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Abstract 
Modern aircraft rely on complex and highly integrated 
hardware and software systems for safe operation and 
successful execution of missions.   Flight safety requires 
these complex avionics systems be robust and reliable.  
Military avionics systems have evolved into highly 
integrated subsystems composed of computer hardware and 
software.   As technology progresses, vehicles and their 
human pilots are relying on autonomous processing systems 
to a greater degree.   Many critical and non-critical functions 
are becoming automated.   Qualification and certification of 
such mixed criticality systems are problematic to schedule 
and budget constraints. These problems are well known in 
the industry and several groups have studied the issues in 
great detail.  These complex systems are identified as “cyber 
physical systems” per the National Science Foundation and 
Defense Advanced Research Projects Agency. 
Processes for good project management and engineering 
have traditionally been developed and promulgated through 
the defense acquisition guidelines and by various industry 
and government standards.  These standards were thought to 
provide guidance that, if followed, improved the chances of 
developing safe, highly reliable and cost effective systems.  
The foundations of traditional program management 
emphasized well defined requirements, a meticulous 
approach to development processes, and reliance on 
extensive testing.  
Industry recommendations and software incident 
investigation have led to the idea that complex system 
developers should have comprehensive requirements early 
in the lifecycle.  Inadequate requirements, poor planning, 
and bad processes have been cited as causing poor design 
choices in the early stages that could only be addressed later 
by risk management.  However, increasingly complex 
systems have outstripped traditional program management 
paradigms.  Exhaustive testing of the most complex systems 
is not affordable.  Project managers assert that these 
guidelines burden systems development to the point of 
making it very difficult to stay within budget and time 
schedule.  They advocate a more streamlined approach.  
Complex systems certification becomes more difficult if 
programs adopt a more streamlined approach.  Traditionally, 
under the Federal Aviation Administration (FAA) and other 
aviation authorities, qualification and certification of 
airborne systems relied on a rigorous test regimen. 
The question for certification authorities then becomes how 
can performance of the system under development be 
definitively demonstrated and established?  There should be 
a concerted industry effort from all stakeholders to establish 
better design process guidance.  These guidelines should 
quantify the reliability and safety characteristics of a design 
in its early phases.  No matter what is adopted, demonstrated 
or derived performance is required for assessing 
airworthiness of these systems.  The path and decisions that 
are made will determine the fate of future programs. 

1. Introduction 
Central to asserting the airworthiness of critical systems is 
proving they are safe to fly.  Such systems are heavily 
supported by electronic, mechanical and human control 
systems.  It is crucial that we adjust our processes and 
guidelines for qualifying and proving future systems are safe 
to fly within a reasonable budget and schedule else these 
systems will become too costly to design, develop, test, 
produce and maintain.  This paper will discuss: (1) 
progression of complexity in US Army rotorcraft, (2) 
definition of mixed critical complex systems, (3) complexity 
challenges, (4) development and qualification problems, (6) 
notional solutions, and (7) current work in progress 
addressing these challenges. 

2. Progression of Complexity in US Army Rotorcraft 
Since 1941, with the first United States (US) Army 
helicopter (i.e., the Platt-LePage XR-1), rotorcraft 
technology has grown in complexity, both mechanically and 
electronically and, more recently, via software. Since 1950 
some form of electronically controlled subsystem has been 
attempted in rotorcraft.  In 1950, a Piasecki HUP-1 was 
flown with a modified Sperry A-12 analog computer 
controlled autopilot [11]. In 1960 the first hover coupler was 
developed to allow hands off hovering with a control 
feedback of Doppler radar and radar altimeter.  It was 
demonstrated on an S-58, equivalent to the H-34 Choctaw 
[11]. From 1971 to 1974 the US Army Air Mobility 
Research and Development Laboratory and the Canadian 
Department of Industry, Trade and Commerce developed 
and demonstrated a digital-fly-by-wire (DFBW) flight 
control system called the Tactical Aircraft Guidance System 
(TAGS) in a modified CH-47B Chinook (see Figure 1).  
This system used a combination of redundant computing 
systems and incorporated advanced control laws.  The 
technology that was developed and tested on TAGS was 
eventually used on the RAH-66 Comanche (see Figure 2) 
including computer synchronization, built-in-test, and 
majority voting and mid-value select.  It proved that 
complex software and hardware DFBW for rotorcraft was 
achievable [11].   
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Figure 1 - US Army CH-47B Chinook 
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Figure 2 - US Army RAH-66 Comanche 

The most complex rotorcraft to this day was developed as a 
joint aircraft, on a program initially led by the US Army in 
the 1980s, called the V-22 Osprey (see Figure 3).  The 
Osprey has the ability with its tilt rotor system to fly as a 
helicopter or a plane. It’s supported by triple modular 
redundant flight computer architecture with DFBW and 
glass cockpit.   
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Figure 3 – V22 Osprey 

The UH-60M Blackhawk upgrade (see Figure 4) is the US 
Army’s latest DFBW project.  Like the Comanche and 
Osprey, the UH-60M upgrade employs a triple modular 
redundant computer system that uses a combination of 
majority voting and mid-value select.  The control laws are 
implemented in software.  More than 60 functions of 
varying levels of criticality interact with each other in the 
UH-60M aircraft with a large part implemented in software 
[12].  Thus, it can be considered a cyber-physical system. 
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Figure 4 - US Army UH-60M Upgrade DFBW 
More examples of present day, complex cyber-physical 
systems include the upgraded CH-47F Digital Automated 
Flight Control System (DAFCS) which replaced an older 
analog AFCS, the Full Authority Digital Electronic Control 
(FADEC) system on several rotorcraft, Stability Control 
Augmentation Systems (SCAS), Terrain Avoidance 
Warning System (TAWS) on some military aircraft and the 
glass cockpit systems such as the Common Avionics 
Architecture System (CAAS) on CH-47 and CH-53. 

