeXAe + DAeuAe 

( 1) 

(2) 

where, ZAG is the state vector of the system plant, 
uAe is the vector of physical control movement, and 
YAe is the vector of rotorcraft system outputs which 
are desired to be tracked by control inputs. The order 
of the uncontrolled rotorcraft system is nsac while the 
system has niac inputs and noac outputs. 

The state space model for the control system can be 
written as, 

YE = Q1xes + Q26 + QsXAe + Q4:i:Ae + QsuoF (4) 

YOF = L,xes + L26 + LsxAe + L4xAe + L1uoF (5) 

uoF = KoFYOF (6) 

where, xes is the control system state vector, YE is the 
control system output vector, YOF is the output feed­
back output vector, uoF is the output feedback input 
vector, and 6 is the control system input vector. The 
details for converting the scalar block diagram data 
into the above equations are given in Appendix A. No­
tice that all the parameters in the control system to be 
modified by the control law algorithm are segregated 
from the plant matrices and are located on the diagonal 
of the KoF matrix. The fact that the matrix KoF is 
diagonal does not represent a simplifying assumption, 
rather it is simply a byproduct of working with the 
scalar block diagram form of the control system data. 

The plant and control system are connected as shown 
in Figure 2. However, to efficiently apply the optimal 
output feedback control law strategy below, the plant 
and control system are combined while still leaving the 
variable control system parameters separate. This is 
accomplished by substituting uAe = Yes into equa­
tions 1 and 2. Corresponding to Figure 3, the combined 
rotorcraft and control system plant equations are, 

(7) 
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xes = F1xAe + F2xes + Fsb + F4uop (8) 

YAe = TlXAe + T,xes + Tsb + r.uop (9) 

Yes= R1xAe + R2xes + Rsb + R.uop (10) 

(11) 

The expressions for H1, H2, H3, H4, F1, F2, F3, F4, 
T1, T2, Ts, T4, R1, R2, Rg, R4, S1, S2, Sg, and S4 are 
given in Appendix B. 

The closed loop system is derived by substituting 
uop = KoFYOF into the combined rotorcraft and con­
trol system plant equations. The resulting closed loop 
plant equations are given by equations 12, 13, and 14. 

YAe = CeLlXop + DeL1b 

Yes = CeL2xop + DeL2b 

{12) 

( 13) 

(14) 

The vector xop is equal to [xAeXesJT. The expres­
sions for AcL, BeL, CeLl, Cc£2, DeLl! and DcL2 are 
provided in Appendix C. The closed loop system for­
mulation here differs from traditional optimal control 
system formulations. Since control system parameters 
in the feedback and feedforward path may be present 
in Kop, both the closed loop poles and zeros can be 
affected by a modification in Kop. 

3. Control System Parameter Optimization 

This section presents an algorithm for modifying con­
trol system parameters and is based on solving an op­
timal output feedback tracking problem. The develop­
ment is in line with Reference 1 except for some obvi­
ous differences in the inputs considered, plant defini­
tion, cost function, and method for computing the cost 
function. Optimal tracking controllers are known to 
be functions of the type of input that they are desired 
to track. For this work, the reference inputs used are 
step and sinusoidal inputs. It is important to recog­
nize that although the control system parameters will 
be optimized for step and sinusoidal inputs, the tracker 
will perform successfully for all inputs. 

3.1 Step Response Cost 

For the step response cost, the input, b, is given by a 
vector of step functions with the individual step func­
tion amplitudes contains in rap. Consider the follow­
ing transformations. 

iop(t) = xop(t)- iop 

iiAc(t) = YAe(t)- iiAe 

iies(t) = Yes(t)- iies 

b(t) = b(t)- J = -rop 

(15) 

(16) 

( 17) 

( 18) 

In equations 15, 16, 17, and 18,-denotes a steady state 
value while - represents a perturbation value. Using 
equations 15, 16, 17, and 18 the dynamic equations of 
the perturbation state variables are, 

YAe = CeL1iop 

iies = CeL2iop 

(19) 

(20) 

(21) 

As can be seen from equations 19, 20, and 21, the trans­
formations changes the tracking problem into a regu­
lator problem with respect to the perturbation state 
variables. The steady state values of the system are, 

iop = -AeLBeL rop {22) 

!iAe =CeLli+ DeL1rop (23) 

(24) 

It is desired for the control system input vector, roF, 

to track the rotorcraft system output vector, YAe· The 
tracking error, e(t), is defined as, 

e(t) = YAe(t)- rop (25) 

and the tracking error perturbations and steady state 
values are 1 

e = CeLliop (26) 

e =(DeLl- CeL!AclBeL- I)rop (27) 

Consider a performance index~ JsR 1 which is com­
prised of a combination of tracking error perturbations, 
steady state tracking error, and control system input 
all excited by the step function defined above. 

