

ERF2010_004

CERTIFICATION CHALLENGES OF MIXED CRITICAL CYBER-PHYSICAL ROTORCRAFT SYSTEMS

Alex Boydston, MSEE, alex.boydston@us.army.mil; Dr. William Lewis, bill.lewis6@us.army.mil
United States Army Aviation Engineering Directorate

Abstract
Modern aircraft rely on complex and highly integrated
hardware and software systems for safe operation and
successful execution of missions. Flight safety requires
these complex avionics systems be robust and reliable.
Military avionics systems have evolved into highly
integrated subsystems composed of computer hardware and
software. As technology progresses, vehicles and their
human pilots are relying on autonomous processing systems
to a greater degree. Many critical and non-critical functions
are becoming automated. Qualification and certification of
such mixed criticality systems are problematic to schedule
and budget constraints. These problems are well known in
the industry and several groups have studied the issues in
great detail. These complex systems are identified as “cyber
physical systems” per the National Science Foundation and
Defense Advanced Research Projects Agency.
Processes for good project management and engineering
have traditionally been developed and promulgated through
the defense acquisition guidelines and by various industry
and government standards. These standards were thought to
provide guidance that, if followed, improved the chances of
developing safe, highly reliable and cost effective systems.
The foundations of traditional program management
emphasized well defined requirements, a meticulous
approach to development processes, and reliance on
extensive testing.
Industry recommendations and software incident
investigation have led to the idea that complex system
developers should have comprehensive requirements early
in the lifecycle. Inadequate requirements, poor planning,
and bad processes have been cited as causing poor design
choices in the early stages that could only be addressed later
by risk management. However, increasingly complex
systems have outstripped traditional program management
paradigms. Exhaustive testing of the most complex systems
is not affordable. Project managers assert that these
guidelines burden systems development to the point of
making it very difficult to stay within budget and time
schedule. They advocate a more streamlined approach.
Complex systems certification becomes more difficult if
programs adopt a more streamlined approach. Traditionally,
under the Federal Aviation Administration (FAA) and other
aviation authorities, qualification and certification of
airborne systems relied on a rigorous test regimen.
The question for certification authorities then becomes how
can performance of the system under development be
definitively demonstrated and established? There should be
a concerted industry effort from all stakeholders to establish
better design process guidance. These guidelines should
quantify the reliability and safety characteristics of a design
in its early phases. No matter what is adopted, demonstrated
or derived performance is required for assessing
airworthiness of these systems. The path and decisions that
are made will determine the fate of future programs.

1. Introduction
Central to asserting the airworthiness of critical systems is
proving they are safe to fly. Such systems are heavily
supported by electronic, mechanical and human control
systems. It is crucial that we adjust our processes and
guidelines for qualifying and proving future systems are safe
to fly within a reasonable budget and schedule else these
systems will become too costly to design, develop, test,
produce and maintain. This paper will discuss: (1)
progression of complexity in US Army rotorcraft, (2)
definition of mixed critical complex systems, (3) complexity
challenges, (4) development and qualification problems, (6)
notional solutions, and (7) current work in progress
addressing these challenges.

2. Progression of Complexity in US Army Rotorcraft
Since 1941, with the first United States (US) Army
helicopter (i.e., the Platt-LePage XR-1), rotorcraft
technology has grown in complexity, both mechanically and
electronically and, more recently, via software. Since 1950
some form of electronically controlled subsystem has been
attempted in rotorcraft. In 1950, a Piasecki HUP-1 was
flown with a modified Sperry A-12 analog computer
controlled autopilot [11]. In 1960 the first hover coupler was
developed to allow hands off hovering with a control
feedback of Doppler radar and radar altimeter. It was
demonstrated on an S-58, equivalent to the H-34 Choctaw
[11]. From 1971 to 1974 the US Army Air Mobility
Research and Development Laboratory and the Canadian
Department of Industry, Trade and Commerce developed
and demonstrated a digital-fly-by-wire (DFBW) flight
control system called the Tactical Aircraft Guidance System
(TAGS) in a modified CH-47B Chinook (see Figure 1).
This system used a combination of redundant computing
systems and incorporated advanced control laws. The
technology that was developed and tested on TAGS was
eventually used on the RAH-66 Comanche (see Figure 2)
including computer synchronization, built-in-test, and
majority voting and mid-value select. It proved that
complex software and hardware DFBW for rotorcraft was
achievable [11].

 US Army Photo

Figure 1 - US Army CH-47B Chinook

mailto:alex.boydston@us.army.mil
mailto:bill.lewis6@us.army.mil

 US Army Photo

Figure 2 - US Army RAH-66 Comanche

The most complex rotorcraft to this day was developed as a
joint aircraft, on a program initially led by the US Army in
the 1980s, called the V-22 Osprey (see Figure 3). The
Osprey has the ability with its tilt rotor system to fly as a
helicopter or a plane. It’s supported by triple modular
redundant flight computer architecture with DFBW and
glass cockpit.

 US Navy Photo

Figure 3 – V22 Osprey

The UH-60M Blackhawk upgrade (see Figure 4) is the US
Army’s latest DFBW project. Like the Comanche and
Osprey, the UH-60M upgrade employs a triple modular
redundant computer system that uses a combination of
majority voting and mid-value select. The control laws are
implemented in software. More than 60 functions of
varying levels of criticality interact with each other in the
UH-60M aircraft with a large part implemented in software
[12]. Thus, it can be considered a cyber-physical system.

 US Army Photo

Figure 4 - US Army UH-60M Upgrade DFBW
More examples of present day, complex cyber-physical
systems include the upgraded CH-47F Digital Automated
Flight Control System (DAFCS) which replaced an older
analog AFCS, the Full Authority Digital Electronic Control
(FADEC) system on several rotorcraft, Stability Control
Augmentation Systems (SCAS), Terrain Avoidance
Warning System (TAWS) on some military aircraft and the
glass cockpit systems such as the Common Avionics
Architecture System (CAAS) on CH-47 and CH-53.

Additionally, stringent requirements are being levied on
civil and military aircraft for Global Air Traffic
Management (GATM), Required Navigation Performance
(RNP) for area navigation (RNAV), and Traffic Collision
Avoidance Systems (TCAS). The Primary thrust of these
improvements is to place more reliance on aircraft

autonomy and decrease the reliance on ground-based traffic
management aids.