Additionally, stringent requirements are being levied on 
civil and military aircraft for Global Air Traffic 
Management (GATM), Required Navigation Performance 
(RNP) for area navigation (RNAV), and Traffic Collision 
Avoidance Systems (TCAS).  The Primary thrust of these 
improvements is to place more reliance on aircraft 

autonomy and decrease the reliance on ground-based traffic 
management aids.  

In an April 2010 Huntsville Chapter of the American 
Helicopter Society (AHS) briefing by Dr. James Snider, US 
Army Director for Aviation Development [13], areas were 
cited for future (circa 2025 and beyond) development for 
military rotorcraft which reemphasizes the growth in cyber-
physical subsystems for rotorcraft.  The new development 
includes focus on survivability, situational awareness, 
affordability, performance, communications and lethality.  
Survivability will include focus on signature reduction, 
aircraft hardening, redundancy, speed, and active protection.  
Situational awareness will involve virtual cockpits, more 
Unmanned Aerial Vehicle (UAV) teaming, UAV swarms, 
degraded visual environment control, sensor fusion, and 
foliage penetrating sensors.  Affordable technologies will be 
promoted by adopting condition based maintenance, open-
source software, code reuse and commonality.  Enhanced 
performance is to be achieved via hybrid engines, active 
rotor control, removal of swash plates, variable geometry 
rotors, and sea based improvements.  Communication 
networking will include global information grid 
compatibility, multilevel security, software driven 
waveforms and integrated assured communications. Last, 
research will be conducted for scalable and directed energy 
weapons, and artificially intelligent weapons along with 
target recognition and selectable yield warheads.   

Obviously, the level of system complexity is increasing for 
US Army rotorcraft.  All of these proposed advances in 
functionality will increase the human, hardware, and 
software interaction and will place a heavy burden on 
testing, qualification and certification unless something is 
done to mitigate and improve the current approach to system 
lifecycle processes. 

3. Mixed Critical Complex Systems Defined 
The word “complex” is derived from the Latin word 
complecti which means to interweave or entwine.  A 
complex system has interdependencies on other parts of that 
system which can exhibit linear or non-linear behavior. 
“Complexity deals with interrelationships among parts or 
elements. The more dependent variables [and states] a 
system has the greater that system’s complexity is” [2]. 

The International Council on Systems Engineering 
(InCOSE) defines a system as “a construct of collection of 
different elements that together produce results not 
obtainable by the elements alone” [3]. The European 
Complex Systems Society defines a complex system as “a 
system where the collective behavior of its parts entails 
emergence of properties than can hardly, if not at all, be 
inferred from properties of the parts” [4].  As the coupling 
of parts become tighter and more dependent within a 
system, the level of complexity rises.   After components are 
integrated into a system unexpected behavior of systems 
often emerges which is not obvious at the component level.  
Thus, focusing on just the components of a system is not 
adequate when analyzing systems and a holistic systems 
engineering approach is required. 

In military and aerospace systems the concept of mixed 
criticality exists in terms of safety, mission and security.  A 
system where a failure or defect could cause risk to human 
life is called a “safety critical system”.  A system where the 
loss of capability causes reduced mission effectiveness is 



 

called a “mission critical system”.  Military aircraft usually 
handles varying levels of security including clear, 
confidential, secret and top secret.  Thus, these systems are 
“mixed security systems” [5].   

Systems which feature a tight combination of, and 
coordination between, the system’s computational and 
physical elements are known as “cyber-physical systems”.   
DARPA defines cyber-physical systems as “systems that 
derive significant portions of their functionality from both 
software and electromechanical subsystems” [33].   The 
growth in Integrated Modular Avionics (IMA), software and 
the mixture and management of these varying critical items 
are driving complexity in design, development, testing, 
manufacturing and maintainability.  

4. The Complexity Challenge 
Aircraft control systems traditionally were comprised of 
analog pressure gauges and the transfer of control was via 
mechanical means.  Since the advent of DFBW technology, 
aircraft have relied more on integrated circuit electronics 
and software to maintain control.  Aerospace systems have 
required high reliability numbers to increase confidence in 
those systems.  Tighter tolerances on traces have impacted 
aerospace electronics reliability.  Integrated circuits have 
increased in complexity per Dr. Gordon Moore’s law which 
stated that transistor quantity per chip will double every two 
years [6].  In recent years that rate has leveled off. However, 
processor cores with multiple on-chip memory and internal 
buses have increased driving up software system complexity 
significantly.   

The calculations to achieve the reliability Mean Time To 
Failure (MTTF) and Mean Time Between Failure (MTBF) 
has been based on known or observed physical failure 
modes or extrapolated and estimated from test data.  Some 
argue that systems reliability gives confidence in system 
safety.  However, a reliable system is not necessarily a safe 
system (e.g., a mower or nuclear power plant may be 
reliable but unsafe if not properly controlled or handled).   

Hardware and software reliability are two distinctly different 
concepts.  Software does not break like hardware over time. 
Hardware reliability tends to have a bathtub shaped curve as 
shown in Figure 5 [7].  Software is part of the systems 
equation, yet the methods to calculate software reliability 
have not been well established and agreed upon.   Software 
reliability does not adhere to the bathtub failure rate curve 
like hardware, but empirically exhibits a curve more like 
that shown in Figure 6.  Software errors are caused by 
human design and coding errors.  Software does not wear 
out like hardware over time, but can cause problems by its 
operational context (i.e., heavy processor loading, collisions, 
bus errors, race conditions, etc.)   As software is upgraded 
failure rates tend to increase but may decline with coding 
corrections [7]. 

Avionics systems are becoming more software intensive.  
Interlinking avionics systems may exacerbate software 
dependencies.  Since software is largely based on 
abstractions of human thought and processes, its complex by 
its nature.  Software does not break or decay like hardware.  
Thus, we have relied on process control through 
development, testing and reporting to ensure some 
confidence in the produced software.   

