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Abstract 
 

A high speed impulsive (HSI) noise occupies much part of the loudest noise of helicopter. It is caused by 
the shock wave on a blade surface at the advancing side and limits high speed flight performance of helicopter. 
To reduce the HSI noise, the authors performed blade planform design by using an aero-acoustic analysis 
technique and an optimization method. As for the aero-acoustic analysis, CFD technique for aerodynamic 
analysis and Kirchhoff’s method for the acoustic analysis were used. As for the optimization method, Kriging-
based genetic algorithm (GA) model as a high-fidelity multi-objective optimization method was chosen 
according to the design problem. In the present research, design variables to define arbitrary blade planform and 
new design variable to describe airfoil transition were used to consider the aerodynamic performance and noise 
characteristic, simultaneously. The optimization results showed that optimum blades have improved 
aerodynamic performance and similar level of HSI noise characteristic compared to the optimum shape 
obtained in our previous research. 

 
Nomenclature 

 
 A : area of rotor disk 

     c : chord length of airfoil 
),( jid xx : weighted distance between vector ix and jx  

ln : likelihood function of Kriging model 
MT : torsional moment of rotorcraft 
NB : number of blade 
T : thrust of rotorcraft 
R : radius of rotor 

     )(2 xs : mean squared error in Kriging model 
x : m-dimensional vector of design variables 
y(x) : unknown function of Kriging model 

     
)(ˆ xy : estimated value of y(x) 

     
)(xZ : a local deviation from the global model in Kriging model 

 Ω : rotating speed of rotor 
 Φ : standard normal distribution function 
 β : a constant of global model in Kriging model 

     β̂ : estimated value of β  
     ρ : air density 

 σ : solidity of rotor, 
2R

cRN B

π
σ =  

 2σ̂ : variance of Kriging model 
     θ : correlation parameter vector  



 φ : density function of the normal distribution, the Gaussian function 
 

Introduction 
 

Helicopter is a utility air vehicle, which has more efficient hovering and vertical flight abilities than other 
types of air vehicle. These outstanding features make helicopter to conduct some special missions such as fire 
fighting, rescue, broadcasting etc., as well as transportation and commuter. However, noise of helicopter is one 
of the obstructions which decrease the range of helicopter application. The high speed impulsive (HSI) noise is 
the most serious noise sources of a helicopter rotor. This loud noise limits forward flight speed and downtown 
accessibility of helicopter. The HSI noise problem is caused by the propagation of shock wave on an advancing 
blade surface to farfield as shown in Fig.1. Figure 2 shows wave form of the HSI noise at different Mach 
number of blade tip. The distribution of acoustic pressure has a negative peak and the absolute value of this 
minimum peak is increased by strong shock wave. Thus this minimum peak value indicates the quantity of noise. 
The details of HSI noise were summarized by Schmitz and Yu[1]. They reviewed the status of HSI noise studies 
in 1980s, when researches on the HSI noise were massively conducted by theoretical and experimental 
approaches. 
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Fig.1: HSI noise generation 

 

 
Fig.2: Waveform of HSI noise[1] 

 
Former research works[1-3] showed that modification of blade planform near tip can reduce the intensity of 

the HSI noise. These parametric studies were conducted by using simple variables, such as swept back angle, 
and taper ratio. Following researches[4-6] have adapted optimization methods, which have been used in 
aerodynamics and structure to search an optimum shape for noise reduction. As a research to achieve better 
blade design for noise reduction or performance improvement or both, optimization techniques with 
aerodynamic and/or acoustic analysis tool have been developed up to now. Lee and Kwon[4] used optimization 
technique to obtain a rotor blade configuration which minimized the required inviscid torque under the 
constraint of maintaining the desired thrust level, but they focused only on the improvement of performance. 
Xue et al.[5] developed an integrated aero-acoustics rotor simulation tool by combining COPTER code for 
rotorcraft performance and a full potential rotor code for unsteady 3D transonic flows around rotor blade, but 
the shock wave captured by potential code was not strong enough to represent HSI noise. Collins et al.[6] showed 
Pareto frontier method by using both low and high fidelity analysis tools to examine a redesign of the HART 
model rotor. However, this research showed only the redesign of a rotor similar to the BO-105 using simple 



shape design variables. Therefore, the need of more accurate design tool is increasing for a general blade shape 
design with multi-objective optimization in order to consider both noise and performance simultaneously.  