In an April 2010 Huntsville Chapter of the American
Helicopter Society (AHS) briefing by Dr. James Snider, US
Army Director for Aviation Development [13], areas were
cited for future (circa 2025 and beyond) development for
military rotorcraft which reemphasizes the growth in cyber-
physical subsystems for rotorcraft. The new development
includes focus on survivability, situational awareness,
affordability, performance, communications and lethality.
Survivability will include focus on signature reduction,
aircraft hardening, redundancy, speed, and active protection.
Situational awareness will involve virtual cockpits, more
Unmanned Aerial Vehicle (UAV) teaming, UAV swarms,
degraded visual environment control, sensor fusion, and
foliage penetrating sensors. Affordable technologies will be
promoted by adopting condition based maintenance, open-
source software, code reuse and commonality. Enhanced
performance is to be achieved via hybrid engines, active
rotor control, removal of swash plates, variable geometry
rotors, and sea based improvements. Communication
networking will include global information grid
compatibility, multilevel security, software driven
waveforms and integrated assured communications. Last,
research will be conducted for scalable and directed energy
weapons, and artificially intelligent weapons along with
target recognition and selectable yield warheads.

Obviously, the level of system complexity is increasing for
US Army rotorcraft. All of these proposed advances in
functionality will increase the human, hardware, and
software interaction and will place a heavy burden on
testing, qualification and certification unless something is
done to mitigate and improve the current approach to system
lifecycle processes.

3. Mixed Critical Complex Systems Defined
The word “complex” is derived from the Latin word
complecti which means to interweave or entwine. A
complex system has interdependencies on other parts of that
system which can exhibit linear or non-linear behavior.
“Complexity deals with interrelationships among parts or
elements. The more dependent variables [and states] a
system has the greater that system’s complexity is” [2].

The International Council on Systems Engineering
(InCOSE) defines a system as “a construct of collection of
different elements that together produce results not
obtainable by the elements alone” [3]. The European
Complex Systems Society defines a complex system as “a
system where the collective behavior of its parts entails
emergence of properties than can hardly, if not at all, be
inferred from properties of the parts” [4]. As the coupling
of parts become tighter and more dependent within a
system, the level of complexity rises. After components are
integrated into a system unexpected behavior of systems
often emerges which is not obvious at the component level.
Thus, focusing on just the components of a system is not
adequate when analyzing systems and a holistic systems
engineering approach is required.

In military and aerospace systems the concept of mixed
criticality exists in terms of safety, mission and security. A
system where a failure or defect could cause risk to human
life is called a “safety critical system”. A system where the
loss of capability causes reduced mission effectiveness is

called a “mission critical system”. Military aircraft usually
handles varying levels of security including clear,
confidential, secret and top secret. Thus, these systems are
“mixed security systems” [5].

Systems which feature a tight combination of, and
coordination between, the system’s computational and
physical elements are known as “cyber-physical systems”.
DARPA defines cyber-physical systems as “systems that
derive significant portions of their functionality from both
software and electromechanical subsystems” [33]. The
growth in Integrated Modular Avionics (IMA), software and
the mixture and management of these varying critical items
are driving complexity in design, development, testing,
manufacturing and maintainability.

4. The Complexity Challenge
Aircraft control systems traditionally were comprised of
analog pressure gauges and the transfer of control was via
mechanical means. Since the advent of DFBW technology,
aircraft have relied more on integrated circuit electronics
and software to maintain control. Aerospace systems have
required high reliability numbers to increase confidence in
those systems. Tighter tolerances on traces have impacted
aerospace electronics reliability. Integrated circuits have
increased in complexity per Dr. Gordon Moore’s law which
stated that transistor quantity per chip will double every two
years [6]. In recent years that rate has leveled off. However,
processor cores with multiple on-chip memory and internal
buses have increased driving up software system complexity
significantly.

The calculations to achieve the reliability Mean Time To
Failure (MTTF) and Mean Time Between Failure (MTBF)
has been based on known or observed physical failure
modes or extrapolated and estimated from test data. Some
argue that systems reliability gives confidence in system
safety. However, a reliable system is not necessarily a safe
system (e.g., a mower or nuclear power plant may be
reliable but unsafe if not properly controlled or handled).

Hardware and software reliability are two distinctly different
concepts. Software does not break like hardware over time.
Hardware reliability tends to have a bathtub shaped curve as
shown in Figure 5 [7]. Software is part of the systems
equation, yet the methods to calculate software reliability
have not been well established and agreed upon. Software
reliability does not adhere to the bathtub failure rate curve
like hardware, but empirically exhibits a curve more like
that shown in Figure 6. Software errors are caused by
human design and coding errors. Software does not wear
out like hardware over time, but can cause problems by its
operational context (i.e., heavy processor loading, collisions,
bus errors, race conditions, etc.) As software is upgraded
failure rates tend to increase but may decline with coding
corrections [7].

Avionics systems are becoming more software intensive.
Interlinking avionics systems may exacerbate software
dependencies. Since software is largely based on
abstractions of human thought and processes, its complex by
its nature. Software does not break or decay like hardware.
Thus, we have relied on process control through
development, testing and reporting to ensure some
confidence in the produced software.

Sadly, even with the current guidelines and standards, we
often find errors in the software late in the system design

costing programs lost time and money. Therefore, it is
important to find and resolve problems early. Figure 7
shows where faults are introduced, found and the cost of
fault removal [8, 9, and 10]. As can be seen, 70% of the
faults are introduced early in the establishment of the
requirements and only 3.5% of those faults are found in the
same stage. If the fault is found in the requirements/design
phase and removed, a minimal 1x (i.e., 1 times) cost impact
is incurred. The cost continues to rise to greater than 110x
the original cost if errors are not found until acceptance
testing just before fielding.

Figure 5 - Bathtub Curve for Hardware Reliability [7]

Figure 6 - Notional Curve for Software Reliability [7]

Figure 7 - Cost of Faults in the V-Curve [8, 9, 10]

Traditional methods of system design need to be
restructured to address complex system development.
Otherwise, systems of tomorrow will be too costly to
develop. It is crucial that appropriate methods, processes
and tools are utilized early in the requirements and design
phase to mitigate errors early in the process and save costs
and time in the overall system lifecycle.