Sadly, even with the current guidelines and standards, we 
often find errors in the software late in the system design 

costing programs lost time and money.  Therefore, it is 
important to find and resolve problems early. Figure 7 
shows where faults are introduced, found and the cost of 
fault removal [8, 9, and 10].  As can be seen, 70% of the 
faults are introduced early in the establishment of the 
requirements and only 3.5% of those faults are found in the 
same stage.  If the fault is found in the requirements/design 
phase and removed, a minimal 1x (i.e., 1 times) cost impact 
is incurred.  The cost continues to rise to greater than 110x 
the original cost if errors are not found until acceptance 
testing just before fielding. 

 
Figure 5 - Bathtub Curve for Hardware Reliability [7] 

 

 
Figure 6 - Notional Curve for Software Reliability [7] 

 
Figure 7 - Cost of Faults in the V-Curve [8, 9, 10] 

Traditional methods of system design need to be 
restructured to address complex system development.  
Otherwise, systems of tomorrow will be too costly to 
develop.  It is crucial that appropriate methods, processes 
and tools are utilized early in the requirements and design 
phase to mitigate errors early in the process and save costs 
and time in the overall system lifecycle. 



 

5.  Development and Qualification Challenges 
Since the US Army is a large user of rotorcraft it is faced 
with continuing challenges of growing complex system 
development and qualification.  The US Army Aviation 
Engineering Directorate is responsible for ensuring 
airworthiness qualification for all US Army aircraft that is 
managed by the Aviation Program Element Office.  
Airworthiness is composed of design approval, production 
approval and continued airworthiness. To be airworthy 
means that the system is safe and reliable to operate and will 
perform the mission when delivered.  Also, it means that the 
aircraft will continue to safely perform the mission if 
maintained and operated per its specifications.  Any repairs 
or overhaul must maintain airworthiness.  Flight control 
systems for the US Army must meet system reliability of 
1x10-6 for tactical airspace and 1x10-9 for civil airspace.  
There is some variance in these reliability levels depending 
on if the aircraft is rated for Visual Flight Rules 
(VFR)/Visual Meteorological Conditions (VMC) or 
Instrument Flight Rules (IFR)/Instrument Meteorological 
Conditions (IMC).  Determining the levels of reliability is 
difficult. 

Current Qualification Process Needs Upgrading 
Current qualification processes exist to address certifying 
avionics systems; however, these processes lag technology, 
making certification difficult.  For years, a solid systems 
engineering foundation has existed for the US Army within 
the Aeronautical Design Standard Rotorcraft and Aircraft 
Qualification Handbook (ADS-51-HDBK). It encourages 
good requirements definition, forms the basis of good solid 
detailed system specification, outlines the establishment of 
key critical system and functional requirements, and 
prescribes the necessary design reviews, analyses, 
verification and validation within an Airworthiness 
Qualification Plan which is responded to by an 
Airworthiness Qualification Specification, providing 
guidance to an Airworthiness Release.  This process is 
proven, but, as with all guidance handbooks and standards, 
can be upgraded to better handle cyber physical systems. 

While formalized systems engineering has been around 
since the 1940s we are still using document-centric 
approaches to capture and trace requirements to test. 
Different modeling and analysis approaches are used across 
different organizations with no ability to set a single true 
model for a project and no way to communicate the modeled 
system to different engineering and management groups.  
This leads to disjoint or errant analyses, missed 
requirements, bad integration and test coverage.  Program 
management and contractors conduct verification and 
validation per test plans and procedures to test components, 
electromagnetic interference, vulnerability, and 
compatibility (EMI, EMC, and EMV), environmental 
effects, and electrical power.  These tests are conducted 
during bench testing, within System Integration Laboratories 
(SILs), and during ground and flight aircraft tests.  From the 
reports and witnessing of this data the US Army Aviation 
Engineering Directorate (AED) determines the airworthiness 
substantiation by using a mix of qualitative and quantitative 
analysis coupled with best, but sometimes subjective, 
engineering judgment.  While processes exist to address 
qualification, the processes are still geared to older federated 
systems with the goal to demonstrate meeting performance 
and safety criteria.  A problem with this approach is that 
issues found at this stage are often too late to fix 

economically, thus allowed to fly with risk with warnings, 
notes and cautions.  Qualification processes for complex 
systems are expensive and there is never enough time or 
money to exhaustively test every requirement.  Thus, 
systems are apt to be released with unknown bugs still 
existing and unspecified in the airworthiness releases and 
impact statements. 

Safety Requirements Determination is Late in Process 
There is a need to determine completeness and validity of 
not only performance requirements, but also safety 
requirements early in a program.  As Dr. Nancy Leveson of 
Massachusetts Institution of Technology (MIT) stresses, the 
original intent and rationale of requirements and their 
impact to safety in a system should be captured [1].  Early 
safety assessment is lacking to set assurance levels in 
military aircraft.  Safety design and hazard analysis should 
be done early.  Military aviation industry can draw from 
some civil practices such as from the Society of Automotive 
Engineering (SAE) Aerospace Recommended Practices 
(ARPs) 4754 and 4761 or from Systems Theoretic Accident 
Model and Processes (STAMP) Based Process Analysis 
(STPA) method [26].  This may seem straightforward to 
remedy; however, programs struggle with shrinking 
development budgets and shortening schedules causing 
them to detour from the recommended processes.  While 
following industry standards and guidelines such as DO-
178B, SAE ARP 4754 and 4761 encourages processes, they 
do not prevent poor system design decisions.  Conversely, 
STPA does get involved in the requirements process but has 
only been used in a few programs showing promising 
results. 

Need to Understand and Measure Complexity 
Additionally, not knowing how to parametrically describe or 
assess system complexity makes it difficult to tailor the 
approach to such systems.  There is no guidance on 
acceptable means to limit complexity to qualification 
requirements.  