In our previous research[7], an arbitrary planform design was conducted to reduce HSI noise, but 
aerodynamic performance was not considered. In the present paper, we construct a design tool for arbitrary 
blade shapes using CFD technique and multi-objective optimization considering both performance and noise 
simultaneously. Based on our previous research, an optimum 3D blade shape with modification of blade 
planform and variation of airfoil section is obtained by using CFD technique for aerodynamic analysis, 
Kirchhoff’s method for acoustic analysis, and Kriging-based genetic algorithm (GA) for optimization method. 

 
Numerical Analysis 

 
Aerodynamics 

 
For the prediction of near field pressure around blade, CFD calculation on the accurate flowfield around a 

blade was conducted. The governing equation in the CFD solver was three dimensional unsteady Euler 
equations in rotating curvilinear coordinates fixed on a blade. A diagram of Cartesian coordinate system (x, y, z) 
and curvilinear coordinate system (ξ, η, ζ) of rotating blade are shown in Fig. 3. The numerical method to solve 
the governing equation was an implicit finite difference scheme. A higher-order upwind TVD scheme was 
applied for the inviscid terms of the explicit right-hand side. The accuracy of this solver was second order in 
space and first order in time. To obtain an unsteady solution in forward flight, Newton iterative method with 
four iterations was used at each time step to improve the accuracy in time. The details of CFD solver were 
reviewed in a previous paper[8].  

  
Fig.3: Blade coordinate system and grid 

 
Figure 4 shows the perspective and top views of O-H type grid used for the CFD calculation and blade tip 

grid of modified shape. The baseline blade as a reference had a rectangular planform based on UH-1H which is 
simple and widely used. The airfoil section of baseline blade was fixed to NACA0012 with different chord 
length according to the blade planform in order to eliminate the effect of difference in airfoil section.  

         
(a) 3D view of grid.    (b) Top view of rectangular blade.     (c) Top view of modified blade 

around tip. 
Fig.4: Grid system. 



The grid consists of 79×50×140 points, and 79×100 points were distributed on the blade surface. The 
aspect ratio of the blade was 13.7. The grid outboard blade tip was swept-back to follow shock wave which is 
generated on the blade surface and is propagated far away as a HSI noise. This swept-back grid type can impose 
the high grid density on the disturbance region. The tip Mach number is 0.9. 
 
Acoustics 
 

The near field acoustic prediction was based on the pressure results from CFD calculation. For the far 
field acoustic prediction, a combining method of CFD with Kirchhoff’s equation[11-13] was used. In this method, 
a CFD technique was used to obtain the pressure distribution around a rotor blade, then, the Kirchhoff’s 
equation extended for a moving surface was used to find the acoustic pressure at a far-field observer position. 
The Euler solutions on the Kirchhoff surface, in which all the acoustic sources are enclosed, were used as source 
pressure data. If the CFD solutions capture the nonlinear effect such as shock wave, this method can predict the 
acoustic pressure including the effect of these nonlinear sources. Figure 5 shows the Kirchhoff surface which is 
supposed to include flowfield with noise sources.  

 
Fig.5: Kirchhoff surface in grid system. 

 
Optimization Technique 

 
Optimization procedure 

 
To solve the constrained multi-objective optimization problem efficiently, we choose a Kriging based 

genetic algorithm method [14]. 
The Kriging model, one of approximation models, predicts the distribution function at an unknown point 

instead of the function values itself. Using approximation models is known to attract a large attention in the field 
of aircraft design because it saves a quite amount of computational time for evaluation of objective function. 
However, it is apt to miss the true optimum in the design space if the exploration relies only on the estimated 
function values of the approximation model, because these values include uncertainty at unknown point. To 
overcome this demerit, the criterion of ‘expected improvement (EI)’ was used with GA exploration. EI expects 
the function value and its uncertainty at unknown points from the distribution of function values. By selecting 
maximum EI point as an additional sample point of the Kriging model, the improvement of accuracy and the 
robust exploration of the true optimum can be achieved at the same time. 