5. Development and Qualification Challenges
Since the US Army is a large user of rotorcraft it is faced
with continuing challenges of growing complex system
development and qualification. The US Army Aviation
Engineering Directorate is responsible for ensuring
airworthiness qualification for all US Army aircraft that is
managed by the Aviation Program Element Office.
Airworthiness is composed of design approval, production
approval and continued airworthiness. To be airworthy
means that the system is safe and reliable to operate and will
perform the mission when delivered. Also, it means that the
aircraft will continue to safely perform the mission if
maintained and operated per its specifications. Any repairs
or overhaul must maintain airworthiness. Flight control
systems for the US Army must meet system reliability of
1x10-6 for tactical airspace and 1x10-9 for civil airspace.
There is some variance in these reliability levels depending
on if the aircraft is rated for Visual Flight Rules
(VFR)/Visual Meteorological Conditions (VMC) or
Instrument Flight Rules (IFR)/Instrument Meteorological
Conditions (IMC). Determining the levels of reliability is
difficult.

Current Qualification Process Needs Upgrading
Current qualification processes exist to address certifying
avionics systems; however, these processes lag technology,
making certification difficult. For years, a solid systems
engineering foundation has existed for the US Army within
the Aeronautical Design Standard Rotorcraft and Aircraft
Qualification Handbook (ADS-51-HDBK). It encourages
good requirements definition, forms the basis of good solid
detailed system specification, outlines the establishment of
key critical system and functional requirements, and
prescribes the necessary design reviews, analyses,
verification and validation within an Airworthiness
Qualification Plan which is responded to by an
Airworthiness Qualification Specification, providing
guidance to an Airworthiness Release. This process is
proven, but, as with all guidance handbooks and standards,
can be upgraded to better handle cyber physical systems.

While formalized systems engineering has been around
since the 1940s we are still using document-centric
approaches to capture and trace requirements to test.
Different modeling and analysis approaches are used across
different organizations with no ability to set a single true
model for a project and no way to communicate the modeled
system to different engineering and management groups.
This leads to disjoint or errant analyses, missed
requirements, bad integration and test coverage. Program
management and contractors conduct verification and
validation per test plans and procedures to test components,
electromagnetic interference, vulnerability, and
compatibility (EMI, EMC, and EMV), environmental
effects, and electrical power. These tests are conducted
during bench testing, within System Integration Laboratories
(SILs), and during ground and flight aircraft tests. From the
reports and witnessing of this data the US Army Aviation
Engineering Directorate (AED) determines the airworthiness
substantiation by using a mix of qualitative and quantitative
analysis coupled with best, but sometimes subjective,
engineering judgment. While processes exist to address
qualification, the processes are still geared to older federated
systems with the goal to demonstrate meeting performance
and safety criteria. A problem with this approach is that
issues found at this stage are often too late to fix

economically, thus allowed to fly with risk with warnings,
notes and cautions. Qualification processes for complex
systems are expensive and there is never enough time or
money to exhaustively test every requirement. Thus,
systems are apt to be released with unknown bugs still
existing and unspecified in the airworthiness releases and
impact statements.

Safety Requirements Determination is Late in Process
There is a need to determine completeness and validity of
not only performance requirements, but also safety
requirements early in a program. As Dr. Nancy Leveson of
Massachusetts Institution of Technology (MIT) stresses, the
original intent and rationale of requirements and their
impact to safety in a system should be captured [1]. Early
safety assessment is lacking to set assurance levels in
military aircraft. Safety design and hazard analysis should
be done early. Military aviation industry can draw from
some civil practices such as from the Society of Automotive
Engineering (SAE) Aerospace Recommended Practices
(ARPs) 4754 and 4761 or from Systems Theoretic Accident
Model and Processes (STAMP) Based Process Analysis
(STPA) method [26]. This may seem straightforward to
remedy; however, programs struggle with shrinking
development budgets and shortening schedules causing
them to detour from the recommended processes. While
following industry standards and guidelines such as DO-
178B, SAE ARP 4754 and 4761 encourages processes, they
do not prevent poor system design decisions. Conversely,
STPA does get involved in the requirements process but has
only been used in a few programs showing promising
results.

Need to Understand and Measure Complexity
Additionally, not knowing how to parametrically describe or
assess system complexity makes it difficult to tailor the
approach to such systems. There is no guidance on
acceptable means to limit complexity to qualification
requirements.

Legacy Systems Pose Challenges
The current US Army rotorcraft fleet is composed of
airframe designs dating back to the 1950-80s. Introduction
of new technology in this older aircraft frequently results in
mismatches in architecture, software and integration. These
aircraft are sometimes upgraded in piecemeal fashion
making qualification difficult. While the US Army
upgrades the fleets the technology evolves quickly before
fielding leading to early obsolescence.

Military Aviation Must Comply with an Equivalent Level of
Safety to Civil Airspace Entry Requirements
Military aircraft deals with more stringent environments and
missions than civil aircraft and is increasing in complexity
to handle those environments and missions. Military aircraft
are required to qualify to an equivalent level of safety and
show interoperability with civil infrastructure for operations
in national and international civil airspace. There are recent
requirements for GATM, which is a system that relies on the
Global Positioning System (GPS) to create more accurate
navigation. The military needs differ from civil needs,
typically requiring superior performance and different
qualification methodology. The burden is to show that
military capabilities map into safe airspace entry. Military
aircraft must take into account higher pilot workloads due to
tactical conditions during combat and other military
functions and be able to fly in harsh environments night or

day. To cope with these challenges military aircraft are
continually being upgraded to include complex fault tolerant
DFBW systems, glass cockpits, air survivability equipment,
multiple levels of security, manned-unmanned teaming and
other upgrades that were previously mentioned.

Safety Critical Software Development Process Challenges
Current and future complex cyber-physical systems with
mixed critical architecture requirements are on the drawing
boards. The processes for developing the electrical and
mechanical systems are long established through Computer
Aided Design (CAD), Computer Aided Modeling (CAM)
and description languages such as Very High Speed
Hardware Description Language (VHDL). Software design
and development processes have evolved from traditional
structural language and flowcharting to more formal
methods using methods such as Object Oriented Design
(OOD) approaches, Unified Modeling Language (UML) and
reliance on libraries such as the C++ Standard Library.
However, these newer methods have not fully been
established by the safety critical community. The
commercial industry, in less safety critical product
development, has embraced the use of OOD methods and
included multithreading within their development regime.
With military systems adopting more commercial off the
shelf (COTS) items more products that have used these
methods exists. Likewise, the workforce that is being hired
out of college is trained with OOD methods and mostly in
C/C++ and Java. Also, safety has not been included in
general engineering curricula. This adds to the challenges
for the development of safety critical systems. Development
of deterministic code is a must with safety critical systems.
Rigorous testing is attempted to flesh out all issues but often
lacks complete results some of which may be safety critical.
Waiting until the test phase to determine safety issues with
complex systems can spell programmatic disaster.