Legacy Systems Pose Challenges 
The current US Army rotorcraft fleet is composed of 
airframe designs dating back to the 1950-80s.  Introduction 
of new technology in this older aircraft frequently results in 
mismatches in architecture, software and integration.  These 
aircraft are sometimes upgraded in piecemeal fashion 
making qualification difficult.  While the US Army 
upgrades the fleets the technology evolves quickly before 
fielding leading to early obsolescence. 

Military Aviation Must Comply with an Equivalent Level of 
Safety to Civil Airspace Entry Requirements 
Military aircraft deals with more stringent environments and 
missions than civil aircraft and is increasing in complexity 
to handle those environments and missions.  Military aircraft 
are required to qualify to an equivalent level of safety and 
show interoperability with civil infrastructure for operations 
in national and international civil airspace.  There are recent 
requirements for GATM, which is a system that relies on the 
Global Positioning System (GPS) to create more accurate 
navigation.  The military needs differ from civil needs, 
typically requiring superior performance and different 
qualification methodology.  The burden is to show that 
military capabilities map into safe airspace entry.  Military 
aircraft must take into account higher pilot workloads due to 
tactical conditions during combat and other military 
functions and be able to fly in harsh environments night or 



 

day.  To cope with these challenges military aircraft are 
continually being upgraded to include complex fault tolerant 
DFBW systems, glass cockpits, air survivability equipment, 
multiple levels of security, manned-unmanned teaming and 
other upgrades that were previously mentioned. 

Safety Critical Software Development Process Challenges 
Current and future complex cyber-physical systems with 
mixed critical architecture requirements are on the drawing 
boards.  The processes for developing the electrical and 
mechanical systems are long established through Computer 
Aided Design (CAD), Computer Aided Modeling (CAM) 
and description languages such as Very High Speed 
Hardware Description Language (VHDL).  Software design 
and development processes have evolved from traditional 
structural language and flowcharting to more formal 
methods using methods such as Object Oriented Design 
(OOD) approaches, Unified Modeling Language (UML) and 
reliance on libraries such as the C++ Standard Library.  
However, these newer methods have not fully been 
established by the safety critical community.  The 
commercial industry, in less safety critical product 
development, has embraced the use of OOD methods and 
included multithreading within their development regime.  
With military systems adopting more commercial off the 
shelf (COTS) items more products that have used these 
methods exists.  Likewise, the workforce that is being hired 
out of college is trained with OOD methods and mostly in 
C/C++ and Java.  Also, safety has not been included in 
general engineering curricula.  This adds to the challenges 
for the development of safety critical systems.  Development 
of deterministic code is a must with safety critical systems. 
Rigorous testing is attempted to flesh out all issues but often 
lacks complete results some of which may be safety critical.  
Waiting until the test phase to determine safety issues with 
complex systems can spell programmatic disaster.   

Absence of Modeling and Formal Methods 
Our approach to systems engineering has not changed 
drastically over the span of 50 years.  We still generate our 
requirements in document form and quite often struggle 
with tracing the requirements down to the test level and 
back up to the original requirements.   This is very difficult 
when multiple groups are working on a complex project.   It 
is possible for requirements to change and not get updated 
properly or not be fully understood as their impact on other 
parts of a system until it’s too late in the development.  
Some programs try hard to utilize modeling and simulation; 
however, the tools used by various engineering teams 
involved on a project may differ and do not easily translate 
to other models.  Additionally, the ability to perform early 
analysis of a design for critical items such as worst case 
execution time, latency and data bus loading is needed 
which impact safety or performance.  Waiting until 
integration to discover issues consumes significant program 
resources (see multipliers in figure 7).  80% of the problems 
are being discovered in the integration phase of a program 
or later.  Not being able to discover and resolve these 
problems early in a program can be detrimental. It is 
paramount that we verify and validate requirements as early 
as possible.  Thus, formal methods, modeling and simulation 
are needed to flesh out the bugs at the beginning of a 
program and carry a continuous verification and validation 
process.   

 

Lack of Certified Test Labs 
Testing and qualifying these types of systems is critical.  
SILs equipped with real systems and simulated flight 
exercises the system before release to ground and flight 
testing are in the critical path to achieving qualification. 
Sometimes, programs employ laboratories that have not 
been verified by the developer and validated by an 
independent reviewer to match the system that is being built 
which results in low confidence results.  

Need to Better Understand Human-Machine Interaction 
The majority of aircraft accidents are attributed to human 
error.  Human factors engineers rightfully argue that the 
load of information that the pilots must deal with 
necessitates quick access to the appropriate information to 
reduce accident rates.  According to [35], “80% of the [US 
Army’s] accidents are caused by human error”. Modeling 
and safety of the human cognitive aspects of cyber-physical 
systems needs focused research.  More can be found on this 
subject in [36, 37, 38]. 

Declining Expertise 
Other challenges in development and qualification exist.  
With declining engineering school enrollments, as with 
other technical fields, the gap for engineering expertise on 
software intensive systems is growing.  There is a lack of 
trained personnel in safety, qualification and test for 
complex cyber-physical systems. 

6. Notional Solutions 
In examining the challenges in the aerospace industry and 
current practices to face the challenges, it is evident that a 
shift in the design, qualification and certification approach is 
needed for the complex cyber-physical systems.  The 
following are some suggestions to address the 
aforementioned challenges. 

Assign a Chief Software Engineer to Programs 
US Department of Defense (DOD) acquisition guidelines 
mandate that a Chief Engineer resides within each Program 
Management Office (PMO). With the increasing prevalence 
of software-reliant systems, the complexity of embedded 
software systems and continued hardware needs, either a 
Chief Software Engineer should be appointed to the PMO or 
it be required that the assigned Chief Engineer also possess 
software, as well as hardware and systems, expertise.  This 
expertise will ensure that some focus is placed on embedded 
software systems in programs and that this critical area is 
not just treated as a peripheral item with no importance. 