Q, R, and V are positive definite matrices chosen by 
the designer. Equation 28 is equivalent to, 

where, 

The vast majority of optimal output feedback algo­
rithms compute the cost functional by using the solu­
tion of the Lyupunov equation, A~LP+ PAeL = Q to 
directly compute JsR· Here, equation 29 is computed 
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by numerical quadrature. While solving equation 29 
by numerical quadrature is considerably less efficient 
than the Lyupunov equation method mentioned above, 
it does avoid problems with ill conditioned systems. 
Since X oF is governed by a differential equation, initial 
conditions for ioF are required to solve for the time 
integral quadratic portion of the cost function. Using 
equation 15, the initial conditions for ioF are, 

(31) 

In contrast to conventional optimal output feedback 
regulators, the initial conditions for ioF are specified 
by the problem definition. 

3.2 Harmonic Response Cost 

For the harmonic response cost, consider inputs of the 
form /j = rHR sin nt. The harmonic cost function is 
given by equation 32. 

JsR = 1"" eT Pedt + i?We (32) 

The matrices P and W are positive definite and chosen 
by the designer. The vector e is given by equation 25 
with appropriate harmonic inputs creating YAC and 15 

while e is the maximum error over on cycle at steady 
state. 

3.3 Cost Minimization 

The total cost function is given by, 

J = JsR +JHR (33) 

The control system parameter optimization problem 
is to minimize the cost function, J, where the inde­
pendent variables are the variable control system pa­
rameters. Thus, the control problem is essentially a 
multidimensional optimization problem where the di­
mension of the optimization is equal to the number 
of variable control system parameters. Improved con­
trol system parameters, at least with respect to the 
cost function, can be computed by lowering the cost 
through suitable modification of the variable control 
system parameters. In this work, the simplex method 
for minimization of multi variable cost functions is used. 
Details of the method are available in Reference 2. 

4. Higher Harmonic Rotor Controller 

To illustrate the method above, a 0.4 scale B0105 rotor 
system used for higher harmonic rotor control experi­
ments in the DNW wind tunnel is considered. Details 
on the higher harmonic rotor system and related ex­
periments with the system can be found in References 
3 and 4. The following presents a brief overview of the 
higher harmonic rotor system linear model. 

The state space model utilized for design purposes is 
valid in a hovering flight condition and only represents 

FRZ 

KNs"2+KNs 

s"2+8s+l6 s"2+16 

FRZREF 

ZSP 
FZSP 

ZSPREF 

ZSP 

ZSPDOT------------------~~ 

Figure 4: Higher Harmonic Rotor Controller Block Di­
agram 

the vertical axis. The mathematical model of the ro­
tor includes collective flap and torsion blade flexibility 
modes and a two state servo actuator. The states of 
the model are the pitch angle at the blade root, verti­
cal deflection of the blade tip, angular rotation of the 
blade tip, pitch angle of the blade tip, first flapping de­
flection mode, second flapping deflection mode, third 
flapping deflection mode, first torsion deflection mode, 
the derivatives of the above eight states, pressure differ­
ence of the servo actuator, and the displacement of the 
servovalve piston. Thus, the rotor and actuator plant 
model contains 18 state variables, 1 input which is the 
commanded actuator force, and 2 outputs to be tracked 
which are the rotor force and the swashplate displace­
ment. The control system block diagram is given in 
Figure 4. The actuator force command, FZSP, is 
formed as a combination of the vertical rotor force er­
ror, FRZ- FRZREF, the swashplate displacement 
error, ZSP- ZSP REF, the swashplate displacement, 
ZSP, and the derivative of the swashplate displace­
ment, ZSP DOT. The first control task is to guaran­
tee an identity of the 4/rev rotor force, F RZ, with the 
commanded 4/rev rotor force, F RZREF, as time ap­
proaches infinity. This is achieved by feeding back the 
error signal, F RZ- F RZ REF, through a prefilter and 
4/rev inverted notch filter as shown in Figure 4. The 
second control task is to guarantee an identity of the 
mean swashplate displacement, ZSP, and the static 
reference signal, ZSP REF. This is achieved by feed­
ing back the swash plate displacement error through an 
integrator. Additionally the swashplate displacement, 
and the derivative of the swashplate displacement is 
fed back in order to improve stability of the closed loop 
system. 