Absence of Modeling and Formal Methods
Our approach to systems engineering has not changed
drastically over the span of 50 years. We still generate our
requirements in document form and quite often struggle
with tracing the requirements down to the test level and
back up to the original requirements. This is very difficult
when multiple groups are working on a complex project. It
is possible for requirements to change and not get updated
properly or not be fully understood as their impact on other
parts of a system until it’s too late in the development.
Some programs try hard to utilize modeling and simulation;
however, the tools used by various engineering teams
involved on a project may differ and do not easily translate
to other models. Additionally, the ability to perform early
analysis of a design for critical items such as worst case
execution time, latency and data bus loading is needed
which impact safety or performance. Waiting until
integration to discover issues consumes significant program
resources (see multipliers in figure 7). 80% of the problems
are being discovered in the integration phase of a program
or later. Not being able to discover and resolve these
problems early in a program can be detrimental. It is
paramount that we verify and validate requirements as early
as possible. Thus, formal methods, modeling and simulation
are needed to flesh out the bugs at the beginning of a
program and carry a continuous verification and validation
process.

Lack of Certified Test Labs
Testing and qualifying these types of systems is critical.
SILs equipped with real systems and simulated flight
exercises the system before release to ground and flight
testing are in the critical path to achieving qualification.
Sometimes, programs employ laboratories that have not
been verified by the developer and validated by an
independent reviewer to match the system that is being built
which results in low confidence results.

Need to Better Understand Human-Machine Interaction
The majority of aircraft accidents are attributed to human
error. Human factors engineers rightfully argue that the
load of information that the pilots must deal with
necessitates quick access to the appropriate information to
reduce accident rates. According to [35], “80% of the [US
Army’s] accidents are caused by human error”. Modeling
and safety of the human cognitive aspects of cyber-physical
systems needs focused research. More can be found on this
subject in [36, 37, 38].

Declining Expertise
Other challenges in development and qualification exist.
With declining engineering school enrollments, as with
other technical fields, the gap for engineering expertise on
software intensive systems is growing. There is a lack of
trained personnel in safety, qualification and test for
complex cyber-physical systems.

6. Notional Solutions
In examining the challenges in the aerospace industry and
current practices to face the challenges, it is evident that a
shift in the design, qualification and certification approach is
needed for the complex cyber-physical systems. The
following are some suggestions to address the
aforementioned challenges.

Assign a Chief Software Engineer to Programs
US Department of Defense (DOD) acquisition guidelines
mandate that a Chief Engineer resides within each Program
Management Office (PMO). With the increasing prevalence
of software-reliant systems, the complexity of embedded
software systems and continued hardware needs, either a
Chief Software Engineer should be appointed to the PMO or
it be required that the assigned Chief Engineer also possess
software, as well as hardware and systems, expertise. This
expertise will ensure that some focus is placed on embedded
software systems in programs and that this critical area is
not just treated as a peripheral item with no importance.

Promote Simplicity and Establish a Complexity Metric
While feature rich designs grow in complexity we should
still promote simplicity in design as much as possible. By
determining such a metric we can set the design,
qualification and certification path accordingly. Dr.
Eberhardt Rechtin quoted in [2], “Purely analytical
techniques, powerful for the lower levels, can be
overwhelmed at higher ones. At higher levels, architecting
methods, experience-based heuristics, abstraction, and
integrated modeling must be called into play. The basic idea
behind all of these techniques is to simplify problem solving
by concentrating on it is essential. Consolidate and simplify
the objectives. Stay within guidelines. Put to one side minor
issues likely to be resolved by the resolution of major ones.
Discard the nonessentials. Model (abstract) the system at as
high a level as possible, then progressively reduce the level
of abstraction. In short, Simplify!”

Earlier identification of problems in requirements and an
understanding of the level of complexity are needed. In
order to objectively gauge simplicity there has to be a
measure of complexity on a system. If some way that the
complexity level of new or modified systems could be
determined early in a program then the expectations for
development, testing and production may be better
understood and complex programs could be managed
accordingly.

Complexity metrics are not new. One such metric is the
cyclomatic complexity developed by Thomas J. McCabe,
Sr. in 1976 for the complexity of a software program exists
[35]. It measures the quantity of independent paths through
a program’s source code and is determined by using a
control flow graph. McCabe encouraged programmers to
limit the complexity and increase simplicity as much as
possible. This thinking should be extended from software to
systems. The number and type of interfaces, dependencies,
and human-machine interaction complexity could factor in.
While the idea of a metric sounds good, we should also
analyze if true benefit would be achieved by reviewing the
return on investment of metrics such as the Capability
Maturity Model Index (CMMI).

Emphasize Coding Pattern Guidelines
Safety critical and non-critical programming guidelines
should be addressed. The programming languages for safety
critical applications should be chosen carefully or at least
bounded on the features used. For instance, C and C++ have
become popular languages, over the previously DOD
mandated Ada. The use of pointers, polymorphism and
inheritance patterns should be minimized or appropriately
applied. Experience shows that if not properly applied,
these patterns can lead to errant behavior.

Another issue that should be handled with safety critical
code is the use of standard libraries that are used with no
understanding of what “dead” or “deactivated” code results.
In the operation of a program, if an errant pointer points to
dead code faults could occur. Lastly, in cases where
multithreaded code controls concurrent process and threads
using semaphores and mutexes, it could become impossible
to determine the behavior for all possible states if not
properly implemented. Further guidance on programming
and programming language patterns exists in [14].

Encourage Code Reuse and Certified Composable Software
In order to promote real code reuse, stable, certified standard
code libraries for real-time languages and operating systems
should be established across the industry. Reusable code
should be analyzed and understood via modeling and
analysis for specific computing environments before
implementing. Also, auto code generation of certifiable
code along with certified static code analysis tools coupled
with functional tests should be standardized. Obviously,
time and space partitioning schemes (e.g., ARINC 653) for
operating systems, middleware, and virtual machines to
allow mixed functionality at different criticality should
coexist on an integrated or distributed system [15]. With
these concepts in mind for reuse, certified libraries, code
generation, analysis tools, and partitioning, the idea of a
composable certification as referenced by Dr. John Rushby
[16] and the Air Force Research Laboratory’s Mixed
Critical Architecture Requirements (MCAR) effort may be

realized (see Figure 8), but keeping in mind that testing of
emergent behavior as a system is still mandatory.

