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Abstract: Black-box model identification methods of the subspace class can provide more accurate multivari-
able continuous-time state-space models with respect to frequency-domain procedures applied to structured
models. The use of black-box models, however, comes with a number of issues, which have to be addressed
to successfully employ them in the control design toolchain: the aim of this paper is to discuss the main issues
which have to be dealt with before the raw black-box models can be effectively employed for control law design.

1. INTRODUCTION

Helicopter attitude control law design is a very chal-
lenging problem, as helicopters exhibit open-loop un-
stable, non-minimum phase, intrinsically multivariable
attitude responses, to which tight stability and per-
formance requirements must be imposed. The com-
plexity of the design problem is further increased by
the difficulty of accurately capturing attitude dynamics
with physical models: as is well known, while direct at-
titude responses can be reasonably well represented
by first-principles models, cross-terms in the attitude
dynamics could not be captured with sufficient accu-
racy for control purposes. The above discussion mo-
tivates the significant interest in rotorcraft model iden-
tification over the last few decades, which has led to
the development of numerous dedicated methods and
tools, both in the time-domain and in the frequency-
domain (see for example the recent books [1,2] and the
references therein).

Most of the existing rotorcraft model identification
literature focuses on the estimation of the parame-
ters of physically-motivated model structures, i.e., sta-
bility and control derivatives and time delays in lin-
earised flight dynamics models. While this approach
has some advantages as it may lead to gathering
some physical insight from the obtained models, the
fact that the model structure is fixed is a loss of flexi-
bility in the identification procedure, which might turn
out as a performance penalty with respect to black-
box methods. Indeed, it has been shown [3] that black-
box methods of the Subspace Model Identification
(SMI) class [4,5] can provide more accurate multivari-
able continuous-time state-space models with respect
to frequency-domain procedures applied to structured
models. Currently, continuous-time black-box mod-

els identified using subspace methods [3] are being
successfully used at Leonardo Helicopters for the
assessment of the Automatic Flight Control System
(AFCS) and for the dynamics validation of nonlinear
physical models (see also the companion paper [6]).

The use of black-box models, however, comes with
a number of issues, which have to be addressed
to successfully employ them in the control design
toolchain: the aim of this paper is to discuss the main
issues which have to be dealt with before the raw
black-box models can be effectively employed for con-
trol law design. More precisely, the following points
will be addressed and illustrated using models identi-
fied for Leonardo helicopter prototypes:

• Uncertainty modelling: the uncertainty of the
identified models has to be quantified. The analy-
sis of the asymptotic variance for subspace meth-
ods has been widely discussed in the literature [7]

and both explicit expressions and computational
approaches to the problem of evaluating model
uncertainty have been developed [8].

• Analysis of black-box models: the identified mod-
els have to be analysed to check that they do not
contain modes introduced by numerical artifacts.
Such a verification is mainly carried out in terms
of classical modal analysis. Similarly, the output
equation has to be inspected to check the ele-
ments of the direct feed-through term D, which is
returned by the identification procedure but which
is likely to be non-physical.

• Physical interpretation of black-box models: the
main downside of subspace methods is that they
return state-space models in which the state vari-
ables cannot be given a physical interpretation.



However, a state transformation can be con-
structed such that the output variables have a
one-to-one dependency on the state variables,
i.e., the output matrix is the identity matrix or a
partition of the identity matrix.

2. BLACK-BOX ROTORCRAFT MODEL IDENTIFI-
CATION

The theory of MIMO linear systems was already
completely understood by the late 70s [9], and yet from
a practical point of view black-box identification of
MIMO systems remained an issue until the late 80s.
The cause for this was the estimation of the struc-
tural indices that characterize the parameterizations
of MIMO systems, which is tricky and often leads to
ill-conditioned numerical problems [10]. SMI methods
offered exactly the potential to overcome this difficulty:
classical SMI methods, developed in the early 90s for
the estimation of discrete-time models [11,12] allowed
for the first time to deal with MIMO problems in an
effective way, thanks to the simple and non-iterative
implementation. Extensions to continuous-time sys-
tems followed a few years later [13,14] and more re-
cently methods capable of dealing with data collected
in closed-loop (as is typically the case in rotorcraft
applications [2,15,1]) were developed as well, both for
discrete-time [16] and continuous-time [4].