Promote Simplicity and Establish a Complexity Metric 
While feature rich designs grow in complexity we should 
still promote simplicity in design as much as possible.  By 
determining such a metric we can set the design, 
qualification and certification path accordingly.  Dr. 
Eberhardt Rechtin quoted in [2], “Purely analytical 
techniques, powerful for the lower levels, can be 
overwhelmed at higher ones.  At higher levels, architecting 
methods, experience-based heuristics, abstraction, and 
integrated modeling must be called into play.  The basic idea 
behind all of these techniques is to simplify problem solving 
by concentrating on it is essential.  Consolidate and simplify 
the objectives.  Stay within guidelines. Put to one side minor 
issues likely to be resolved by the resolution of major ones.  
Discard the nonessentials.  Model (abstract) the system at as 
high a level as possible, then progressively reduce the level 
of abstraction.  In short, Simplify!”  



 

Earlier identification of problems in requirements and an 
understanding of the level of complexity are needed.  In 
order to objectively gauge simplicity there has to be a 
measure of complexity on a system.  If some way that the 
complexity level of new or modified systems could be 
determined early in a program then the expectations for 
development, testing and production may be better 
understood and complex programs could be managed 
accordingly. 
 
Complexity metrics are not new.  One such metric is the 
cyclomatic complexity developed by Thomas J. McCabe, 
Sr. in 1976 for the complexity of a software program exists 
[35].  It measures the quantity of independent paths through 
a program’s source code and is determined by using a 
control flow graph.  McCabe encouraged programmers to 
limit the complexity and increase simplicity as much as 
possible.  This thinking should be extended from software to 
systems.  The number and type of interfaces, dependencies, 
and human-machine interaction complexity could factor in. 
While the idea of a metric sounds good, we should also 
analyze if true benefit would be achieved by reviewing the 
return on investment of metrics such as the Capability 
Maturity Model Index (CMMI). 

Emphasize Coding Pattern Guidelines 
Safety critical and non-critical programming guidelines 
should be addressed.  The programming languages for safety 
critical applications should be chosen carefully or at least 
bounded on the features used.  For instance, C and C++ have 
become popular languages, over the previously DOD 
mandated Ada.  The use of pointers, polymorphism and 
inheritance patterns should be minimized or appropriately 
applied.  Experience shows that if not properly applied, 
these patterns can lead to errant behavior.   

Another issue that should be handled with safety critical 
code is the use of standard libraries that are used with no 
understanding of what “dead” or “deactivated” code results. 
In the operation of a program, if an errant pointer points to 
dead code faults could occur.  Lastly, in cases where 
multithreaded code controls concurrent process and threads 
using semaphores and mutexes, it could become impossible 
to determine the behavior for all possible states if not 
properly implemented. Further guidance on programming 
and programming language patterns exists in [14]. 

Encourage Code Reuse and Certified Composable Software 
In order to promote real code reuse, stable, certified standard 
code libraries for real-time languages and operating systems 
should be established across the industry.  Reusable code 
should be analyzed and understood via modeling and 
analysis for specific computing environments before 
implementing.  Also, auto code generation of certifiable 
code along with certified static code analysis tools coupled 
with functional tests should be standardized.  Obviously, 
time and space partitioning schemes (e.g., ARINC 653) for 
operating systems, middleware, and virtual machines to 
allow mixed functionality at different criticality should 
coexist on an integrated or distributed system [15].  With 
these concepts in mind for reuse, certified libraries, code 
generation, analysis tools, and partitioning, the idea of a 
composable certification as referenced by Dr. John Rushby 
[16] and the Air Force Research Laboratory’s Mixed 
Critical Architecture Requirements (MCAR) effort may be 

realized (see Figure 8), but keeping in mind that testing of 
emergent behavior as a system is still mandatory. 

 
Figure 8 - Composable Certification 

Provide Guidelines for a Federated Component Mix 
While systems are becoming more integrated, some argue 
that the mixing of non-critical and safety-critical 
functionality should never happen.  There are standards such 
as ARINC 653 that provides for partitioning of operating 
systems (OS) and mechanisms to partition middleware (i.e., 
above the OS and below the application software).  
Furthermore, for distributed networked avionics systems, 
deterministic time-triggered protocols should separate data 
flows into different levels of priority or quality of service.  
Most data bus architectures are mixed within Army 
rotorcraft platforms to include MIL-STD-1553, ARINC 429, 
RS-422, discrete signals and standard non-time-triggered 
Ethernet. Bus architectures that control time sensitive 
critical and non-critical data flow should be considered in 
aviation safety critical systems to attain proper system 
partitioning and promote determinism. 

 
Figure 9 - Lifecycle Use of Architectural Model 

Perform Early and Lifecycle Modeling and Simulation 
Another innovation includes the early modeling of systems 
so that the architecture can be analyzed and communicated 
across different teams as the “single source of truth” for a 
complex project.  The model could be used, not only in the 
early stages in the design, but throughout the lifecycle of a 
program to allow early virtual verification of a system 



 

design.  As shown in Figure 9, as the system is realized the 
model is continuously updated and the realized system could 
eventually be used to verify and validate the model.  An 
advantage of using such a framework would allow for the 
ease of analysis when changes have to be made to the 
architecture at anytime in the lifecycle.  Timing analysis, 
modal analysis, reliability analysis, human-machine 
interaction and other analyses could be conducted with the 
model.  Integration analyses and some verification could be 
executed before real equipment is built.  Also, future 
modifications to the aircraft could be incorporated with the 
living model providing a better quantitative understanding 
of the impacts before embarking on a detailed development 
and implementation.  The model could aid in generating the 
tests.  Additionally, SIL, ground and flight tests could be 
used to verify and validate not only the realized system but 
also the model. 

Standardize a Common Modeling Tool Exchange Protocol 
Since various companies and groups within organizations 
use different modeling tools, a common, standardized 
translation of the models, using such mechanisms as 
Extensible Markup Language (XML) Metadata Interchange 
(XMI), could allow ease of communication of the models to 
promote a common model exchange.  The Object 
Management Group (OMG) is encouraging such reform in 
modeling languages such as Systems Modeling Language 
(SysML), Architectural Analysis and Design Language 
(AADL), MatLAB/Simulink and others. 

