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ABSTRACT

Numerical simulations are presented for a NACA0015
airfoil undergoing sinusoidal pitching motion. Three
different approaches are presented: Navier-Stokes
simulations with an alternating direction implicit time
marching scheme, Navier-Stokes simulations with an
iterative time marching scheme, and a strongly coupled
viscous-inviscid interaction approach. Results are presented
for three cases: steady case, attached flow, and moderate
stall.  Among these cases, the moderate stall case is further
analyzed to assess the effects of grid density, numerical
viscosity and transition on the computed results.

It is found that all three methods give satisfactory results
for the attached flow case. It is observed from the moderate
stall case study that the transition point prediction plays a
critical role in the prediction of airloads.  The one - equation
Spalart-Allmaras turbulence model used for moderate stall
cases did not adequately predict the airloads, particularly the
drag and pitching moment hysteresis. Finally, it is found that
the combination of a coarse grid and high values of
numerical viscosity can lead to thicker boundary layers and
earlier separation, and can dramatically affect the
computations.

INTRODUCTION

During the past two decades, there has been an increased
reliance on the use of computational fluid dynamics methods
for modeling rotors in high speed forward flight.
Computational methods are being developed for modeling
the shock induced loads on the advancing side, first-
principles based modeling of the trailing wake evolution,
and for retreating blade stall. The retreating blade dynamic
stall problem has received particular attention, because the
large variations in lift and pitching moments encountered in
dynamic stall can lead to blade vibrations and pitch link
fatigue. Ekaterinaris and Platzer present a comprehensive

review of computational methods aimed at modeling
dynamic stall [1].

It is necessary to carefully validate the CFD methods
before these methods can be applied with confidence to rotor
and airfoil design. Fortunately there are several excellent
databases available for this purpose. During the 1970s, a
research group headed by McCroskey, McAlister and Carr
[2] developed a comprehensive set of hysteresis load data for
several airfoils for a range of flow conditions. Other
researchers (e.g., Carta at the United Technologies Research
Center) have also experimentally studied dynamic stall
phenomena [3-4]. There have been flow visualization studies
by Werlé at ONERA [5], and by Carr and Chandrasekhara
[6] that have shed light on the complex physics behind
dynamic stall.  The most recent of these databases is a
comprehensive study done by Piziali for an oscillating
NACA 0015 airfoil/wing [7]. In this work the effects of
mean angle of attack, amplitude of oscillations, reduced
frequency, transition point excursion, and tip relief effects
on the measured loads have been systematically
documented.

Under a US- France Memorandum of Agreement (MOA)
in Helicopter Aeromechanics, the present researchers have
been validating numerical methods for modeling dynamic
stall phenomena.  A coordinated effort is in place for
validating these methods using Piziali’ s 2-D data base. This
work presents the findings of this joint research.

MATHEMATICAL AND NUMERICAL
FORMULATION

This paper is a comparative study of three different
methods for modeling dynamic stall phenomena. The
mathematical and numerical details behind these methods
have been extensively published in open literature [8-22].
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Therefore, in this work, only a brief description of the three
approaches is given.

Georgia Tech RANS Implicit Time Marching method

In this approach, the Navier-Stokes (N-S) equations are
solved in a body-fitted coordinate system. These equations
may be formally written as:
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Here ρ is density; u, v are the Cartesian components of
fluid velocity; T is the temperature; and p is the pressure.
The quantities τxx, τxy, and τyy are the viscous stresses that
are computed using Stokes’  relations, with the molecular
viscosity augmented by the eddy viscosity. The quantity k is
the thermal conductivity of the fluid, augmented by eddy
conductivity. The quantity J is the Jacobian of
transformation, while (ξx, ξy, ζx, ζy) are the metrics of
transformation. U and V are called the contravariant
components of velocity, and may be written as:
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Here xτ and yτ are the velocities of the points on the grid
in an inertial frame, associated with the pitching motion of
the airfoil. These quantities can be analytically computed if
the airfoil motion is specified.

Standard second order accurate central differences are
used to approximate the spatial derivatives and the metrics in
the above equations. The temporal derivative is
approximated by a two point backward difference formula.