The problem of continuous-time black-box state-
space model identification can be concisely stated
as follows, with reference to the linear, time-invariant
continuous-time model

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t)(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively,
the state, input and output vectors and w ∈ Rn and
v ∈ Rp are the process and the measurement noise,
respectively, with covariance given by

E

{[
w(t1)
v(t1)

] [
w(t2)
v(t2)

]T}
=

[
Q S
ST R

]
δ(t2 − t1).

Note that in this setting the input u and the noise pro-
cess w,v are not required to be incorrelated, so that
data collected under feedback can be used without
incurring any bias in the estimates. The system ma-
trices A, B, C and D are such that (A,C) is observ-
able and (A, [B,Q1/2]) is controllable. One or more
datasets {u(ti), y(ti)}j , i ∈ [1, N ], j ∈ [1,K] of sam-
pled input/output data (possibly associated with a non
equidistant sequence of sampling instants) obtained
from the true system are available.

Then, the problem is to provide estimates of the
state space matrices A, B, C and D (up to a similarity
transformation) on the basis of the available data. The
model identification algorithm considered herein is the

Continuous-Time Predictor-Based Subspace IDentifi-
cation (CT-PBSID) method, which uses time-domain
data to compute a black-box estimate of a linear state-
space model in the form (1). A detailed presentation
of CT-PBSID can be found in previous publications [4];
in this paper only a concise description of the algo-
rithm is provided:

• the time-domain data is converted to the La-
guerre domain by means of the transformations

ũ(k) =

∫ ∞
0

`k(t)u(t)dt

ỹ(k) =

∫ ∞
0

`k(t)y(t)dt(2)

where ũ(k) ∈ Rm, ỹ(k) ∈ Rp and `k(t) is the im-
pulse response of the k-th Laguerre filter, defined
as

(3) Lk(s) =
√

2a
(s− a)k

(s+ a)k+1
.

• Using the transformed data, algebraic data equa-
tions are formed, to represent the input-output
behaviour over a ’past’ horizon p and a ‘future’
horizon f (in terms of the index k, now inter-
preted as a discrete-time index).

• From the data equations an estimate of the
model order and of the state sequence of the sys-
tem over the future horizon can be computed.

• Finally, the state space representation of the sys-
tem in the discrete-time k can be estimated and
the original continuous-time dynamics is recov-
ered.

The obtained state-space black-box models, how-
ever, come with a number of issues, described in the
Introduction, which have to be addressed to employ
them in the control design toolchain. Approaches to
each of these issues will be illustrated in the following
sections.

3. UNCERTAINTY MODELLING

Classical parameter estimation methods based on
the maximum likelihood principle provide information
about the asymptotic variance of the estimates in
terms of the Cramer-Rao bound (see for example [15]).
Similarly, the analysis of the asymptotic variance for
subspace identification methods has been widely dis-
cussed in the literature (see, e.g., [7] and the refer-
ences therein) and explicit expressions for it have
been worked out. In a parallel development, a compu-
tationally viable approach to the problem of evaluating
the uncertainty of models identified using subspace



algorithms (both for discrete-time and continuous-
time models) has been developed, in which the boot-
strap is employed to evaluate the standard deviation
of invariants of the estimated models, such as the
eigenvalues and the frequency response functions [8].
Such uncertainty information can be combined with
uncertainty estimates associated with nonparamet-
ric frequency response function estimates to develop
control-oriented uncertainty model structures.