 
Overall procedure of the optimization is the following as shown in Fig. 6. 
 
1. Initial sample points are selected by ‘Improved Distributed Sampling’ [15]. 
2. Sample points are evaluated by CFD solver. 
3. Kriging Model is constructed with sample points. 
4. GA starts: Initial population is generated and evaluated on Kriging model. 
5. Parents are selected. 
6. Crossover and mutation. 
7. Evaluate the fitness of new generation. 
8. If number of generation is not over 100, repeat procedure from 4. 
9. Additional sample points are selected using EI by user. 
10. Repeat procedure from 2 until the optimums of Kriging model are not updated for 5 iterations. The 

validity of Kriging model is evaluated by cross-validation. 
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Fig.6: Optimization procedure. 

 
Genetic Algorithm (GA) 

 
Genetic algorithm (GA)[16] is a searching mechanism based on natural selection and genetics. GA uses the 

objective function value itself, not its derivative information. This feature makes GA robust and attractive to the 
aerodynamic design problems where non-linearity, multi-modality, and discontinuities may exist. Another merit 
of GA is that it searches the optimum point from a population of points, not a single point. It makes GA a 
promising method for multi-objective (MO) problems. The population of points can represent Pareto optimal set 
of MO problems[17]. The definition of Pareto optimality is as follow: 

Suppose ),( 1
2

1
1

1 xx=x  and ),( 2
2

2
1

2 xx=x  are in the population and ),( 21 ffF = is a set of objective 
functions to be maximized. 

1. 1x
 

is said to be ‘dominated’ by 2x , if )( 1xF
 

is partially 
less than )( 2xF , i.e., )()()()( 2

2
1

2
2

1
1

1 xxxx ffff ≤∩≤ and 
)()( 21 xx FF ≠ . 

2. 1x
 

is said to be ‘non-dominated’ if there doesn’t exist 2x  
in the population that dominates 2x . 

 
Each point in the Pareto set is optimal in the sense that no 

improvement can be achieved in any objective function without 
degradation in the others.  

The general procedure of the genetic algorithms is shown in 
Fig. 7.  

1. Creation of initial population 
2. Evaluation of fitness (objective) function 
3. Selection of parents according to the rank (fitness) 
4. Crossover and mutation 
5. Check the convergence. If not converged, return to the 

process No. 2. 
 

Once the optimization is over, the validity of the search region is examined using Kriging model. 
 
Kriging Model 

 
The Kriging model expresses the unknown function y(x) as  

                                        )()( xx Zy += β                                (4) 
where, x is an m-dimensional vector (m design variables), β is a constant global model, and Z(x) represents a 
local deviation from the global model. In the model, the local deviation at an unknown point, x, is expressed 
using stochastic processes. The sample points are interpolated with the Gaussian random function as the 
correlation function to estimate the trend of the stochastic processes. The correlation between Z(xi) and Z(xj) is 
strongly related to the distance between the two corresponding points, xi and xj. In the Kriging model, a special 
weighted distance is used instead of the Euclidean distance, as follows:   
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Fig.7: Flow chart of Genetic Algorithm.



 
where, θk (0≤θk≤∞) is the kth element of the correlation vector parameter θ. By using the specially weighted 
distance and the Gaussian random function, the correlation between the point xi and xj is defined as 
 

( )[ ] [ ]),(exp),( jiji dZZCorr xxxx −= .                          (6) 
 

Kriging predictor[18], in other word a function estimated by Kriging model, can be expressed as 
 

)ˆ(ˆ)(ˆ 1 ββ 1yRrx −′+= −y .                              (7) 

 
where, β̂  is the estimated value of β , R denotes the nn× matrix whose (i,j) entry is [ ])(),( ji ZZCorr xx . The 
i-th element of vector r is  
 

[ ])(),()( i
i ZZCorrr xxx ≡                                 (8) 

 
and )](,),........([ 1 nxyxy=y . 

Detailed derivation of the above equations is in Ref.19. The unknown parameter to be estimated for 
constructing the Kriging model is θ. This parameter can be estimated by maximizing the following likelihood 
function 
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where, 1 denotes an m-dimensional unit vector. 