Require Certified Test Labs 
Test labs or SILs will always be instrumental in verifying 
and validating complex systems in the future.  With the 
volume of testing required and the need for repeatability, it 
is important that more automated tests are conducted in the 
lab before expensive ground and flight tests are executed.  
Likewise, systematic manual and stress testing targeting 
critical operations is crucial.  It is important that a program 
realizes that all bugs cannot be found no matter the level of 
testing performed in such complex systems. Nevertheless, 
testing will always be essential for performance 
demonstration.  Well established rules for verifying and 
validating the labs, the tools, simulations, and automated, 
manual and robust methods must be established to increase 
the confidence in systems before executing expensive 
ground and flight tests.  PMOs and contractors should 
account for this validation and verification effort in their 
contracts up front. 

Develop Better Automated Testing Capabilities 
Some problems can be circumvented by using early, virtual 
modeling of the system.   Yet, airworthiness qualification 
will always require developmental and demonstrated 
capabilities through test.  The upfront cost for automating 
tests is expensive but the payback occurs in the lifecycle of a 
system.  While we need to get out of the mode of thinking 
that we can test bugs out of a system, testing will always be 
essential.  Automated testing with fault injection and 
robustness testing should be considered to allow for 
repeatability and determinism in the testing regime. 

Improve Current Guidelines and Standards 
One last notional contribution is in the area of standards 
improvement.  As shown in Figure 10, systems and software 
engineering standards have evolved over time.  In the period 
of 1994 to 1996 a separation of standards occurred, in part 
due to the encouragement for the DOD to accept 

Commercial off the Shelf (COTS) solutions.  After 
migrating from military standards, different standards 
organizations adopted their own standard or handbook 
which loosened the requirements.  Some became merely 
guidelines with no requirement to follow.  It has been found 
that the level of rigor once desired by military standards has 
not been enforced and sometimes results in technical cost 
and risk to programs.  In 2005, the US DOD eliminated the 
waivers to cite military specifications and standards in 
solicitations and contracts per DOD Policy Memo 06-3.  
This allows the government to once again cite military 
standards as part of contracts.  However, the older military 
standards do not fully apply to later, more complex systems 
of today or to the even more complex cyber-physical 
systems of tomorrow.  It benefits the governing standard 
bodies to revisit these standards to incorporate the 
guidelines and standards needed to handle complex systems.   
Considerations for the verification, validation, qualification 
and certification should be made while these updates are 
being made to the standards. 

Many of the standards that exist within the military 
rotorcraft community are based on older federated 
architectures and need to be updated to align and exceed 
current commercial aviation standards.  Some consideration 
for complex systems standards may consider incorporation 
of better upfront safety analysis, complexity metrics, and 
improvements in system reliability and airworthiness 
metrics to aide in the qualification and certification release 
process.  The methodology and theory will not be easily 
achieved but are desperately needed. 

 
Figure 10 – Systems and Software Standards Evolution [17] 

7. Current Work Addressing the Challenges 
It should not be misconstrued that no work being done to 
address these challenges.  The following discusses some 
current programs or approaches addressing the complex 
system challenges. 

The S-92 and FAR Part 29 Update 
The FAA Advisory Circular (AC) for Federal Advisory 
Regulation (FAR) Part 29 was based on precedents of 
helicopter certifications over the past 35 years.  This made 



 

the certification process difficult for DFBW projects such as 
the Sikorsky S-92 project [19, 20, 21].  The S-92 is a DFBW 
aircraft with Advanced Flight Controls (AFC) that the 
advisory circular did not address.  The challenges identified 
included: (1) complex, highly integrated systems and 
functions, (2) management and reliability of redundant 
components, (3) pilot-vehicle interface and human factors, 
(4) environmental effects on critical electronic components, 
and (5) system-structure interactions.  With such 
innovations and the lack of a complete FAA advisory 
circular, it was difficult for aircraft manufactures to plan for 
certification.  As a starting point, they used examples of the 
FAR Part 25 for fixed wing DFBW used on the Boeing 777 
and Airbus 340.  Modifications were made to the FAR Part 
29 to handle the system development and qualification 
procedures.  They had to incorporate the guidance of SAE 
ARP 4754 and ARP 4761 and DO-297 to execute 
certification for the helicopter while the project was 
ongoing.  Also, they had to address the safety assessment 
process to show compliance, address AFC consideration for 
complying with human factors, handling qualities, pilot-
vehicle interface, system and flight interaction, and list the 
rules for special conditions. A similar exercise needs to 
occur for military rotorcraft guidelines with consideration of 
the updates in FAR Part 29.   

DO-297 IMA Considerations 
In conjunction with the Boeing 787 and Airbus 380 projects 
the RTCA and FAA realized that a need to address the 
certification of IMA.  In 2005, DO-297 IMA Considerations 
was published by RTCA and adopted by the FAA in 2007 as 
DOT/FAA/AR-07/39 to provide guidance on these systems.  
It promotes incremental acceptance of IMA via a 6 step 
process including:  (1) module acceptance, (2) application 
software and hardware acceptance, (3) IMA system 
acceptance, (4) aircraft system integration, verification and 
validation, (5) module or application modifications, and (6) 
module or application reuse. 

DO-178B Update to DO-178C 
DO-178B, “Software Considerations in Airborne Systems 
and Equipment Certification”, has been used since the 1990s 
as a guideline.  Software development processes, languages, 
patterns and tools have since evolved. DO-178C is being 
worked to allow for early modeling and testing in the 
System-V cycle.  Major supplements to DO-178B with the 
DO-178C recommendations will include:  (1) formal 
methods which provides a more formalized process coupled 
with testing to reveal issues early, (2) model based 
development to allow for early stage prototyping on and 
executable model to effectively identify defects, (3) object 
oriented technologies to focus on C++, Java, Ada 2005 that 
support polymorphism, inheritance, generics, and function 
dispatch, and (4) tool supplement to address static code 
testing, auto code generation and other aspects of 
development and testing.  Its expected completion date is by 
the end of calendar year 2010 [30]. 