In this Section a bootstrap-based procedure [17] for
the evaluation of the uncertainty associated with in-
variants such as the frequency response of the esti-
mated models is illustrated. The bootstrap is a com-
putational statistical method which can solve the fol-
lowing problem: given a random, independent, iden-
tically distributed (i.i.d.) sample x = (x1,x2, . . . ,xn)
drawn from an unknown distribution F , one computes
an estimate θ̂ of the parameter θ = t(F ) = t[x] on the
basis of the available data, and would like to assess
the accuracy of the obtained estimate, in terms of its
standard deviation or its variance. To apply the boot-
strap for variance estimation in system identification,
and with specific reference to the problem of evaluat-
ing the standard deviation for the frequency response
of the estimated model, the so-called method of boot-
strapping residuals is used, which can be synthesized
as follows:

1. Estimate the linear model [Â, B̂, Ĉ, D̂, K̂] from
the available input/output data (u, y) and com-
pute the estimate for the points of interest of its
frequency response Ĝ(jωk), k = 1, . . . , N .

2. Compute e(t) = y(t)− ŷ(t).

3. Obtain an estimate F̂e for the distribution Fe of
the prediction error. In this work a parametric es-
timate will be considered and the normality as-
sumption for the distribution of e(t) will be made.

4. Generate B replications (u∗(i), y∗(i)) of the
original data set (u, y), with u∗(i) = u
and y∗(i) obtained by feeding the identified
model [Â, B̂, Ĉ, D̂, K̂] with the deterministic in-
put u∗(i) = u and the stochastic input e∗(i), i =
1, . . . , B where e∗(i) is constructed by resampling
(with replacement) from the distribution F̂e.

5. Estimate B replications of the identified model
and of the points of interest for the frequency re-
sponse Ĝ∗(i)(jωk), k = 1, . . . , N .

6. The estimate of the standard error for the fre-
quency response of the model is finally given by:
(4)

σ̂∗
Ĝ(jωk)

=
1√
B − 1

(

B∑
i=1

(Ĝ∗(i)(jωk)− ¯̂
G∗(jωk))2)

1
2

where

(5) ¯̂
G∗(jωk) =

1

B

B∑
i=1

Ĝ∗(i)(jωk).

In a similar way one can obtain estimates of the stan-
dard deviation for the poles and zeros of the estimated
model, as will be illustrated in a numerical example in
Section 6.1.

4. ANALYSIS OF BLACK-BOX MODELS

As mentioned in the Introduction, subspace model
identification algorithms return black-box models in
state-space form, so the state variables of the identi-
fied models cannot be given a physical interpretation.
Therefore, the identified models should be analysed
to check that they do not contain modes introduced
by numerical artifacts. Such a verification is carried
out in terms of classical modal analysis. In particular,
modes are inspected with respect to the non-physical
states and with respect to the components of the out-
put vector, as the projection of the model’s modes on
the output can of course be given a direct physical in-
terpretation. At this level, modes either acting at very
high frequencies or not providing significant contribu-
tions to the input/output behaviour over the frequency
range of interest are removed, by means of conven-
tional model reduction techniques.

Similarly, the output equation of the identified model
is inspected to check the elements of the direct feed-
through term D, which is returned by the identification
procedure (unless it is modified to return D = 0) but
which is likely to be non-physical. This analysis is sim-
ply carried out by comparing the frequency response
function of the model with and without individual ele-
ments of the D matrix to inspect whether they provide
a significant contribution to the input/output behaviour
over the relevant range of frequencies.

A numerical example of analysis of a black-box
state-space model for the dynamics of a Leonardo he-
licopter is presented in Section 6.2.

5. PHYSICAL INTERPRETATION OF BLACK-BOX
MODELS

The issue of ”‘matching”’ black-box MIMO state
space models to parametric model structures as a
way to bridge the gap between black-box and grey-
box model identification (and possibly use black-box
models as initial guesses for iterative grey-box meth-
ods) has been studied by many Authors in the sys-
tem identification literature. A few solutions are
available, either based on frequency-domain model
matching [18] or on the explicit construction of the sim-
ilarity transformation relating the black-box model to
the grey-box model structure [19,20,21]. Such methods



however imply the solution of large-scale optimisation
problems, which at the current state-of-the-art can-
not yet handle the complexity of MIMO flight dynamics
models.