This discretization leads to a system of nonlinear
simultaneous equations for the flow properties at each time
step, which may be formally written as follows:
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Here ‘n’  refers to the time level where the solution is
known, and ‘n+1’  is the next time step. The time step is
given by ∆t.

Use of central differences to approximate the derivatives
in equation (1) can lead to an odd-even decoupling of the
solution, which exhibit themselves as oscillations in the
solution of wavelength 2 ∆ξ and 2 ∆η. These oscillations are
filtered out using the well known Jameson-Turkel-Schmidt
filter made of blended second and fourth differences of the
flow properties [21]. The filter terms are multiplied by a
factor that varies from 0.2 to 0.5. This is the same order as
the coefficient found in the numerical viscosity term in
approximate Riemann solvers [22].

The above equations are solved by linearizing the right
hand side of equation (3) about the previous time level so
that to the following form results:
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The above may be viewed as a sparse penta-diagonal
system of simultaneous equations. The matrix is
approximately factored into two tri-diagonal matrices as
discussed by Beam and Warming [23]. The tridiagonal
matrices are easily inverted using the Thomas algorithm.

Once 1ˆ+∆ nq is known, the flow properties may be updated
as

11 ˆˆ ++ ∆+= nnn qqq                          (5)
Full linearization of the Jameson-Turkel-Schmidt filter

term would increase the bandwidth of the matrix on the left
hand side, requiring block-penta-diagonal inversion of the
matrices. Therefore, a simple second difference filter is used
on the left hand side. For additional details of the Georgia
Tech method, the reader is referred to Ref. 8.

ONERA Navier-Stokes method

The ONERA Navier-Stokes code [9] is a multidomain
solver for structured grids with a cell-centered finite-volume
discretization. The numerical scheme corresponds to the
Jameson’ s scheme [21], and uses the method of lines to
decouple the spatial and temporal discretizations. The
starting point in this approach is the same as equation (3),
written in the following semi-discrete form:

)(qR
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                                 (6)

where R(q) represents the “residual” made of convective and
diffusive fluxes. Second-order central differences are used
for all spatial derivatives. As in the Georgia Tech solver, the
residual R(q) includes a blend of linear 4th-difference-based
and 2nd-difference-based artificial dissipation term.  This
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dissipation term is needed to suppress the odd-even
decoupling and to prevent the appearance of oscillations in
the neighborhood of shock waves or stagnation points.

When only the steady state solution is of interest, a variety
of convergence acceleration techniques are available
including local time stepping, FAS multigrid method [10]
using V-cycles, and the implicit residual smoothing of Lerat
et al. [11].

In unsteady flow applications, although a global time
stepping algorithm is implemented [12], we have used the
dual-time stepping method [13,14,24], which is very
efficient for simulating low-frequency phenomena. It
consists in the resolution of the unsteady equations with a
time-marching steady-state solver using the usual
acceleration techniques, while providing a second-order time
accuracy. The governing equations are reformulated with the
introduction of a dual time step τ, such as :
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where R(q) is the residual term which contains the
convective, diffusive and artificial dissipation fluxes, R*(q)
is the unsteady residual. Sub-iterations are done until R*(q)
reaches a tolerence criterium. When the iterations converge
at every time step, the discretized form of the unsteady
Navier-Stokes equations is satisfied.

For turbulent computations, several turbulence models are
available, including Baldwin-Lomax, Spalart-Allmaras, k-ε
of Launder Sharma, and k-l model of  Smith.

The present computations require the following boundary
conditions. At the wall, the relative viscosity is zero because
of the no-slip condition. At the airfoil surface adiabatic
conditions are applied. Non-reflecting conditions are applied
at the far field boundaries. At the wake cut, continuity of the
conservative variables is ensured.

Figure 1- Common grid (257x129) for RANS solvers.

Grid Generations for N.S. Calculations: The C-grid
around the airfoil was constructed with a hyperbolic grid
generator developed at ONERA. This grid generator ensures
the regularity and the orthogonality of the mesh, which are
very important for adequately resolving the boundary layer.

A medium grid has been generated for the GIT and
ONERA Navier-Stokes calculations with 257 points in the
chordwise direction and 129 points in the normal direction to
the airfoil. The outer boundary of the grid is located
approximately 20 chords away from the airfoil. The first
point off the solid wall is placed so that the value of y+ is
less than 1 near the leading edge.