Maximizing the likelihood function is an m-dimensional unconstrained non-linear optimization problem. 
In this paper, GA is adapted to solve the present problem. The accuracy of the prediction value largely depends 
on the distance from the sample points. Intuitively speaking, the closer the point x is to the sample points, the 
more accurate the prediction ( )xŷ  is. This intuition is expressed in following equation,  
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           (10) 

 
where, )(2 xs  is the mean squared error of the predictor. It indicates the uncertainty at the estimation point. The 
root mean squared error (RMSE) is expressed as )(2 xss = . 
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Fig.8: Procedure to improve Kriging model 
 

Figure 8 shows the procedure to improve Kriging model using the sample points which are added after GA. 
First, a sample population is generated by improved hypercube sampling. This method selects sample points to 
be scattered inside the interval partitioned on search space. The distribution of design variables is investigated 
and the validity of the search region is checked. If the search region is invalid, it is redefined. Second step is the 
evaluations of the objective functions at the sample points using CFD solver and Kirchhoff method. With the 
sample data obtained from the analysis modules, the Kriging parameter, θ, is determined by solving 



maximization problem of Eq.(9). Once the model is constructed, the model should be validated. The validation 
is performed by the cross validation[19]. If the model is valid, all cross-validated values should lie inside of the 
confidence region. It can be check by using the “standardized cross-validated residual” as follows. 
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If residual is not in the confidence range, a few additional sample points should be selected from the 

extended region of the redefined search region to ensure the accuracy of the Kriging models. This routine is 
iterated until Kriging model is valid. 

 
Exploration of the global optimization and improvement of the model 
 
     Once the approximation model is constructed, the optimum point can be explored using an arbitrary 
optimizer on the model. However, it is possible to miss the global optimum because the approximation model 
includes uncertainty at the predicted point. 
     In Fig. 9, the real shape of objective function and predicted shape by the Kriging model are compared. 
Eight points are selected for constructing the Kriging model. The minimum point on the Kriging model is 
located near x=9, whereas the real global minimum of the objective function is sited near x=4. However it is 
hard to search the global minimum on the present Kriging model, the real global minimum near x=4 cannot be 
found. For a robust search of the global optimum, the predicted value by the Kriging model and its uncertainty 
should be considered at the same time. 
     Figure 10 shows the predicted value and the standard error of the Kriging model. Around x=9.5, the 
standard error of the Kriging model is very small because there are many sample points around this point. Thus, 
the confidence interval is very short as shown in Figure 10. On the other hand, the standard error is very large 
around x=3.5 due to the lack of sample points around there. Thus, the confidence interval at this point is very 
wide. The minimum inside this interval is less than the present minimum point on the Kriging model. This point 
has somewhat a large probability to become the global minimum. 
     This concept is expressed in the criterion of EI[20]. The EI of minimization problem can be calculated as 
follows: 
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where, minf  is the minimum value among n sampled values. The values ofΦ  and φ  are the standard 
distribution and normal density, respectively. By selecting the maximum EI value point as an additional sample 
point, the robust exploration of the global optimum and the improvement of model can be achieved 
simultaneously. 
 

 
Fig.9: Objective function and Kriging model     Fig.10: Predicted value and standard error of  

                                            Kriging model 
 

 



Definition of Design Problem 
 

Objective functions 
 

The optimization in the present paper aimed to improve HSI noise characteristics and aerodynamic 
performance simultaneously. For a practical evaluation for noise characteristics and aerodynamic performance, 
two objective functions were selected. 

One of objective functions was the absolute value of minimum acoustic pressure and it should be 
minimized to reduce HSI noise. For the efficient evaluation of HSI noise, two assumptions were used. The 
characteristics of HSI noise was evaluated using non-lifting blade in hovering condition. Because the former 
research works[1-3] showed that the HSI noise can be simply simulated by using non-lifting blade in hovering 
condition. This fact removed the burden of trim analysis in forward flight. And the noise characteristics were 
calculated by the CFD solver at r=1.11R as an evaluation point. Practical evaluation of the far-field HSI noise 
should be executed by noise analysis technique such as Kirchhoff method, but an alternative way to speed up the 
optimization process was to use an acoustic pressure calculated by the CFD solver at the proper observer 
position, which can evaluate the far-field HSI noise[7].  