As an alternative, a different approach is adopted
herein, in which a state transformation is constructed
such that the output variables have a one-to-one de-
pendency on the state variables, i.e., the output ma-
trix is the identity matrix or a partition of the identity
matrix.

By means of the above-described steps the initial
black-box model given by

ẋ = Ax+Bu(6)
y = Cx+Du(7)

can be brought to the form

ż1 = Â11z1 + Â12z2 + B̂1u(8)

ż2 = Â21z1 + Â22z2 + B̂2u(9)
y = z1,(10)

in which the outputs coincide with z1. The state-space
realization of the system now has at least partial phys-
ical meaning, in the sense that the first states coincide
with the outputs of the system. In the following the
procedure to construct the similarity transformation is
described.

Consider a LTI system

ẋ = Ax+Bu(11)
y = Cx+Du(12)

with state, input and output dimension respectively
of n,m, p. The C matrix defines the output transfor-
mation. If D = 0 and C = I, then y = x, i.e., the
output coincides with the state.

In general C is not the identity matrix, nor is it
square (p 6= n); still, if the i-th row of C is a vector
made up of zeros and one of its elements is 1

(13) C = [ci,j ], i = 1 . . . p, j = 1 . . . n

ci,k = 1 k ∈ {1 . . . n}(14)
ci,j = 0 ∀j 6= k, j ∈ {1 . . . n}(15)

then the i-th output of the system depends only on
the k-th state variable (and coincides with it, if the i-th
row of the D matrix is made up of zeros). The ob-
jective is to find a state transformation such that the
C matrix of the (transformed) system is made up of
rows consistent with equations (15). In order to do
this, a two-step approach is employed:

1. a QR decomposition is applied to the C matrix
and a first state transformation depending on the
Q matrix of the decomposition is constructed;

2. by means of a second state transformation, de-
pending on the R matrix, a system where the C
matrix satisfies the requirements is eventually ob-
tained.

The QR decomposition [22] is briefly introduced in
the following. Consider a matrix

(16) X =
[
Q1 Q2

] [ R
0

]
where X ∈ Rn×p, p < n, rank(X) = p, Q1 ∈ Rn×p,

Q2 ∈ Rn×(n−p), R ∈ Rp×p. The matrices Q1, Q2 are
made up of normalized, linearly independent column
vectors and QT

1Q1 = I, QT
2Q2 = I, QT

1Q2 = 0. R
is upper triangular. Q1 is a basis for range(X). Given
the matrix X, the QR decomposition algorithm com-
putes Q =

[
Q1 Q2

]
and R.

5.1 State transformation: step 1

Consider now matrix C in equation (7), assume that
p < n and C is full rank (rank(C) = p), so that the
nullspace of C has dimension n−p, and let n1 = p and
n2 = n− p. Then, the QR decomposition is applied to
CT to get

(17) CT =
[
TT
1 TT

2

] [ R
0

]
which is equivalent to

(18) C =
[
RT 0

] [ T1
T2

]
.

Letting now

(19) T =

[
T1
T2

]
,

the T matrix can be used to perform the state trans-
formation q = Tx on the system in equation (12)

q̇ = Ãq + B̃u(20)
y = C̃q + D̃u(21)

where

Ã = TAT−1 B̃ = TB(22)

C̃ = CT−1 D̃ = D.(23)

5.2 State transformation: step 2

In view of the similarity transformation T , the C̃ ma-
trix has the following structure

(24) C̃ =
[
RT 0

]
,

i.e., it is made up by a lower triangular left block RT

of dimensions [p × n1], and a right block of zeros of
dimensions [p × n2]. This implies that the output y



depends only on the first n1 components of the state
vector q. Considering the partition of the state vector
q given by

(25) q =

[
q1
q2

]
q1 ∈ Rn1 , q2 ∈ Rn2 ,

and assuming for simplicity that D = 0 (the results
hold in the general case D 6= 0), the output y is given
by

(26) y = C̃q =
[
RT 0

] ∣∣∣∣ q1q2
∣∣∣∣ = RT q1.