Figure 8 - Composable Certification

Provide Guidelines for a Federated Component Mix
While systems are becoming more integrated, some argue
that the mixing of non-critical and safety-critical
functionality should never happen. There are standards such
as ARINC 653 that provides for partitioning of operating
systems (OS) and mechanisms to partition middleware (i.e.,
above the OS and below the application software).
Furthermore, for distributed networked avionics systems,
deterministic time-triggered protocols should separate data
flows into different levels of priority or quality of service.
Most data bus architectures are mixed within Army
rotorcraft platforms to include MIL-STD-1553, ARINC 429,
RS-422, discrete signals and standard non-time-triggered
Ethernet. Bus architectures that control time sensitive
critical and non-critical data flow should be considered in
aviation safety critical systems to attain proper system
partitioning and promote determinism.

Figure 9 - Lifecycle Use of Architectural Model

Perform Early and Lifecycle Modeling and Simulation
Another innovation includes the early modeling of systems
so that the architecture can be analyzed and communicated
across different teams as the “single source of truth” for a
complex project. The model could be used, not only in the
early stages in the design, but throughout the lifecycle of a
program to allow early virtual verification of a system

design. As shown in Figure 9, as the system is realized the
model is continuously updated and the realized system could
eventually be used to verify and validate the model. An
advantage of using such a framework would allow for the
ease of analysis when changes have to be made to the
architecture at anytime in the lifecycle. Timing analysis,
modal analysis, reliability analysis, human-machine
interaction and other analyses could be conducted with the
model. Integration analyses and some verification could be
executed before real equipment is built. Also, future
modifications to the aircraft could be incorporated with the
living model providing a better quantitative understanding
of the impacts before embarking on a detailed development
and implementation. The model could aid in generating the
tests. Additionally, SIL, ground and flight tests could be
used to verify and validate not only the realized system but
also the model.

Standardize a Common Modeling Tool Exchange Protocol
Since various companies and groups within organizations
use different modeling tools, a common, standardized
translation of the models, using such mechanisms as
Extensible Markup Language (XML) Metadata Interchange
(XMI), could allow ease of communication of the models to
promote a common model exchange. The Object
Management Group (OMG) is encouraging such reform in
modeling languages such as Systems Modeling Language
(SysML), Architectural Analysis and Design Language
(AADL), MatLAB/Simulink and others.

Require Certified Test Labs
Test labs or SILs will always be instrumental in verifying
and validating complex systems in the future. With the
volume of testing required and the need for repeatability, it
is important that more automated tests are conducted in the
lab before expensive ground and flight tests are executed.
Likewise, systematic manual and stress testing targeting
critical operations is crucial. It is important that a program
realizes that all bugs cannot be found no matter the level of
testing performed in such complex systems. Nevertheless,
testing will always be essential for performance
demonstration. Well established rules for verifying and
validating the labs, the tools, simulations, and automated,
manual and robust methods must be established to increase
the confidence in systems before executing expensive
ground and flight tests. PMOs and contractors should
account for this validation and verification effort in their
contracts up front.

Develop Better Automated Testing Capabilities
Some problems can be circumvented by using early, virtual
modeling of the system. Yet, airworthiness qualification
will always require developmental and demonstrated
capabilities through test. The upfront cost for automating
tests is expensive but the payback occurs in the lifecycle of a
system. While we need to get out of the mode of thinking
that we can test bugs out of a system, testing will always be
essential. Automated testing with fault injection and
robustness testing should be considered to allow for
repeatability and determinism in the testing regime.

Improve Current Guidelines and Standards
One last notional contribution is in the area of standards
improvement. As shown in Figure 10, systems and software
engineering standards have evolved over time. In the period
of 1994 to 1996 a separation of standards occurred, in part
due to the encouragement for the DOD to accept

Commercial off the Shelf (COTS) solutions. After
migrating from military standards, different standards
organizations adopted their own standard or handbook
which loosened the requirements. Some became merely
guidelines with no requirement to follow. It has been found
that the level of rigor once desired by military standards has
not been enforced and sometimes results in technical cost
and risk to programs. In 2005, the US DOD eliminated the
waivers to cite military specifications and standards in
solicitations and contracts per DOD Policy Memo 06-3.
This allows the government to once again cite military
standards as part of contracts. However, the older military
standards do not fully apply to later, more complex systems
of today or to the even more complex cyber-physical
systems of tomorrow. It benefits the governing standard
bodies to revisit these standards to incorporate the
guidelines and standards needed to handle complex systems.
Considerations for the verification, validation, qualification
and certification should be made while these updates are
being made to the standards.

Many of the standards that exist within the military
rotorcraft community are based on older federated
architectures and need to be updated to align and exceed
current commercial aviation standards. Some consideration
for complex systems standards may consider incorporation
of better upfront safety analysis, complexity metrics, and
improvements in system reliability and airworthiness
metrics to aide in the qualification and certification release
process. The methodology and theory will not be easily
achieved but are desperately needed.

Figure 10 – Systems and Software Standards Evolution [17]

7. Current Work Addressing the Challenges
It should not be misconstrued that no work being done to
address these challenges. The following discusses some
current programs or approaches addressing the complex
system challenges.

The S-92 and FAR Part 29 Update
The FAA Advisory Circular (AC) for Federal Advisory
Regulation (FAR) Part 29 was based on precedents of
helicopter certifications over the past 35 years. This made

the certification process difficult for DFBW projects such as
the Sikorsky S-92 project [19, 20, 21]. The S-92 is a DFBW
aircraft with Advanced Flight Controls (AFC) that the
advisory circular did not address. The challenges identified
included: (1) complex, highly integrated systems and
functions, (2) management and reliability of redundant
components, (3) pilot-vehicle interface and human factors,
(4) environmental effects on critical electronic components,
and (5) system-structure interactions. With such
innovations and the lack of a complete FAA advisory
circular, it was difficult for aircraft manufactures to plan for
certification. As a starting point, they used examples of the
FAR Part 25 for fixed wing DFBW used on the Boeing 777
and Airbus 340. Modifications were made to the FAR Part
29 to handle the system development and qualification
procedures. They had to incorporate the guidance of SAE
ARP 4754 and ARP 4761 and DO-297 to execute
certification for the helicopter while the project was
ongoing. Also, they had to address the safety assessment
process to show compliance, address AFC consideration for
complying with human factors, handling qualities, pilot-
vehicle interface, system and flight interaction, and list the
rules for special conditions. A similar exercise needs to
occur for military rotorcraft guidelines with consideration of
the updates in FAR Part 29.