Mixed Critical Architecture Requirements (MCAR) 
The AFRL MCAR [22] and its follow-on Small Business 
Innovation Research (SBIR) activity is concentrating on 
methods to more quickly develop, test, qualify and certify 
UAVs of the future such as the Global Hawk (see Figure 
11). While their struggle is to resolve problems for UAVs, it 
is very applicable to manned aircraft too.  They stress a 
“design-for-certification” approach utilizing a library of pre-

certified, composable, high confidence, real-time operating 
system and middleware components.  These ideas are an 
outgrowth of Rushby’s idea of composable certification in 
[16].  Their goal is to expand verification and validation and 
system certification processes, mature hierarchical model-
based system development to ease integration, verification 
and validation, enhance reusable software middleware in 
conjunction with upgradeable building block hardware and 
enforce security and safety requirements.  Their idea is to be 
able to compose a system with underlying certified 
subsystems similar to the idea shown in Figure 11 while 
keeping in mind the emergent behavior of the system as a 
whole.  A system can be composed of correct and certified 
parts but still be unsafe.  Therefore, attention must also be 
placed on the end-to-end emergent behavior of the system.   

 
                                                         US Air Force Photo 

Figure 11 - Global Hawk UAV 

Another key element in mixed critical complex systems is 
the use of time and spatial partitioning [15].  Modularity is 
desirable and should be incorporated, but should not be 
confused with partitioning.  ARINC 653 partitioning ensures 
that operating system process scheduling and memory are 
not violated.  Older federated systems were physically 
partitioned so that one system could not directly affect 
another.  This is no longer the case with IMA, since multiple 
software modules may share the same physical memory and 
processor.  To ensure that safety critical items are group 
together in the same logical partition a schema in 
compliance with ARINC 653 with an Application Executive 
is provided to ensure the execution time and memory of a 
partition is not violated.  Theoretically, if a certified 
partition is left unchanged when adjacent partitions are 
revised, only minimal testing of the intercommunication 
between the partitions is needed for the unchanged partition. 

Systems Architecture Virtual Integration (SAVI) 
The Aerospace Vehicle Systems Institute (AVSI) SAVI 
project is a consortium of aerospace companies including 
Airbus, Boeing, Rockwell Collins, British Aerospace 
Engineering (BAE) Systems, FAA, NASA, and the US 
Army who are investigating innovative approaches to more 
quickly design, develop and test complex systems [23].  It’s 
objectives are to (1) reduce cost/cycle-time and risk by using 
early and frequent, virtual integrations, (2) detect errors as 
early as possible with minimal leakage to later phases, (3) 
create and integrate models from the integrator and suppliers 
using well-defined semantics that support component based, 
quantitative and formal analysis, (4) facilitate auto-analysis 
and code generation to identify and eliminate 
inconsistencies, (5) provide automated compatibility 
analysis at the architecture level, and (6) develop an 
acquisition process that supports this virtual integration 
approach. The SAVI paradigm necessitates an architecture-
centric, multi-aspect model repository as a “single source of 
truth”.  This will reduce the confusion of having multiple 
architectural models developed at different times generated 
in the analyses performed by separate work groups in a 



 

project.  Also, a component-based framework in support of 
model-based and proof-based engineering will provide the 
design and test engineering community with the tools 
necessary to accomplish better engineering of complex 
systems.  To ease the interchange of information among 
different organizations or groups within an organization that 
want to use different model tools, a model exchange 
protocol concept is supported for consistent model 
interchange between repositories and tools.  SAVI breaks 
the current mode of thinking so that an architecture-centric, 
as opposed to a document-centric, acquisition process 
throughout the system lifecycle will be supported by 
industrial standards and tool infrastructure. SAVI is using 
the SAE AS5506 Architecture Analysis & Design Language 
(AADL) [42] to capture the single source of truth model and 
is investigating additional languages to integrate into 
additional domains of specification for a cooperative system 
engineering approach.  

 
Figure 12 - CM-SEI ReliabilityValidation and 

Improvement Framework 

Reliability Validation Framework 
CM SEI and the US Army are working another effort in 
conjunction with the SAVI project called the Reliability 
Validation Framework (see Figure 12) [41]. This involves 
research on an approach to establish an industry standard 
practice of reliability validation and qualification for 
software-reliant mission-critical and safety-critical systems 
by: (1) establishing an engineering framework for reliability 
validation and improvement, (2) demonstrating its feasibility 
of reliability validation through model-based architecture 
analysis, and (3) proposing a set of metrics for cost-effective 
reliability evaluation and improvement.  It will integrate 
state of the art technologies including formalized functional 
and non-functional requirements.  A system-focused safety 
analysis is to be included.  Architecture-centric model based 
analysis, as with SAVI, will be included.  Assurance cases 
are used to capture the rationale and type of evidence 
needed to support system reliability and safety levels.  
Future work could develop assurance case patterns for use 
on similar systems.  Lastly, formalized static analysis to 
complement build-then-test practice so that testing can be 
reduced saving manpower and time will be employed.  For 

this framework AADL is at the center of the model with a 
machine processable, single source of truth, annotated 
architectural model with well defined, well formed 
semantics for quantitative assessment (see Figure 13).  
Properties integrated into the model provide the data to drive 
specific analyses, each using the architecture definition, 
such as safety, reliability, interaction behavior, security, 
resource consumption, real-time performance and data 
quality. 