Matrix RT is square, invertible and lower triangular.
It is then possible to apply another state transforma-
tion z = T̂ q, defined as

(27) z = T̂ q =

[
RT 0
0 I

] [
q1
q2

]
=

[
z1
z2

]
.

Note that since the output does not depend on q2, the
lower part of T̂ was chosen to be the identity matrix.
The transformed system turns out to be

ż = Âz + B̂u(28)
y = Ĉz + D̂u(29)

where

Â = T̂ ÃT̂−1 B̂ = T̂ B̃(30)

Ĉ = C̃T̂−1 D̂ = D(31)

and

(32) T̂−1 =

[
(RT )−1 0

0 I

]
.

Hence

(33) Ĉ =
[
RT 0

] [ (RT )−1 0
0 I

]
=
[
I 0

]
,

so matrix Ĉ has the desired structure: the p outputs
coincide with z1 = RT q1. The state realization of the
system of equation (29) now has physical meaning,
in the sense that the first p states coincide with the
outputs of the system; still the output is influenced by
the input u through the matrix D.

A numerical example of application of the above-
described procedure to a black-box state-space
model from the literature is presented in Section 6.3.

6. RESULTS

6.1 Role of uncertainty in ADS-33E-PRF small
amplitude bandwidth and phase delay anal-
ysis

This section illustrates the role of uncertainty mod-
elling of an identified model in correctly classifying

the Target Acquisition and Tracking (small amplitude)
level of an aircraft, based on the guidelines in ADS-
33E-PRF [23]. The ADS-33E-PRF defines two param-
eters that should be computed from flight tests to ex-
ploit the small-amplitude responses Level, i.e., band-
width ωBW and τp. As is well known, bandwidth is in-
dicative of the highest frequency at which the aircraft-
pilot loop can be closed without threatening stability,
i.e., it is a measure of the frequency below which the
aircraft can follow all pilot commands. Phase delay τp,
on the other hand, can be considered as an equiva-
lent time delay of a highly augmented aircraft.

According to ADS33E [23], ωBW and τp shall be ob-
tained from frequency responses as defined in Figure
1 and equation (34).

Figure 1: Definition of bandwidth ωBW and phase delay τp.

(34) τp =
Φ (2ω180)− Φ (ω180)

2ω180

π

180
[s].

To compute estimates of the frequency responses
suitable datasets should be available, e.g., responses
to sweep signals. The execution of frequency sweeps
however requires a significant amount of flight time.
Moreover even if the nonparametric frequency re-
sponse model is available, its reliability is a critical
information. In this example the CT-PBSID black-box
algorithm outlined in Section 2 is adopted, and the
uncertainty of the identified model is estimated us-
ing a bootstrap approach, as discussed in Section
3. The idea is to identify a model of the closed-loop
system, including AFCS, sensors and actuators dy-
namics, and helicopter dynamics, using pilot stick dis-
placement as input and angular rate as output, as
shown in Figure 2.

The proposed approach is time-domain based,
therefore shorter and simpler input signals can be
used, e.g., doublets and 3211 sequences. The time
histories obtained at the flight simulator are shown



Figure 2: Input and output scheme for closed-loop model
identification.

hereafter. The tests are two roll captures, but in the
test B the pilot has been asked to accomplish the task
in a shorter time and with smaller tolerance than test
A. In particular, in the second test the actuator that re-
produce the pilot maneuvering, reaches its maximum
rate. In Figures 3 and 7 are shown the lateral cyclic
stick movements for each of the two tests. It is evi-
dent that in the second case the pilot tries to adjust
the overshoot (see Figure 8) reached due to the rate
limiter that bounded the piloting speed maneuver, as
shown in Figure 9.

In Figures 5 and 9 is shown a comparison between
measured and simulated outputs, proving the capa-
bility of the identified models to capture the system
dynamics.