Turbulence Models for N.S. calculations: The one
equation transport model of Spalart-Allmaras [27] is used in
the present computations. A zero-equation Baldwin-Lomax
equation model has also been used when the flow is
attached. These models are employed “as is” without any
changes or adjustments to the constants in the models. In
both the Georgia Tech and ONERA Navier-Stokes analyses,
the RANS and turbulent equations systems are decoupled
from each other, so that the eddy viscosity lags the mean
flow properties by one time step.

The Spalart-Allmaras model is integrated in time in the
Georgia Tech analysis using an implicit time marching
algorithm that is identical in form to the mean flow
algorithm. The convection terms are approximated by two-
point upwind schemes. In the ONERA RANS method, the
turbulent equations are discretized on the fine grid and
solved with a multigrid strategy.

ONERA Viscous-Inviscid Interaction method

Formulation and scope : The generalized viscous-inviscid
interaction (VII) considers that the “VII splitting-coupling”
is a numerical technique (with two grids, two schemes) for
simulating truncated or full RANS equations, and no more a
zonal Prandtl approach. The VIS05 code, early developed
and still extended by LeBalleur [16,17,18], is used in its
time-consistent version [19].

The VII splitting follows LeBalleur's "Defect-Formulation
theory" [16,21,17,18] for the full RANS Navier-Stokes
equations. A thin-layer approximation, where however a
non-zero normal pressure gradient is maintained by the
theory, was used in the present work. This thin layer
approximation enables lower cost solutions, that are still
valid at deep stall, due to the "Displacement-Referential"
and viscous-inviscid overlay of the theory [18,17,16,21,22].

An advantage of the VIS05 code, that splits the solution
with two distinct viscous / inviscid schemes and solves them
on two distinct adaptive overlaying grids, is to have a very
low numerical diffusion. This makes it sure to obtain for
example, contrary to RANS solvers, in the whole viscous
path upstream separation, an effective numerical capture by
the grid of the proper boundary layer thickness that results
from  the turbulent models, and not only y+=1 fulfillment.
This is a crucial key in stall prediction.

Numerical components of VIS05 : The viscous layer is
solved by a hybrid “field-integral" technique, specific to VIS
codes, with z-discretised velocity and density profiles. The
profiles are parametrically modeled, and are designed for
attached or deeply separated flows as discussed in
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Ref.[16,17,18,21]. At each station, the flow profiles are
discretised in the direction normal to the local interacting
inviscid streamlines. This viscous discretisation, as
formulated by LeBalleur [16, 17], is non-linearly implicit in
time and space, marching in space, second-order in space (or
first-order in areas of coarse grid), grid-adaptive to the
thickness and gradient of the velocity profiles, with an
automated switch between the "direct”  mode of solution
(pressure prescribed), and an “ inverse" mode (inviscid
normal-velocity at wall or wake-cut prescribed).

The VII coupling is time-consistently strong. It is
converged at each time-step, using the “ Massive-separation"
[17,18] level of LeBalleur's "Semi-inverse" algorithm
[20,21]. It includes a stability control, that computes at each
wall / wake node the stabilizing local relaxation coefficients,
for both the direct and the inverse modes of calculation of
the viscous solution. This control is capable of yielding
stabile solutions on clustered grids, even when massive
separation and deep stall is present.

The inviscid field (in the version used) is solved using the
full unsteady potential equation. An implicit time marching
scheme is used, with an iterative SLOR technique at each
time-step. These iterations on the inviscid flow are combined
with the viscous-inviscid iterations that yield the time-
consistently strong VII coupling, and the full viscous
upstream influence recovery. A second-order centered
discretisation in space [17,18], and LeBalleur’ s rotated
upwind discretisation of spatio-temporal terms at subsonic
speeds [19], are used, with a first-order option in time.