The control system thus contains a total of 5 state 
variables. The control system parameters that can be 
varied are K·N, KN, K1, KZSP, and KZSPDOT 
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and their baseline values are -12.584, -331.3, -120000, 
-325000, and 1050000, respectively. For simplicity, the 
matrices Q, R, V, P, and W have been assumed diag­
onal. The parameter values for the above matrices and 
roF and rHR are given in Table. The resulting baseline 
total cost function equals 13.82. With the cost function 

Matrix/Vector Element 1 Element 2 

Q 0 1 
R 1 -
v 0 1 
p 1 0 
w 0 0 

roF 0 1 
ryR 1 0 

Table 1: Cost Function Weightings 

weightings in Table , a combination of the mean value 
of the swashplate displacement tracking error pertur­
bation, swashplate displacement steady state tracking 
error, steady state control effort, and the 4/rev rotor 
force is minimimized. Figure 29 shows the normalized 
accumulated cost function versus time. As can be seen 
in Figure 29, the cost function converges to its final 
value after approximately 20 non-dimensionalized sec­
onds. The time step used for the time integration was 
0.00044 and was based on having 10 integration points 
for the highest frequency oscillation. 

The five variable control law parameters were opti­
mized using the optimal output feedback tracking for­
mulation developed above with respect to the weight­
ings defined in Table . The cost function was reduced 
from 13.82 to 8.02 in 10 iterations. The optimized val­
ues for KN, K·N, K1, KZSP, and KZSPDOT are 
-17.02,-172.35,-291858.9,-21929.2, 1495190.7, respec­
tively. Figure 6 shows the 4/rev force versus time for 
the baseline and optimized system for F RZ REF = 
100 sin 4t and ZSP = -0.01. From Figure 6 it can 
be seen that both the baseline and optimized systems 
settle at approximately the same time, however, the 
F RZ 4/rev response of the baseline system exhibits 
overshoot which is not present in the optimized design. 
Figure 7 shows the mean swash plate displacement ver­
sus time for the baseline and optimized systems for 
FRZREF = 100sin4t and ZSP = -0.01. The op­
timized Z S P response tracks commands more quickly. 
However, the optimized ZSP response does have slight 
overshoot. It should be noted that due to the con­
trol system rigging geometry, negative perturbations 
in ZSP produce positive perturbations in rotor blade 
pitch angles. 

The cost function weightings in Table are noticably 
simple. The simple cost function weightings were used 
since the point of the control system parameter opti­
mization application was to exercise the algorithm. In 
reality, many modifications to the cost function weight­
ings would be executed with subsequent control system 
parameter optimizations performed until a truly over-

all improved design emerged. 

5. Concluding Remarks 

A method for modification of control law parameters 
has been presented. The method is rooted in optimal 
control theory yet can be used in concert with current 
rotorcraft system control law design practice. The key 
to the methods utility is realization of the control sys­
tem plant as a set of multiple input and single out­
put filter arranged in an arbitrary fashion. With this 
control system arrangement, current rotorcraft system 
control laws can be modeled and parameters in the con­
trol system which are permitted to vary can be isolated 
into an output feedback matrix. Subsequently, optimal 
output feedback can be applied to the system and the 
overall system performance can be improved by mini­
mizing a quadratic cost functional. It is important to 
stress that control law structure is not determined by 
the method. The technique has been applied to a 23 
state higher harmonic rotor controller successfully. 
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Appendix A - Control System Realization 

Independent of the type of control law methodology, 
control systems are generally described by a set of 
scalar block diagrams, however, the block diagram 
structure details are application specific. Thus, for 
modeling purposes it is desirable to allow the block 
diagram structure to be general and specified through 
the input data deck. The methodology promoted here 
assumes the control system is comprised of many fil­
ters arranged in an arbitrary fashion. Each filter is a 
multiple input and single output filter given in poly­
nomial form. The inputs to each filter can consist of 
pilot stick inputs, outputs of individual filters, plant 
states, and derivatives of plant states. The basic con­
trol system data for each filter consists of the order of 
the filter, the numerator and denominator coefficients 
of the filter, the number of inputs to the filter, the in­
put identifiers for the filter, and the gain value of each 
input to the filter. After the baseline control system 
data, the number of control system parameters that 
are to be varied is input along with the input iden­
tifier and filter number of the corresponding variable 
control system parameter. With this minimum set of 
input data a fully coupled state space control system 
model may be realized with the variable control system 
parameters separated into a constant diagonal matrix. 