The other objective function for the evaluation of aerodynamic characteristics was thrust coefficient per 
solidity of modified blade. The aerodynamic evaluation was conducted at a fixed non-zero angle of attack (2°
in the present calculations) to avoid large calculation for trim analysis. This coefficient was defined as follows.  
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Design Variables 

 
Three dimensional blade shape was considered by 14 design variables to describe arbitrary planform 

shape and airfoil transition from NACA0012 to NACA0008, as shown in Fig. 11. The 14 design variables were 
used to describe an arbitrary planform shape using cubic B-spline from 0.5R. Transition range between the two 
airfoils was 0.06R, and its center was defined as the 15th design variable. Combination of airfoil section was 
introduced to consider the different aerodynamic characteristics along the blade span due to blade rotation. In 
the present work, effect of airfoil thickness was only considered. The upper bound and lower bound of each 
design variables was defined as shown in table 2. 

 

 
(a) Design variables for planform                      (b) Combination of airfoils 

Fig.11: Definition of design variables 
 

Table 2: Upper and lower bound of design variables 
Variables Description Constraint Variables Description Constraint 

DV1 X position of point 1 0.0R ≤ DV1 ≤ 0.5R DV9 X position of point 7 DV11 ≤ DV9≤ 0.97 

DV2 X position of point 2 0.5R ≤ DV2 ≤ DV3 DV10 Y position of point 7 -1.4C ≤ DV6 ≤ 0.7C 

DV3 X position of point 3 DV2 ≤ DV3 ≤ DV5 DV11 X position of point 8 DV13 ≤ DV11 ≤ 0.98 

DV4 Y position of point 3 -0.3C ≤ DV4 ≤ 0.4C DV12 Y position of point 8 -1.4C ≤ DV12 ≤ 0.7C 

DV5 X position of point 4 DV3 ≤ DV5 ≤ 0.97 DV13 X position of point 9 0.5R ≤ DV13 ≤ DV11 

DV6 Y position of point 4 -0.3C ≤ DV6 ≤ 0.4C DV14 X position of point 10 0.0R ≤ DV14 ≤ 0.5R 

DV7 Y position of point 5 -1.5C ≤ DV7 ≤ DV9 ≤ 0.5C DV15 Airfoil Transition 0.5R ≤ DV19 ≤ 0.95R 

DV8 Y position of point 6 -1.5C ≤ DV7 ≤ DV8 ≤ 0.5C    

 



Constraints 
 

Four constraints were applied to make reasonable blade planform shape. Three of them were the 
geometric constraints to define the relations between neighboring points, blade planform area change limit, and 
curvature limit as a viewpoint of manufacture. The other was a torsional moment coefficient to consider an 
aerodynamic performance, which is defined as 

 

32 RA
M

C T
M T Ω

=
ρ

,                                 (12) 

 
where, MT means torsional moment. The details of constraints are reviewed in the previous paper[7]. 

 
Results and Discussion 

 
After 12 iterations of optimization procedure, we can obtain 74 sample points. The validity of Kriging 

model made by the last sample points was evaluated by the cross-validation. Figures 12 (a) and (c) show 
objective values calculated by the CFD solver on x axis and by the Kriging model on y axis. If points are located 
near the proportional line of x, y axis, the Kriging model is considered accurate. In Fig. 12 (a), low values of 
minimum acoustic pressure have larger difference between CFD solver and Kriging model than those of high 
values. But, it doesn’t effect on the optimum solution because the optimum point is the highest value of 
minimum acoustic pressure. On the other hand, most values of σ/TC  are on the proportional line in Fig. 12 (c). 
Figures 12 (b) and (d) show standardized cross-validated residual of each objective function on Kriging model. 
All the residual points for both objective functions on the Kirging model lie in the interval of [-5, 5], which 
means the prediction of 99.5% confidence.   