Self-adaptive VIS05 grid : The VIS05 code uses a self-
adaptation of the viscous and inviscid C-grids (i-k) for
automatically capturing the wake geometry, and includes
additional self-adaptation of the VIS05 grid to the capture of
viscous phenomena, LeBalleur [18,17,16]. Each time-step
(Figure 2), in the k-direction normal to the viscous layer, the
discretisation is self-adapted at all i-stations, both to the
boundary-layer edge, distributing 49 nodes between wall or
wake-center and the outer boundary layer edge δ, and to the
maximal normal velocity gradient, concentrating the 49
nodes in the outer mixing-layer where deep separation occur.

Figure 2 – Instantaneous VIS05 viscous-inviscid grid
(moderate stall, k=0.038, α=15o upstroke, 257x(64+49) ).

Turbulence VIS05 model: The code uses the LeBalleur

two-equation k- ’’vu  model [16,21,17,18], denoted “ k-u’ v’
forced by parametric profiles” . The forcing profiles here deal
not only with the mean-flow, but also with the quantities of
turbulence, so making the model robust in separated flow,
and free of an excessive weight of the wall regions.

Transition-intermittency VIS05 model: The beginning of
laminar-turbulent transition is either prescribed, or modeled
at each time-step by VIS05, based on a trend toward laminar
separation, or on a quasi-steady Michel's criterion.

An intermittency model is also used in the transitional
zones, contrary to the RANS methods. In the temporary
present status and modality of use, if a laminar separation
triggers transition, the intermittency model forces the
transition to occur and to be completed somewhat upstream
laminar separation. This temporary mode delays any
transitional leading-edge bubble and transforms the laminar
separation into a turbulent separation at a downstream
location, which explains an insufficient decrease in the
velocity suction peaks at leading-edge when transitional
bubbles occur.

DESCRIPTION OF THE BENCHMARK
EXPERIMENT MODELED IN THIS STUDY

The present comparative study makes extensive use of
results from an experiment conducted by Piziali at US Army
Aeroflightdynamics Directorate Ames Research center [7].
In this study, a rectangular semi-span wing made of NACA
0015 airfoil sections, as well as a 2-D configuration that
spans from wall to wall, were tested. The model had a span
of 60 inches, and a chord of 12 inches. The wing was
untwisted. Experiments were done with and without
boundary layer trips. However, the uncertainties arising from
transition modeling cannot be removed. The height of the
trips (compared to the computed incoming boundary layer)
is expected both to trigger transition and to thicken the
boundary layer with an (unmeasured) unknown amount. In
the present study, the tripped experimental data are used in
steady and unsteady attached flows, free transition ones at
moderate stall.

 The wing was instrumented with 100 pressure
transducers located at nine spanwise locations for the
complete 3-D wing case. For 2-D configuration, a total of 50
pressure transducers were used at four locations. Twenty
additional absolute pressure transducers were installed at the
mid - span location of this configuration. The present work
makes extensive use of the pressure distribution at this
location for code validation. The lift, drag, and pitching
moment loads were computed through a numerical
integration of the measured pressures. The measured
pressure data was enriched using a specially developed
interpolation to arrive at pressure data at a number of upper
and lower surface stations, before load integration.



5

Both quasi-steady and the pitch oscillation test data were
acquired. The quasi-steady data may be viewed as oscillating
wing data at a very low physical frequency and was mostly a
single cycle data. The pitch oscillation test data were
collected for 20 cycles, and were ensemble - averaged to
eliminate cycle to cycle variations. Instantaneous cycle-
averaged pressure data is available at 256 closely spaced
angles of attack during the cycle.

Reference 7 gives additional details of the experiment, and
an extensive set of results for a number of 2-D and 3-D
configurations, flow conditions, and oscillation frequencies.

RESULTS AND DISCUSSION

Calculations are presented for several different conditions
in this work. In all the cases, the freestream Mach number
was nominally 0.29, and the Reynolds number was
nominally 1.95 million. In the Georgia Tech and ONERA
RANS calculations, the flow was assumed to be fully
turbulent. The ONERA VII used a transition model, and an
intermittency model as discussed earlier.

Static Calculations

Figures 3-5 show the comparison of computed loads and
experiment data. The experimental data presented here is
quasi-steady data from a single cycle of oscillation at a very
low reduced frequency, and had some hysteresis from the
upstroke and downstroke motion. The computations were
done at fixed angles of attack, one angle at a time, and are
free of this hysteresis effect.