Finally Figures 6 and 10 illustrate the band-
width/phase delay plots for the two tests. As expected
the test A, in which the rate limiter of the actuator has
not been reached, exhibits better performance than
test B. Of course without any information about the re-
liability of the identified models even the placement on
the bandwidth/phase delay plot would be doubtful. In
this simulated example it is already known that in the
second case the rate limiter was relevant in the deteri-
oration of both performance parameters, but with real
flight data this conclusion might not be so straight-
forward. To manage this issue, the bootstrap-based
approach outlined in Section 3 has been applied, so
as to evaluate the uncertainty associated with the es-
tiimated bandwidth and phase delay. The uncertainty
estimation of the identified models, shown in Figures
6 and 10 as grey dots, suggest that in test A the real
bandwidth and phase delay of the system are close
to the identified ones, whilst in test B the real phase
delay falls somewhere in the grey cloud and so it can
be a bit far from the identified ones.

Figure 3: Test A: Lateral cyclic pilot input.

Figure 4: Test A: Roll angle.

Figure 5: Test A: Roll rate (gray: measured, black: simu-
lated).

Figure 6: Test A: Bandwidth/Phase plot.

Figure 7: Test B: Lateral cyclic pilot input.



Figure 8: Test B: Roll angle.

Figure 9: Test B: Roll rate (gray: measured, black: simu-
lated).

Figure 10: Test B: Bandwidth/Phase plot.

6.2 Modal decomposition and D-matrix analysis
for a black-box helicopter model

As an example of the analysis procedure discussed
in Section 4, modal contributions (i.e., eigenvectors)
were computed on an identified black-box model of
a Leonardo helicopter and projected on the output
space, which was restricted to the angular rates
[p, q, r] for this purpose. Modes have been labelled
with letters and numerical values of the associated
eigenvalues are not shown for confidentiality rea-
sons. Normalized values of the modal contributions
are shown in Table 1. The modal decomposition was
then applied to the on-axis response of the pitch and
roll axes in order to identify the dominant modal com-
ponents related to such axes; these are shown in
the last two columns of Table 1, respectively; Fig-
ures 11 and 12 show the modal decomposition plot
for pitch and roll axes. It can be noticed that mode
F indicates a strong participation of pitch rate; more-
over, this mode does not dominate the response of
the roll axis. On the other hand, it can be observed
that modes D,E,G,H experience a small participation
of pitch rate, despite being dominating modes in the
pitch response.

Label P Q R Pitch Roll
A 0.686 0.574 0.448
B 0.577 0.113 0.809
C 0.784 0.196 0.589
D 0.956 0.118 0.269 X X
E 0.883 0.337 0.326 X X
F 0.039 0.987 0.157 X
G 0.954 0.162 0.252 X X
H 0.613 0.170 0.772 X X
I 0.792 0.124 0.597
J 0.952 0.095 0.290

Table 1: Modal contributions projected on angular rate out-
put variables.
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Figure 11: Modal decomposition, pitch axis.
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Figure 12: Modal decomposition, roll axis.

Similarly, the output equation is inspected to check
the elements of the direct feed-through term D, which
is returned by the identification procedure but which is
likely to be non-physical. Analysis of the effect of the
D term on the frequency response was carried out:
the frequency response of the model transfer function
obtained by imposing D = 0 was checked against the
original one; normalized frequency responses of the
transfer matrix on-axis terms related to pitch and roll
axes are shown in Figures 13 and 14; the analysis
indicates that the D term in the transfer matrix has
little effect on the attitude dynamics in the frequency
range of interest, thus can be neglected; indeed the
feed-through term has an effect only at very high fre-
quency. The other terms in the transfer matrix yield to
similar conclusions and are not shown for brevity.
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Figure 13: Effect of the D term on the frequency response
of pitch axis.
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Figure 14: Effect of the D term on the frequency response
of roll axis.