Each of the ncsblk control system filters is given in 
polynomial form, as shown in Fig.ure 8. In Figure 8, 
od(k) is the order of the kth filter, and Nk,i and Dk,i 
are the ith numerator and denominator polynomial co­
efficients of the kth filter, respectively. Depending on 
the input data, these parameters can be fixed or vari-

od(k) ,p E Nk,p+l 
p=O 

• + 
od(k) ,p y(k) • l; 0 k,p+l 

• p=O 

Figure 8: kth Control System Filter 

able. 
Initially all the parameters of a filter are assumed to 

be variable. A filter of order od( k) has 2od(k )+3 inputs 
and outputs and the corresponding system matrices are 
populated with O's and 1 's only. This initial individual 
filter realization can be expressed as, 

x, = A,z, + B,, u, + B,2«iv + B,s«iJ (34) 

y, = C,,z, + D,11 u, + D,,2uiv + D,,au;/ (35) 

Yi/ = C,sz, + D,s, u, + D,s2Uiv + D,ssUo'J (37) 

where z, is the state vector of the od(k)th filter, u, 
and y, are the external input and output of the filter, 
Uiv and Yiv are the internal variable parameter inputs 
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and outputs of the filter, and "'I and Yi! are the inter­
nal fixed parameter inputs and outputs. The internal 
parameter inputs and outputs are related by, 

(38) 

(39) 

As an example, consider an arbitrary second order 
filter, 

(40) 

where the block diagram for the system is given in Fig­
ure 9. Using Figure 9 as a guide and assuming that all 
six filter parameters are variable, the filter is initially 
realized as, 

UJ 

u, 

{ x, } = [ 0 1 l { x, } + [ 0 0 0 0 0 0 0] 
t13 

"' 0 0 "' 0 0 0 0 0 l 0 "• us 
( 41) 

t16 

t17 

Y1 1 0 0000000 
Yz 0 1 0000000 
Y3 0 0 

{ :~ }+ 
0000010 

Y< = 1 0 0000000 
Ys 0 1 0000000 

Subsequent to initially realizing the filter, the pa­
rameters of the filter which are fixed are eliminated 
with the substitution U;f = K;tYi!· Thus each filter is 
then written as, 

where, 

- )-1 A, = A, + B,3K;1 (I - D,33K;1 C,3 

B, = B,, + B,3K,,(I- D,33K,,)- 1 D,3J 

(45) 

(45) 

( 48) 

( 49) 

B. = B,, + B,3K;J(I- D,33K;1 )- 1 D,32 (50) 

c, = c,, + D,,3K,1(I- D,33K;, )-'c.3 (51) 

C.= C,, + D,nK;1(I- D,33K;1 )-'c,3 (52) 

D11 = D,11 + D,,3K;t(I- D,33K;1 )- 1 
D,31 (53) 

iJ, = D,, + D,,3K,,(I- D,33Kif )- 1 D,az (54) 
- -1 Dn = D," + D,,3I<,,(I- D,33K;t) D,a, (55) 

iJ, = D,,, + D,,3Kif(I- D,3aK;J )- 1 D,az (56) 

The individual filters are then assembled into an 
overall state space system where the filters are uncou­
pled from one another. The overall initial realization 
can be written as, 

(57) 

(58) 

YVI = C1zxcs + D121 "E + D12zuv1 (59) 

where xes is the state vector for the entire control 
system and includes the state of all control system fil­
ters, tiE and YE are the vector of all filter inputs and 
outputs, and uv1 and yv 1 are the input and output 
feedback vectors. It should be recognized that the fil­
ter definitions concatenated into equations 57, 58, and 
59 are uncoupled. 

The filters are coupled together using the basic filter 
data, in particular, the input identifiers, Uk,j, and gain 
values, I<k,;, of Figure 8. With this data the following 
coupling matrices can be directly formed. 