The above calculations indicate that the Georgia Tech
methodology has a slightly smaller lift-curve slope than the
other two methods, but stalls at approximately the same
angle of attack as the experiment. The two ONERA methods
predict the static stall to occur at 1 to 2 degrees later than the
experiment. All the three methods predict the initial rise in
the nose-up pitching moment with experiment well, but
differ from each other in the prediction of moment stall. The
ONERA Navier-Stokes method predicted moment stall to
occur around 17 degrees, while the Georgia tech method,
and the ONERA viscous-inviscid method, predict fairly well
the occurrence of the moment stall around 14 degrees as in
the experiment.

To understand the discrepancies between these three
methods, the flow field was examined. Figure 6 shows the
streamline plots at a typical angle of attack (14 degrees). It is
seen that the extent of the separated flow region, as predicted
by the Georgia Tech N-S methodology is somewhat larger
than that predicted by the two ONERA methodologies. The
larger separation region found in the Georgia Tech
simulation can be related to the previous loads evolutions.
Some speculations on the reasons for these discrepancies are
given later as part of a moderate stall simulation.
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Figure 3 - Variation of lift with angle of attack
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Oscillating Airfoil Calculations - Attached Flow

Following the steady flow studies, calculations were done
for the airfoil oscillating at a reduced frequency (k) of 0.095.
The angle of attack variation is given by:

( )tωα cos2.40.4
��

+=
At these low angles of attack, all the three methods gave

quite comparable results. Figure 7 shows comparison of
calculations from the analyses for the lift, pressure drag, and
pitching moment data. The Georgia Tech N-S and ONERA
N-S computations were carried out with an algebraic
Baldwin-Lomax turbulence model in this particular case.
From Fig. 7, it may be concluded that the present methods
do a good job of predicting the variations in lift with angle
of attack. The more sensitive pitching moments and drag
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coefficients are less well predicted, but the overall trends for
Cd and Cm are satisfactory.

N.S. - GIT

N.S. - ONERA

VII - ONERA

Figure 6. Computed static streamline patterns at 14
degree angle of attack

Moderate Stall Calculations – k = 0.095 and k = 0.038

Calculations have also been done for the airfoil
oscillating at two reduced frequencies of 0.038 and 0.095
with the following angle of attack variation:

( )tωα cos40.11
��

+≅
From the experimental data for these cases, it was found

that the airfoil exhibits the moderate stall phenomenon at the
low reduced frequency of 0.038, but experiences only a
dynamic flow separation without full stall at the higher
reduced frequency. These two cases have been selected
specifically to determine whether the codes can capture
accurately these differences observed in the experiments.
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Figure 7a. Variation of lift vs. α (attached flow, k=0.095)
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Figure 7c. Pressure drag  vs. α (attached flow, k=0.095)

All subsequent computations with the Georgia Tech and
ONERA NS codes are using a Spalart–Allmaras turbulence
model, based on the knowledge that this turbulence model
generally works better for the separated flow condition,
when compared to Baldwin–Lomax model. The ONERA
VII simulations were done using a two- equation model,
with an automatic detection of transition.

Figures 8 and 9 show comparisons of lift, moment and
drag hysteresis loops, for k = 0.095 and k = 0.038,
respectively.  The variation of the lift coefficient with angle
of attack is well predicted by the two ONERA methods at k
= 0.095, in particular for the VII method, that also performs
better at k = 0.038. Georgia Tech method, as already seen in
the static case, tends to underpredict the maximum lift and
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Figure 8a – Lift vs.α  (moderate stall, k=0.095)
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Figure 8c.  Drag vs.α  (moderate stall k=0.095)

the slope of the curve in the linear part. None of the three
methods could accurately predict either the occurrence of the
nose-down pitching moment linked to the stall at the lower
frequency of 0.038, or the drag evolution, at both
frequencies.