 
(a) Comparison of minimum acoustic pressure    (b) Residuals of minimum acoustic pressure 

 by CFD solver and Kriging Model                    in Kriging model 

   
(c) Comparison of σ/TC                    (d) Residuals of σ/TC

 

 
 by CFD solver and Kriging Model                    in Kriging model 
 

Fig.12: Results of cross-validation 
 



Figure 13 shows minimum acoustic pressure and σ/TC  of all populations including optimum shapes and 
some special type shapes, such as rectangular, crank, BERP, ONERA, ERATO, and NAL type. The diagonal 
yellow arrow means the direction of optimization. This diagonal direction expresses optimization conduction for 
two objective functions simultaneously. In the result, three optimum shapes are selected on the boundary of the 
last samples. These three shapes have similar values of objective functions as shown in table 3. We name noise 
optimum shape, σ/TC

 

optimum shape, and balanced optimum shape of noise and σ/TC  for each performance. 
Except for σ/TC  optimum, the present optimum shapes had more improved values of objectives than those of 
our previous optimum[7] as shown in table 3. Only the case of σ/TC  optimum has more improved aerodynamic 
performance. 

 
Fig.13: Pareto surface of all population 

 
Table 3: Objective function values of each blade shape 

Shape Ct/σ Peak Pressure(Pa) Area 

Baseline 0.0372 604 0.07965 

Previous Optimum 0.0353(-5%) -122(-80%) 0.07806(-2%) 

Optimum1 (Noise) 0.0372(±0%) -85(-86%) 0.07777(-2.4%) 

Optimum2 (C
T
/σ) 0.0384(+3%) -137(-77%) 0.08068(1.3%) 

Optimum3 (Balanced) 0.0380(+2%) -101(-83%) 0.07686(-3.5%) 

  % in parenthesis means difference form value of baseline※  
 
 

Figure 14 shows acoustic pressure calculated by Kirchhoff’s method. The absolute value of minimum 
acoustic pressure of the optimum shapes shows more than 77% reduction than that of baseline. Figure 15 shows 
Mach contour comparison among baseline and three optimum shapes. The shock region near blade tip in the 
Mach contour of rectangular blade is stronger than that of optimums. From these facts, we can confirm that 
weaker shock wave on optimum blade surface reduces the peak acoustic pressure, and HSI noise of optimum 
shapes is reduced. 

 



 
 

Fig.14: Comparison of acoustic pressure 
 
 

 
 

Fig.15: Comparison of Mach contour 
 

Figure 16 shows planform shapes of baseline blade, the previous optimum blade and the present noise 
optimum blade for comparison of noise optimization results. The swept angle of present optimum shape was 
significantly reduced than that of previous optimum shape. An airfoil transition region of present shape was 
from 0.82R to 0.88R. These shape change was caused by airfoil transition. Thick airfoil (NACA0012) has 
larger lift than thin airfoil (NACA0008), but thin airfoil makes weaker shock wave. Figure 17 shows the 
relation of trade-off between σ/TC and HSI noise characteristics by airfoil transition. Thus, the present noise 
optimum didn’t need high sweptback angle by thin airfoil over 0.88R, and simultaneously has more lift by thick 
airfoil from root until 0.82R. From these results, improvements of both HSI noise characteristic and 
aerodynamic performance can be obtained by sectional transition of two airfoils. 

 

 
Fig.16: Planform comparison 



 

 
Fig.17: Objective value line changed by airfoil transition position 

 
 

Summary and Future Works 
 
Based on our previous research, blade planform shape and airfoil transition position was optimized to 

reduce HSI noise and to improve aerodynamic performance using GA based on Kriging method and CFD 
technique. As a result of optimization, three optimum blade shapes showed improved value of σ/TC and HSI 
noise characteristics, simultaneously. These improvements are caused by airfoil transition between two airfoils 
with different thickness. Thus, we can see possibility of performance improvement by combination of airfoils 
without sacrificing HSI noise characteristic using high sweptback angle and high taper ratio. 

As a next step, we are extending blade shape optimization with additional design variables such as 
camber, thickness of two airfoils by using equations of NACA 4-digit airfoil generation. As for the objective 
functions, more practical aerodynamic performance should be considered by adding such as the power 
coefficient of blade in hovering with fixed thrust, rotor stability, and autorotation characteristic. These series of 
optimization researches can help the design of rotor on general flight of helicopter. 
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