DO-297 IMA Considerations
In conjunction with the Boeing 787 and Airbus 380 projects
the RTCA and FAA realized that a need to address the
certification of IMA. In 2005, DO-297 IMA Considerations
was published by RTCA and adopted by the FAA in 2007 as
DOT/FAA/AR-07/39 to provide guidance on these systems.
It promotes incremental acceptance of IMA via a 6 step
process including: (1) module acceptance, (2) application
software and hardware acceptance, (3) IMA system
acceptance, (4) aircraft system integration, verification and
validation, (5) module or application modifications, and (6)
module or application reuse.

DO-178B Update to DO-178C
DO-178B, “Software Considerations in Airborne Systems
and Equipment Certification”, has been used since the 1990s
as a guideline. Software development processes, languages,
patterns and tools have since evolved. DO-178C is being
worked to allow for early modeling and testing in the
System-V cycle. Major supplements to DO-178B with the
DO-178C recommendations will include: (1) formal
methods which provides a more formalized process coupled
with testing to reveal issues early, (2) model based
development to allow for early stage prototyping on and
executable model to effectively identify defects, (3) object
oriented technologies to focus on C++, Java, Ada 2005 that
support polymorphism, inheritance, generics, and function
dispatch, and (4) tool supplement to address static code
testing, auto code generation and other aspects of
development and testing. Its expected completion date is by
the end of calendar year 2010 [30].

Mixed Critical Architecture Requirements (MCAR)
The AFRL MCAR [22] and its follow-on Small Business
Innovation Research (SBIR) activity is concentrating on
methods to more quickly develop, test, qualify and certify
UAVs of the future such as the Global Hawk (see Figure
11). While their struggle is to resolve problems for UAVs, it
is very applicable to manned aircraft too. They stress a
“design-for-certification” approach utilizing a library of pre-

certified, composable, high confidence, real-time operating
system and middleware components. These ideas are an
outgrowth of Rushby’s idea of composable certification in
[16]. Their goal is to expand verification and validation and
system certification processes, mature hierarchical model-
based system development to ease integration, verification
and validation, enhance reusable software middleware in
conjunction with upgradeable building block hardware and
enforce security and safety requirements. Their idea is to be
able to compose a system with underlying certified
subsystems similar to the idea shown in Figure 11 while
keeping in mind the emergent behavior of the system as a
whole. A system can be composed of correct and certified
parts but still be unsafe. Therefore, attention must also be
placed on the end-to-end emergent behavior of the system.

 US Air Force Photo

Figure 11 - Global Hawk UAV

Another key element in mixed critical complex systems is
the use of time and spatial partitioning [15]. Modularity is
desirable and should be incorporated, but should not be
confused with partitioning. ARINC 653 partitioning ensures
that operating system process scheduling and memory are
not violated. Older federated systems were physically
partitioned so that one system could not directly affect
another. This is no longer the case with IMA, since multiple
software modules may share the same physical memory and
processor. To ensure that safety critical items are group
together in the same logical partition a schema in
compliance with ARINC 653 with an Application Executive
is provided to ensure the execution time and memory of a
partition is not violated. Theoretically, if a certified
partition is left unchanged when adjacent partitions are
revised, only minimal testing of the intercommunication
between the partitions is needed for the unchanged partition.

Systems Architecture Virtual Integration (SAVI)
The Aerospace Vehicle Systems Institute (AVSI) SAVI
project is a consortium of aerospace companies including
Airbus, Boeing, Rockwell Collins, British Aerospace
Engineering (BAE) Systems, FAA, NASA, and the US
Army who are investigating innovative approaches to more
quickly design, develop and test complex systems [23]. It’s
objectives are to (1) reduce cost/cycle-time and risk by using
early and frequent, virtual integrations, (2) detect errors as
early as possible with minimal leakage to later phases, (3)
create and integrate models from the integrator and suppliers
using well-defined semantics that support component based,
quantitative and formal analysis, (4) facilitate auto-analysis
and code generation to identify and eliminate
inconsistencies, (5) provide automated compatibility
analysis at the architecture level, and (6) develop an
acquisition process that supports this virtual integration
approach. The SAVI paradigm necessitates an architecture-
centric, multi-aspect model repository as a “single source of
truth”. This will reduce the confusion of having multiple
architectural models developed at different times generated
in the analyses performed by separate work groups in a

project. Also, a component-based framework in support of
model-based and proof-based engineering will provide the
design and test engineering community with the tools
necessary to accomplish better engineering of complex
systems. To ease the interchange of information among
different organizations or groups within an organization that
want to use different model tools, a model exchange
protocol concept is supported for consistent model
interchange between repositories and tools. SAVI breaks
the current mode of thinking so that an architecture-centric,
as opposed to a document-centric, acquisition process
throughout the system lifecycle will be supported by
industrial standards and tool infrastructure. SAVI is using
the SAE AS5506 Architecture Analysis & Design Language
(AADL) [42] to capture the single source of truth model and
is investigating additional languages to integrate into
additional domains of specification for a cooperative system
engineering approach.

Figure 12 - CM-SEI ReliabilityValidation and

Improvement Framework

Reliability Validation Framework
CM SEI and the US Army are working another effort in
conjunction with the SAVI project called the Reliability
Validation Framework (see Figure 12) [41]. This involves
research on an approach to establish an industry standard
practice of reliability validation and qualification for
software-reliant mission-critical and safety-critical systems
by: (1) establishing an engineering framework for reliability
validation and improvement, (2) demonstrating its feasibility
of reliability validation through model-based architecture
analysis, and (3) proposing a set of metrics for cost-effective
reliability evaluation and improvement. It will integrate
state of the art technologies including formalized functional
and non-functional requirements. A system-focused safety
analysis is to be included. Architecture-centric model based
analysis, as with SAVI, will be included. Assurance cases
are used to capture the rationale and type of evidence
needed to support system reliability and safety levels.
Future work could develop assurance case patterns for use
on similar systems. Lastly, formalized static analysis to
complement build-then-test practice so that testing can be
reduced saving manpower and time will be employed. For

this framework AADL is at the center of the model with a
machine processable, single source of truth, annotated
architectural model with well defined, well formed
semantics for quantitative assessment (see Figure 13).
Properties integrated into the model provide the data to drive
specific analyses, each using the architecture definition,
such as safety, reliability, interaction behavior, security,
resource consumption, real-time performance and data
quality.