To understand the inability of the methods to correctly
predict the pitching moments and the mutual differences
between these three methods, additional parameters such as
the skin friction coefficient, flow reversal point,
displacement thickness, pressure at a selected time and
pressure in a complete cycle have been studied in detail.
Since the pressure data are important for understanding the
unsteady flow characteristics during the dynamic motion of
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Figure 9a. Lift vs. α  (moderate stall, k=0.038)
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Figure 9c. Drag vs. α  (moderate stall, k=0.038)

the airfoil, discussion on the prediction of pressure data are
presented here. First, the variations of Cp as a function of
angle of attack are examined. Figures 10 and 11 show these
results, at k = 0.095 and k = 0.038, respectively.
Instantaneous surface pressure distribution at a typical angle
of attack is shown in Fig. 12.  It was observed that the
leading edge suction peak is overpredicted by the ONERA
methods relative to experiment during the upstroke resulting
in a larger nose-up pitching moment, while the Georgia Tech
methodology underpredicts the suction peak. During the
downstroke, the Georgia Tech method produces a better
agreement of pressures with experiments in the aft regions of
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Figure 10c. Variation of Cp vs. angle of attack, moderate
stall, k=0.095, x/c=0.85

the airfoil (Fig. 10c, 11b), in correlation with the
underestimation of the pressure peak (Fig. 10a).

 The reasons for these variations have been tracked to the
following factors: a thicker boundary layer in the Georgia
Tech analysis due to the inherent numerical viscosity in the
method, the lack of a transition model in the Georgia Tech
and ONERA-NS methods, and the sensitivity to transition
and intermittency models in the ONERA-VII method.
Further work is in progress to identify and reduce these
sources of errors.
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Figure 11a. Variation of Cp vs.angle of attack, moderate
stall, k=0.038, x/c=0.55
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Figure 11b. Variation of Cp vs. angle of attack, moderate
stall, k=0.038, x/c=0.85
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Figure 12.  Moderate stall - k=0.038 – Instantaneous
pressure coefficients - α=13.35° down stroke

Figures 13 and 14 show the instantaneous streamlines and
Mach number contours for the three methods, at a particular
angle of attack during the downstroke. It is seen that the
Georgia Tech methodology (with the higher numerical
viscosity coefficient of 0.2, compared to the value of 0.064
used in the ONERA-NS method) predicts a thicker boundary
layer and a more pronounced and extended separation area,
compared to the ONERA predictions. This thicker boundary
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GIT - N.S.

ONERA - N.S.

ONERA - VII

Figure 13. Moderate stall - k=0.038 – Streamlines around
the airfoil -  α=13.35° downstroke

layer leads to a lower suction peak during the upstroke, and
lower pressure values in the trailing edge region during the
downstroke.

The qualitative shape of the iso-Mach contours also
reveals differences between the three methods. It can be
observed in thetwo RANS methods, with a different
intensity in Georgia Tech and ONERA-NS results, the
existence of a Mach number deficit, convected just above
the viscous layer, that does not. appear in the ONERA-VII
field, and that has been analyzed as an undue entropy layer.

GIT - N.S.

ONERA - N.S.

ONERA - VII

Figure 14.  Moderate stall - k=0.038 – Mach number
contours around the airfoil - α =13.35° downstroke

Unsteadiness and  Frequency Effects

As the reduced frequency is increased, experiments
indicate a delay in the onset of stall, and an increase in the
Clmax values. All the three methods predict qualitatively
rather well the hysteresis at the higher reduced frequency,
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Figure 15.  Moderate stall – restitution of unsteadiness
and  frequency effects.

in Figure 15. The stall delay and an extra unsteady lift over
and above to the static lift is duly recovered by the Georgia
Tech RANS method and the ONERA-VII method. The
restitution of the frequency effect is somewhat better
reproduced in its behavior and intensity by the ONERA-VII
approach in this case.

Sensitivity Analysis to Grid Resolution  for GIT
Navier-Stokes Calculations

A limited set of calculations have been done to assess the
effects of grid density on the calculations. A coarse 257x65
grid and a medium 257x129 grid were used.

 Figure 16 shows the effects of grid on the computed lift
and pitching moments in Georgia Tech method, while
figures 17 and 18 show the streamline and Mach number
contours at a typical instance in time.