Y6 00 0001101 "6 "E = I<1yE + I<,o + I<axAc + K4:i:Ac + I<suu (50) 
Y7 0 0 1110000 U7 

If the parameters Nz and D, are variable, then 
would be given by, 

{ u, 
} = [ ~2 0 ]{ Yz } "• -D, Y< 

while K;t would be given by, 

l 
UJ H 

N, 0 0 0 

H 
Y1 

U3 0 N3 0 0 Y3 

"• 0 0 -D, 0 Ys 
us 0 0 0 1/Da Y6 

( 42) where, UJ 1 is the input from a variable filter gain input, 
and, Kiv 

(43) 

l 
(44) 

uu = Kuyu (51) 

YII = G,yE + c,o + G3xAc + c.xAc (52) 

The final control system model with the variable pa­
rameters separated from the plant equations is arrived 
at by substituting equation 50 into equations 57, 58, 
and 59. Also, the variable parameters, UII, are ap­
pended onto UJV to form the complete vector of vari­
able parameters, uaF· The final equations are, 

G12- 8 



YE = Q,xes+Q,6+Q3xAe+Q.i.w+Q,uoF (64) 

YOF = L,xes + L,6 + L3xAe + L<:i:Ae + L1«0F (65) 

where, 
J1 = A1 + BI1N1 

J, = B1,N2 

h = BnNs 

J• = Bl1N4 

Js = [ B12 + BnNs B11Ns ] 

Q, = rM, 
Q, = rM2 

Q3 = fMs 

Q. = rM4 

Q, = rM1 

L, = [ ~: ] 

£2=[~~] 

£3 = [ ~: ] 

L• = [ ~: ] 

L1 = [ ~: ~: ] 
M, =[I- DlllK,r' Cn 

M, = [I- Dn,K,J-1 Dn1K2 

M3 =[I- DlllK,]-1 DI11K3 

M• =[I- Dll,K,r' Dll,K< 

Ms = [J- Dll,K,r' D1uKs 

Ms =[I- DlllK,r' DI12 

E 1 = G,M, 

E, = G, + G 1M2 

E3 = G3+ G,M3 

E• =G.+ G 1M4 

Es = Gs+ G1Ms 

E2 = G,Ms 

N1 = K 1M 1 

N2 =K2+K1M2 

N3 = K3 + K,M3 

N• = K• +K1M4 

N5 = K 1 M 5 

Ns = Ks +K,Ms 

P, = c1, + D1,,N, 

P, = D121N3 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

?3 = D121N• 

?4 = D121N2 

Ps = D122 + D121 Ns 

Ps = D121Ns 

( 101) 

(102) 

(103) 

(104) 

The matrix r restricts the control system output vec­
tor to consist of only plant inputs and not all filter 
outputs. 

Appendix B - Output Feedback System Matrices 

H, = [J- BAeQ•r' (AAe + BAeQ3) (105) 

H, = [I- BAeQ.r' BAeQ, (106) 

H3 = [I- BAeQ.r' BAeQ, (107) 

H• =[I- BAeQ•r' BAeQs (108) 

F, = h + J.H, (109) 

F2 = J 1 + J4 H 2 (110) 

F3 = h + J4H3 (111) 

F4 = J5 + J4H4 (112) 

R, = Q3 + Q4 H 1 (113) 

R2 = Q 1 + Q4 H 2 (114) 

R3 = Q, + Q4H3 (115) 

R• = Q.H. (116) 

S,=L3+L.H, (117) 

S, = L, + L.H, (118) 

S3 = L, + L4H3 . (119) 

S4 = L1 + L4H4 (120) 

T, = CAe + DAeR, (121) 

T, = DAeR2 (122) 

T3 = DAeR3 (123) 

r. = DAeR• (124) 

Appendix C - Closed Loop System Matrices 

AcL = [ H 1 + H4v1 H2 + H4v2 ] 
F1 + F4v1 F2 + F.v2 

BeL = [ Ha + H4v3 ] 
Fa+ F4v3 

CeLl = [ T, + T4v1 T2 + T4v2 ] 

CcL2 = [ R, + R.v1 R, + R.v, ] 

DeLl = T3 + T4v3 

DeL2 = Ra + R.v3 

(125) 

(126) 

(127) 

(128) 

(129) 

(130) 
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