6.3 Change of coordinates for a black-box model

A numerical example is presented to show the po-
tential of the state transformation approach presented
in Section 5. The identified black-box model ob-
tained in [24] is considered; the model is a discrete-
time one, but the proposed state transformation ap-
plies to continuous-time as well as discrete-time mod-
els. The input vector is u = [uroll, upitch, uyaw]T and
the output vector is y = [φ, θ, ψ]T (with respect to the
model in [24] only the attitude output has been retained
for this example). The state-space matrices of the
original model are reported for convenience

A =



0.996 0 0.005 −0.025 −0.072 0.036 0.017
−0.006 0.953 0.098 −0.084 −0.29 0.143 0.156
−0.005 −0.034 0.986 0.016 0.015 0 −0.07
−0.003 0.051 0.012 0.984 0.016 −0.209 0.303
0.006 0.052 0.006 0 0.975 0.103 −0.17
0.002 −0.008 0.004 0.046 −0.028 1.003 0.024
0.019 0.009 −0.011 0.02 0.038 0.045 0.944



B =



0.027 0.005 0.004
0.072 0.087 0.022

−0.005 0.016 −0.007
−0.029 −0.083 0
0.023 0.014 0
0.007 0.018 0.002
0.032 0.112 −0.002



C =

 −0.617 −4.448 −0.8 1.558 0.121 −0.365 −0.04
0.42 2.267 −0.412 2.117 −0.841 −0.087 0.52

−0.27 −0.254 −2.885 −1.021 −1.057 −0.059 0.08



D = 03×3.

The states of the black-box model have no physi-
cal meaning and the C matrix is full rank. In order
to partially recover physical meaning of the state vari-
ables, the state transformation given by the combina-
tion of equations (22) and (30) is applied. The simi-
larity transformations T and T̂ are respectively

T =



−0.128 −0.920 −0.165 0.322 0.025 −0.075 −0.008
−0.080 −0.325 0.215 −0.858 0.269 0.065 −0.170
−0.066 0.039 −0.875 −0.339 −0.334 −0.010 0.029
0.967 −0.123 −0.118 −0.012 0.100 0.115 −0.112

−0.110 0.154 −0.376 0.130 0.897 −0.021 0.035
−0.122 −0.030 −0.031 0.084 −0.012 0.988 0.008
0.102 −0.085 0.062 −0.143 0.036 0.016 0.978



T̂ =



4.836 0 0 0 0 0 0
−1.407 −2.995 0 0 0 0 0
0.394 0.057 3.236 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.



The resulting state-space matrices in the trans-
formed state-space system are given by

Â =



1.015 0.048 −0.059 0.076 1.471 −0.953 −0.263
−0.014 1.037 0.033 −0.246 −0.634 −0.172 1.142
−0.003 −0.006 0.995 0.026 0.058 0.059 0.026
−0.004 0.001 0.007 0.994 −0.040 0.025 −0.007
−0.015 −0.001 0.001 0.008 0.937 0.079 −0.066
0.009 0.018 −0.004 −0.007 −0.001 0.981 0.038
0.000 −0.002 −0.004 0.046 0.051 0.067 0.882



B̂ =



−0.379 −0.542 −0.095
0.112 0.062 0.053

−0.004 0.008 0.013
0.018 −0.016 0.002
0.028 0.012 0.005

−0.001 0.008 0.001
0.033 0.116 −0.004



Ĉ =

 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0



D̂ = D.

In this way, the first three components of the
(transformed) state vector coincide with the outputs
[φ, θ, ψ]T .

7. CONCLUDING REMARKS

The use of black-box state-space models has a
number of advantages in terms of the ability to cap-
ture the dynamics of the underlying system in an ac-
curate way, comes with a number of issues, which
have to be addressed to successfully employ them
in the control design toolchain, namely the defini-
tion of model uncertainty, the analysis of the con-
tribution of the individual modes to the input/output
behaviour and the possibility to recover some phys-
ical insight from the black-box model. Approaches
to handle each of these issues have been discussed
and illustrated with numerical examples, which allow
to conclude that, up to some post-processing, black-
box state-space models can be effectively used for
control-oriented purposes not unlike physical models
and grey-box models.
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