 
Figure 13  AADL with Extensions 

STAMP and STPA 
System-Theoretic Accident Models and Processes (STAMP) 
-Based Process Analysis (STPA) [26, 27, 28, 29] is a hazard 
analysis technique for complex software intensive systems 
that is based on systems theory instead of reliability theory.  
It is work that originated from Leveson and has been 
automated in a tool by SafeWare Engineering called 
SpecTRM-RL.  

Rather than approaching hazard analysis from an event 
based analysis such as Failure Modes Effects Criticality 
Analysis (FMECA) and Fault Tree Analysis (FTA), STPA 
uses system theory.  As mentioned earlier, safety in 
programs tend to get inserted after a substantial part of the 
design is completed.  With FTAs and FMECAs much of 
effort is placed on proving, after the design is initially 
completed, that the design is safe rather than designing in 
the safety up front in the requirements stage.  Systems are 
becoming too complex to wait that long.  STPA provides a 
method to take the early requirements and conduct the 
hazard analysis early during the requirements establishment.  
STPA is based on Leveson’s STAMP approach for accident 
analysis.  The philosophy behind STAMP is that accidents 
result from inadequate control of safety related constraints 
on the system design, development and operation.  STAMP 
and STPA have been applied to several projects including 
the Ballistic Missile Defense program [30], 1994 Blackhawk 
fratricide incident in Iraq, Space Shuttle Thermal Tile 
Processing System, the Japan Aerospace Exploration 
Agency H-IIB Transfer Vehicle for International Space 
Station [29].   

STPA is a four step formal mode process (see Figure 14).  It 
includes:  (1) identifying system hazards and translating 
those to top level system safety constraints, (2) defining a 
control structure for the system being analyzed using the 
template shown in Figure 16, (3) from the control structure, 
identifying the potentially inadequate controls, and (4) 



 

determining how potentially inadequate control actions 
could manifest in the system and developing mitigations.  In 
step (3) inadequate control can fall into one of four areas:  
(a) a required control action to maintain safety is not 
provided, (b) an incorrect or unsafe control action is 
provided that induces loss, (c) a potentially correct or 
adequate control action is provided too early, too late or out 
of order, and (d) a correct control action is stopped too soon. 
STPA provides a rigorous, formal guidance for focusing on 
the system as a control system and allows the safety analyst 
to conduct a top down analysis.  Unlike FTA/FMECAs the 
analyst knows when they are finished by considering all 
possible contributors to hazardous operation from the 
control loop. 

 
Figure 14-STPA Model [27] 

Time Triggered Protocol Implementations 
With some avionics architectures employing distributed 
components and an ever increasing requirement for 
bandwidth a need exists for deterministic data busses within 
mixed safety critical and non-critical systems.  Some bus 
architectures such as ordinary Ethernet are subject to non-
determinism, but with the protocols of time triggered or rate 
constrained policies as provided with Time Triggered 
Protocol (TTP) and ARINC 664 this concern over latency 
and jitter is mitigated.  Rushby encouraged the use of time 
triggered deterministic busses [25].  Dr. Hermann Kopetz of 
Vienna University of Technology has performed extensive 
research on Time Triggered Ethernet to replace non-
deterministic Ethernet.  Standard commercial Ethernet 
provides ample margin for growth for most avionics systems 
but does not provide for determinism that can be achieved 
with MIL-STD-1553 [31].  A variation of Kopetz’s ideas 
has been adopted by Honeywell on the NASA Orion 
manned space vehicle and the Boeing 787 on Ethernet.  This 
architecture addresses the prioritization and quality of 
service application for best effort, rate constrained, and time 
triggered data.  Interest in this new data bus technology has 
been expressed by various rotorcraft manufacturers and the 
automotive industry as a viable future data bus for safety 
critical applications. 

DARPA Meta Solicitation for Cyber-Physical Systems [33] 
In December 2009 the Defense Advanced Research Projects 
Agency (DARPA) provided a Meta solicitation for industry 
to respond to obtain research proposals to substantially 
improve the design, integration, manufacturing, and 
verification of complex cyber-physical systems, targeting 
aerospace and defense systems including rotorcraft.  The 
requirement for this is to create a complete shift in thinking 
on the current approach to complex systems design and 
verification.  Proposals from air and land vehicles were 
expected to provide a new approach to design and 
verification of complex cyber-physical systems and 
demonstrate a dramatic improvement in development time 
and cost.  The use of model-based design method and 
quantification of levels of complexity and formal methods 
and probabilistic approaches to enhance verification to 
reduce expensive and non-achievable exhaustive testing and 
redesign are key challenges to be addressed by the Meta 
effort [39]. 

8. Summary 
In summary, we have struggled with the complexity of 
systems since the beginning of systems engineering in the 
1940s.  Now is the time to start rethinking the approach to 
these complex systems.  There is a need to quantify the 
complexity of systems to allow the programs to adjust their 
approach and expectations of a system.  Development and 
testing challenges exist with complex cyber-physical 
systems and new approaches such as those captured in DO-
178C need to be further established. 

Use of modeling through the lifecycle of a program, 
partitioning, composition of qualified or certified 
components are crucial for the development of complex 
cyber-physical systems. We should simplify systems as 
much as possible instead of growing complexity; although, 
performance requirements make this difficult.  Industry 
standards need to be revisited and adjusted to these new 
systems with the understanding that systems of tomorrow 
will not be feasible in cost or schedule using today's 
standards and processes. Modeling and analysis with a 
single source of truth is a potential contributor to the 
solution.  Current efforts are ongoing to address these 
challenges, and further research should be conducted by 
industry to converge on a set of best practices, tools and 
standards to adopt for complex cyber-physical systems with 
consideration of the human-in-the-loop. 

It is of urgent and utmost importance that the qualification 
and certification challenges are addressed for mixed critical 
cyber-physical systems.  If these challenges are not 
addressed the ability to design, test, manufacture and 
maintain future complex, software intensive rotorcraft and 
beyond will be too expensive and too schedule intensive to 
realize.  The fate of future programs will depend on the path 
and decisions made today. 
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