Figure 13 AADL with Extensions

STAMP and STPA
System-Theoretic Accident Models and Processes (STAMP)
-Based Process Analysis (STPA) [26, 27, 28, 29] is a hazard
analysis technique for complex software intensive systems
that is based on systems theory instead of reliability theory.
It is work that originated from Leveson and has been
automated in a tool by SafeWare Engineering called
SpecTRM-RL.

Rather than approaching hazard analysis from an event
based analysis such as Failure Modes Effects Criticality
Analysis (FMECA) and Fault Tree Analysis (FTA), STPA
uses system theory. As mentioned earlier, safety in
programs tend to get inserted after a substantial part of the
design is completed. With FTAs and FMECAs much of
effort is placed on proving, after the design is initially
completed, that the design is safe rather than designing in
the safety up front in the requirements stage. Systems are
becoming too complex to wait that long. STPA provides a
method to take the early requirements and conduct the
hazard analysis early during the requirements establishment.
STPA is based on Leveson’s STAMP approach for accident
analysis. The philosophy behind STAMP is that accidents
result from inadequate control of safety related constraints
on the system design, development and operation. STAMP
and STPA have been applied to several projects including
the Ballistic Missile Defense program [30], 1994 Blackhawk
fratricide incident in Iraq, Space Shuttle Thermal Tile
Processing System, the Japan Aerospace Exploration
Agency H-IIB Transfer Vehicle for International Space
Station [29].

STPA is a four step formal mode process (see Figure 14). It
includes: (1) identifying system hazards and translating
those to top level system safety constraints, (2) defining a
control structure for the system being analyzed using the
template shown in Figure 16, (3) from the control structure,
identifying the potentially inadequate controls, and (4)

determining how potentially inadequate control actions
could manifest in the system and developing mitigations. In
step (3) inadequate control can fall into one of four areas:
(a) a required control action to maintain safety is not
provided, (b) an incorrect or unsafe control action is
provided that induces loss, (c) a potentially correct or
adequate control action is provided too early, too late or out
of order, and (d) a correct control action is stopped too soon.
STPA provides a rigorous, formal guidance for focusing on
the system as a control system and allows the safety analyst
to conduct a top down analysis. Unlike FTA/FMECAs the
analyst knows when they are finished by considering all
possible contributors to hazardous operation from the
control loop.

Figure 14-STPA Model [27]

Time Triggered Protocol Implementations
With some avionics architectures employing distributed
components and an ever increasing requirement for
bandwidth a need exists for deterministic data busses within
mixed safety critical and non-critical systems. Some bus
architectures such as ordinary Ethernet are subject to non-
determinism, but with the protocols of time triggered or rate
constrained policies as provided with Time Triggered
Protocol (TTP) and ARINC 664 this concern over latency
and jitter is mitigated. Rushby encouraged the use of time
triggered deterministic busses [25]. Dr. Hermann Kopetz of
Vienna University of Technology has performed extensive
research on Time Triggered Ethernet to replace non-
deterministic Ethernet. Standard commercial Ethernet
provides ample margin for growth for most avionics systems
but does not provide for determinism that can be achieved
with MIL-STD-1553 [31]. A variation of Kopetz’s ideas
has been adopted by Honeywell on the NASA Orion
manned space vehicle and the Boeing 787 on Ethernet. This
architecture addresses the prioritization and quality of
service application for best effort, rate constrained, and time
triggered data. Interest in this new data bus technology has
been expressed by various rotorcraft manufacturers and the
automotive industry as a viable future data bus for safety
critical applications.

DARPA Meta Solicitation for Cyber-Physical Systems [33]
In December 2009 the Defense Advanced Research Projects
Agency (DARPA) provided a Meta solicitation for industry
to respond to obtain research proposals to substantially
improve the design, integration, manufacturing, and
verification of complex cyber-physical systems, targeting
aerospace and defense systems including rotorcraft. The
requirement for this is to create a complete shift in thinking
on the current approach to complex systems design and
verification. Proposals from air and land vehicles were
expected to provide a new approach to design and
verification of complex cyber-physical systems and
demonstrate a dramatic improvement in development time
and cost. The use of model-based design method and
quantification of levels of complexity and formal methods
and probabilistic approaches to enhance verification to
reduce expensive and non-achievable exhaustive testing and
redesign are key challenges to be addressed by the Meta
effort [39].

8. Summary
In summary, we have struggled with the complexity of
systems since the beginning of systems engineering in the
1940s. Now is the time to start rethinking the approach to
these complex systems. There is a need to quantify the
complexity of systems to allow the programs to adjust their
approach and expectations of a system. Development and
testing challenges exist with complex cyber-physical
systems and new approaches such as those captured in DO-
178C need to be further established.

Use of modeling through the lifecycle of a program,
partitioning, composition of qualified or certified
components are crucial for the development of complex
cyber-physical systems. We should simplify systems as
much as possible instead of growing complexity; although,
performance requirements make this difficult. Industry
standards need to be revisited and adjusted to these new
systems with the understanding that systems of tomorrow
will not be feasible in cost or schedule using today's
standards and processes. Modeling and analysis with a
single source of truth is a potential contributor to the
solution. Current efforts are ongoing to address these
challenges, and further research should be conducted by
industry to converge on a set of best practices, tools and
standards to adopt for complex cyber-physical systems with
consideration of the human-in-the-loop.

It is of urgent and utmost importance that the qualification
and certification challenges are addressed for mixed critical
cyber-physical systems. If these challenges are not
addressed the ability to design, test, manufacture and
maintain future complex, software intensive rotorcraft and
beyond will be too expensive and too schedule intensive to
realize. The fate of future programs will depend on the path
and decisions made today.