 As may be expected, the combination of a coarse grid
and a high numerical viscosity was found to lead to an
artificially thicker boundary layer on the 257x65 grid, and
had profound effects on integrated loads. The agreement
with experiment is surprisingly better with coarse grid than
with finer grid.
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Figure 16. Influence of grid resolution on airload
(Georgia Tech NS) .
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a )-coarse grid

b – medium grid

Figure 17. Influence of grid resolution on streamlines
around the airfoil (GIT-NS) - α=13.35° downstroke

a - coarse grid

B – medium grid

Figure 18.Influence of grid resolution in GIT-NS method,
Mach number contours α =13.35° downstroke.

Effects of Numerical Viscosity on Hysteresis Loops in
ONERA Navier-Stokes Calculations

The Jameson’ s dissipation coefficient can play an
important role on the prediction of the separation
phenomenon. To study these effects, a series of calculations
were done with the ONERA-NS analysis, where the values
of this coefficient χ4 generally vary from 0.016 to 0.064.
Figure 19 clearly shows that the prediction of the lift
hysteresis loop is modified when increasing the artificial
viscosity coefficient χ4 from 0.032 to 0.064. In the linear
part of the upstroke phase, as well as in the beginning of the
downstroke phase, the Cl values are closer to the
experiment. The width of the hysteresis loop is increased,
and is closer to the experiment. Unfortunately, no real
improvement of the evolution of the pitching moment
coefficient is obtained.  It has been verified that the decrease
of the Cl value in the linear part, between 7° and 15°, for
viscosity coefficient of 0.064 can be explained by the
decrease in the pressure suction peak at the leading edge on
the upper surface.
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Figure 19. Influence of RANS artificial viscosity for
ONERA Calculations – Comparison of lift coefficients.

Furthermore, near the trailing edge, for α=15° and
α=13.35° downstroke (Figure 20), one can notice a larger
extent of the flow separation from the trailing edge, when
χ4=0.064. The influence of the χ4 coefficient on the velocity
profiles, near the trailing edge (x/c=0.88), in the beginning
of the downstroke phase (α=13.35°) is clearly shown in
Figure 21. With χ4=0.032, the velocity field is always
positive, and represents a slight beginning of flow
separation. The thickness of the boundary layer is equal to
10% of the chord. With χ4=0.064, the velocity profile
begins to be negative, which is linked to a flow reversal due
to the separation phenomenon. Then, the velocity field
becomes positive, and the thickness of the boundary layer
(including the thickness of the separated flow) is equal to
14% of the chord. Finally, it has been checked that the
increase of the artificial viscosity leads to, in some manner, a
smaller level of eddy viscosity, especially for α=15° and
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α=13.35° downstroke. This may explain the larger extent of
the flow separation.

ONERA - N.S. - χ4 = 0.032

α ° ↓

ONERA - N.S. - χ4 = 0.064

Figure 20. Influence of artificial viscosity on streamlines -
α=13.35° downstroke
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Figure 21. Influence of artificial viscosity - velocity profile
in ONERA-RANS calculations

Sensitivity Analysis :  Transition Influence  from
ONERA-VII  calculation

The viscous-inviscid approach VIS05 has indicated early
in this study the importance of the transition treatment in
such calculations at rather low Reynolds number. In all the
cases reported here, static and dynamic ones, the VIS05
method predicts that the laminar separation occurs, on the
upper surface, somewhat downstream the suction peak.

 In the RANS codes that do not have an intermittency
model and are run in a fully-turbulent mode, the
intermittency of the transitional areas are unphysically
simulated by the turbulence model,  which in theory is not
designed for this. Thus no conclusions can be drawn on the
transitional flow restitution, the transitional bubbles and
their bursting, and on the sensitivity of static or dynamic
RANS computations to the beginning and to the extent of
the transition.

The VIS05 code has an intermittency model, but the
physical adequacy of this preliminary model is still
acceptable only for attached flow, so that VIS05 computes
the laminar or turbulent separated flows, but not yet the
transitional ones. Then, the VIS05 method is reliable in the
prediction of laminar separation, especially with its quasi-
negligible numerical dissipation for predicting the thickness

a) Transition location prescribed at x/c=0.005

b) Transition location computed: Upstream, but
very close to,  instantaneous laminar separation

Figure 22 - Sensitivity to transition location given by
VIS05 at moderate stall (k=0.095,  α=13o,  downstroke)



13

of the boundary layer along the laminar path. The method is
also reliable in estimating the sensitivity of the flow
computation to the location of the beginning of transition,
when the transition is completed upstream laminar
separation.

Figure 22 displays an example of the very high sensitivity
of the flow that was found by VIS05, simply with minor
changes in the beginning of a transition that is assumed to be
fully completed upstream laminar separation. It is
worthwhile to note that these small changes,  implemented
for example as a variation in the shape parameter of the
laminar velocity profile for which the beginning of transition
is assumed near separation,  are found to have the same
noticeable weight on the trailing-edge separation extent as
the previously observed sensitivity of the RANS simulations
to the grid refinement, and to the numerical diffusion.

 It can be expected, then, that the sensitivity to
intermittency models, and to transitional flow description,
would be found larger and stiffer for simulations solving
physically the transitional zones, that, in real flows, are
spread within the separated flow regions themselves, both in
the case of a leading-edge bubble, and in the case of a
bursting of leading-edge separation.

CONCLUDING REMARKS - LESSONS LEARNED

Three different numerical methods have been applied to
the static and dynamic stall characteristics of a NACA0015
airfoil. To avoid effects of different grid density, identical
grids have been used for the two RANS methods. Despite
the specificity of the VII method, the same streamwise grid
as for RANS has also been maintained. These calculations
aim at learning lessons for improving each method. Good
agreement with experiments has been obtained for the static
stall case, and for the attached flow. Large discrepancies
between experiment and calculations were found for the
moderate stall case.

 At first glance, it is bewildering to see the variations in
the predictions and the overall poor agreement with
experiments for the moderate stall cases. A careful
examination of the three methodologies indicates the
following lessons.

1. All the results obtained with the ONERA
generalized viscous-inviscid interaction method VIS05
show the presence of a laminar separation in all cases.
The VIS05 solutions point out that the numerical
capture of the physics (simply at RANS level, a fortiori
in LES) requires streamwise grid refinement near
laminar separation area and intermittency models for
transitional flows description, in addition to the
turbulence model.

2. The present VIS05 viscous-inviscid solutions, that
are almost free of the undue numerical diffusion of
RANS computations,  and that benefit from a first step

of intermittency model,  have nevertheless assumed that
transition is triggered by just upstream laminar
separation. This unphysical temporary assumption
probably delays the loss of leading-edge suction by
laminar separation, and causes the residual deviations
on drag and moment, at moderate stall, despite a rather
favorable resolution of the static and dynamic lift.

3. Both in VII and RANS approaches, further
progress is needed in the modeling of transition with
intermittency models, and in the numerical capturing by
the grid of laminar and transitional separations, in order
to satisfy not only the normal discretisation inside the
incoming boundary layer upstream separation, but also
the discretisation of the streamwise length of the
physical compression at separation.

4. Although the Georgia Tech and the ONERA
Navier-Stokes methods have much in common in the
way the governing equations and turbulent transport
equation are discretized, there are notable differences in
the way the Jameson-Turkel-Schmidt low past filter
terms are treated. Both analyses require (as does the
Jameson-Turkel-Scheme) the low pass filter to be scaled
by a user specified coefficient. The lower values used in
the ONERA method appear to produce a thinner
boundary layer, less prone to separation, compared to
the Georgia Tech method. It also leads in the ONERA
simulations to an improved recovery of the pressure
coefficient to its stagnation values near the trailing edge.

5. Further progress is needed in the discretisation of
the numerical schemes for RANS methods. It will be
advisable to perform further computations using
minimal values of numerical viscosity to accurately
study the effects of different physical modelings, such
as turbulence and transition.

6. Beyond the only validation of the Balwin-Lomax
and the Spalart-Allmaras turbulence models, it is worth
investigating the use of two-equation turbulence model,
for the moderate stall case, in conjunction with an
appropriate transition model.

7. Further sensitivity studies of the RANS methods
have also to be done, with higher grid density. Initial
results on grid sensitivity indicate that the computations
on the coarser grid provide a thicker boundary layer,
and a more pronounced separation.

This study has been performed under a cooperative
memorandum of agreement (MOA) in the area of helicopter
aeromechanics between the US Army and the French SPAé
at Ministry of Defense.
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