References:
[1] Leveson, “SafeWare: System Safety and Computers”,
Addison-Wesley, 1995
[2] 1991, Systems Architecting, Creating and Building
Complex Systems, Prentice-Hall
[3] http://www.incose.org/practice/fellowsconsensus.aspx
[4]http://css.csregistry.org/tiki-
index.php?page=What+are+Complex+Systems+%3F&highl
ight=complex systems

http://www.incose.org/practice/fellowsconsensus.aspx
http://css.csregistry.org/tiki-
http://css.csregistry.org/tiki-

[5] Executive Order 12356, Fed. Reg., 47, 14874 (Apr. 6,
1982). Hereafter cited as "EO 12356."
 [6] Moore "Cramming More Components onto Integrated
Circuits," Electronics Magazine, April 19, 1965
[7] http:// www.ece.cmu.edu/ ~koopman/ des_s99/
sw_reliability/#bathtub
[8] NIST Planning Report, 2003
[9] Galin, “Software Quality Assurance: From Theory to
Implementation”, Pearson/Addison-Wesley, 2004
[10] Boehm, “Software Engineering Economics”, Prentice-
Hall, 1981
[11] Stiles, Mayo, Freisner, Landis, Kothmann, “Impossible
to Resist: The Development of Rotorcraft Fly-By-Wire
Technology”, AHS 60th Annual Forum, June 8-10, 2004.
[12] Morse, “Cockpit Design and Redundancy Management
for the UH-60M FBW System with Active and Passive
Controllers, revision 1, 28 March 2005
[13] Snider, “Future Directions in Tactical Vertical Lift”,
Approved for Public Release 28 April 2010, FN 4617
http://web.mac.com/stressed/AHS_Home/Past_Luncheons_f
iles/AHS_4_29_Snider_Release_copy.pdf
[14] Kroedl, “COTS Real-Time Operating System and
Architectural Consideration”, DOT/FAA/AR-03/77, 02/04
[15] Rushby, “Partitioning in Avionics Architectures:
Requirements, Mechanisms, and Assurance”, DOT/
FAA/AR-99/58, NASA/CR-1999-209347, March 2000
[16] Rushby, “Modular Certification”, SRI International,
September 2001
[17] http://www.incose.org/practice/standards/heritage.gif
[18] Federal Aviation Administration (FAA) Advisory
Circular (AC), System Design and Analysis, AC 25.1309-
1A, 06/21/1988
[19] Osder, “Fly By Wire System Architectures Computer
Redundancy and Reliability Issues and Mythology”, 15
April 2004
[20] King, McCallister, Arifian, “Civil Certification
Methods for Advanced Rotorcraft Control Systems”, AHS
Forum, June 2004
[21] Boczar, Hull, “S-92 Fly-By-Wire Advanced Flight
Control System”, AHS, June 2004
[22] Barhorst, Blote, Binns, Hoffman, Paunicka, Sarathy,
Scoredos, Stanfill, Stuart, Urzi, “A Research Agenda for
Mixed-Criticality Systems”, Wright-Patterson AFB
[23] Feiler, Hanson, de Niz, Wrage, “System Architecture
Virtual Integration: An Industrial Case Study”, Carnegie-
Mellon Software Engineering Institute Technical Report,
November 2009
[24] Boydston, Lewis, “Qualification and Reliability of
Complex Electronic Rotorcraft Systems”, AHS conference,
October 2009
 [25] Rushby, “A Comparison of Bus Architectures for
Safety-Critical Embedded Systems”, SRI International,
September 2001
[26] Leveson, “A Systems Theoretic Approach to Safety in
Software Intensive Systems”
[27] Dulac, Leveson, “An Approach to Design for Safety in
Complex Systems”
[28] Ishimatsu, Leveson, Thomas, Katahira, Miyamoto,
Nakao, “Modeling and Hazard Analysis Using STPA”
[29] Pereira, Lee, Howard, “A System-Theoretic Hazard
Analysis Methodology for a Non-advocate Safety
Assessment of the Ballistic Missile Defense System”
[30] St. Clair, “Growing Complexity Drives Need for
Emerging DO-178C Standard”, COTS Journal, 11/2009

[31] Kopetz, Ademaj, Grillinger, Steinhammer, “The Time-
Triggered Ethernet (TTE) Design, IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, 2005
[32] Kopetz, “The Complexity Challenge in Embedded
System Design”, IEEE, 2008
[33] DARPA, “Broad Agency Announcement META
Tactical Technology Office DARPA-BAA-10-21”,
https://www.fbo.gov/index?s=opportunity&mode=form&tab
=core&id=dd65d945682e6a95b474bd8d33e21660&_cview
=0
[34] McCabe, “A Complexity Measure”, IEEE, 1976
[35] Rosenberg, “Army’s fatal aviation accidents rise
despite push to cut number of wrecks”, Hearst Newspapers,
Nashville Tennessean, 17 July 2005
[36] Best, Schopper, “Effects of System Delay on Aviator-
Related Performance”, Naval Air Warfare Center, 6 October
1995
[37] Best, Schopper, Thomas, “State-of-the-Art Glass
Cockpits and Human Factors Related Issues”, Loral Federal
Systems – Owego, 29 Sept 1995
[37] FAA Memo 8110.98, “Addressing Human Factors/Pilot
Interface Issues of Complex Integrated Avionics as Part of
the Technical Standard Order (TSO) Process”, 10 May 02
[38] Francis, Rash, Adam, LeDuc, Archie, “A Comparison
of AH-64D and OH-58D Pilot Attitudes toward Glass
Cockpit Crew Station Designs”, USAAFL, Nov 2002
[39] Bellman, “Making DARPA META Goals Come True:
How do we Revolutionize Verification and Validation for
Complex Systems?”, Aerospace Corporation, Presentation
given on 17 June 2010 at S5 Conference,
http://www.azimuth-
corp.com/conference/S52010/agenda.htm
[40] Airbus data source: J.P. Potocki De Montalk, Computer
Software in Civil Aircraft, Sixth Annual Conference on
Computer Assurance (COMPASS ’91), Gaithersberg, MD,
June 24-27, 1991. Boeing data source: John J. Chilenski.
2009. Private email.
[41] http://www.sei.cmu.edu/newsitems/
amrdec_roadmap.cfm
[42] http://www.sei.cmu.edu/library/
assets/AADL_Fact_Sheet.pdf

DISCLAIMER: Presented at the 36th Annual European
Rotorcraft Forum in Paris, France on September 7, 2010.
This material is declared a work of the US Government
and is no subject of copyright materials. Approved for
public release; distribution unlimited. Review
completed by the AMRDEC Public Affairs Office 30
June 2010 under FN4749. Reference herein to any
specific commercial, private or public products, process,
or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement,
recommendation, or favoring by the United States
Government. The views and opinions expressed herein
are strictly those of the author(s) and do not represent
and reflect those of the United States Government.

http://www.incose.org/practice/standards/heritage.gif
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=dd65d945682e6a95b474bd8d33e21660&_cview=0
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=dd65d945682e6a95b474bd8d33e21660&_cview=0
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=dd65d945682e6a95b474bd8d33e21660&_cview=0
http://www.azimuth-corp.com/conference/S52010/agenda.htm
http://www.azimuth-corp.com/conference/S52010/agenda.htm
http://www.sei.cmu.edu/newsitems/
http://www.sei.cmu.edu/library/

