
 

 

PARAMETRIC OPTIMIZATION OF A FLEXURE-BASED ACTIVE GURNEY 
FLAP MECHANISM FOR MINIMUM STRESS 

Jon Freire Gómeza,*, Julian D. Bookera, Phil H. Mellorb 

a Dept. of Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, 
Bristol, BS8 1TR, UK 

b Dept. of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers 
Building, Woodland Road, Bristol, BS8 1UB, UK 

 
Abstract 

 
The EU’s Green Rotorcraft programme is pursuing the development of a functional and airworthy Active 
Gurney Flap (AGF) for a full-scale helicopter rotor blade. Interest in the development of this ‘smart adaptive 
rotor blade’ technology lies in its potential to provide a number of aerodynamic benefits, which would in turn 
translate into a reduction in fuel consumption and noise levels. The AGF concept under development was 
selected following a design methodology presented in a previous publication and is characterized by the 
employment of crossed flexure pivots, which provide important advantages over bearings as they are not 
susceptible to seizing and do not require any maintenance (i.e. lubrication or cleaning). A baseline design of 
said mechanism was successfully tested both in a fatigue rig and in a 2D wind tunnel environment at flight-
representative deployment schedules. However, finite element analysis of the baseline design under full in-
flight centrifugal accelerations, aerodynamic loads and blade deformations shows that the stresses arising on 
the flexures would compromise their mechanical integrity. This paper investigates the potential to reduce the 
stresses on the flexures through parametric optimization of the baseline design. To this end, a procedure 
combining a simplified finite element model of the mechanism and an optimization algorithm is employed. From 
all the parameters required to fully define the mechanism, only those deemed to be the most influential were 
taken as optimization variables. The optimization approach adopted manages to reduce the stress on all 
flexures to levels below the yield stress, yet not enough so as to fulfil the design requirements in terms of safety 
margin and fatigue life. Future work will assess the scope for further stress reduction by altering additional 
design parameters. 

 
1. INTRODUCTION 

The performance of a helicopter is, to a great extent, 
determined by the aerodynamic behaviour of its main 
rotor. With the advent of computational fluid dynamics 
(CFD), helicopter blades have undergone an 
important shape optimization process, to the point of 
having virtually exhausted the scope for further 
aerodynamic improvement through changes in their 
geometry. At this stage, additional performance 
enhancement calls for morphing blades, i.e. smart 
adaptive structures capable of altering their shape 
while in service. In this context, the Green Rotorcraft 
[1] programme —which is part of the European Clean 
Sky Joint Technology Initiative (JTI)—, is pursuing the 
development of an Active Gurney Flap (AGF) for a 
full-scale helicopter rotor blade. Interest in the 
development of this ‘smart adaptive rotor blade’ 
technology lies in its potential to provide a number of 
aerodynamic benefits, which would in turn translate 
into a reduction in fuel consumption and noise levels. 
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The AGF concept under development was selected 
following a design methodology presented in a 
previous publication [2]. One of the main strengths of 
the chosen concept lies in the employment of crossed 
flexure pivots in lieu of bearings. These provide a 
number of important advantages over conventional 
joints as they are easily customisable, lightweight, 
maintenance free, backlash free (thus allowing 
precise control of position), they do not suffer from 
frictional losses and they eliminate the possibility of a 
jam during motion [3,4]. 

 
Fig. 1 Detail of the baseline AGF mechanism around the 

trailing edge region showing the crossed flexure pivots. 
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Fig. 2 Left: Interrupted view of the modified NACA 0012 aerofoil section with the baseline AGF mechanism removed; 

Right: Isometric view of the baseline AGF mechanism with a 900mm long flap.

Said AGF concept consists essentially of: a cradle 
slotted in the D-spar of the blade which houses an 
actuator and a linkage/gearing mechanism; a push-
rod that transfers the movement from the leading 
edge to the trailing edge; and a flap hinging on leaf-
spring crossed flexure pivots which are, in turn, 
anchored to the blade structure. 

A baseline design of said AGF concept (see Figs. 1 
and 2) was successfully tested both in a fatigue rig 
and in a 2D wind tunnel environment at flight-
representative deployment schedules (see 
references [5,6] for more details). The system was 
designed to fit into a NACA 0012 aerofoil with a 
thickened trailing edge (3% chord thickness at 95% 
chord), with the flap sitting at 95% chord 
(chord=508mm).  

After this successful stepping stone towards full 
validation of the AGF concept, the above design is 
currently being reengineered with a view to making it 
fit for flight test. A schematic of the baseline AGF 
design in its flight test version, with two independent 
500mm long AGFs (see Fig. 4) centred at 60% rotor 
radius is shown in Fig. 3. However, finite element 
analysis of this baseline design under full in-flight loads 

and blade deformations (see Table 2) indicates that 
the stresses arising in the flexures would exceed the 
ultimate stress of the leaf-springs’ material (stainless 
steel 17-7 PH in condition TH1050 with σu=1375MPa 
[7,8]) therefore causing them to break (see Table 4 and 
Fig. 8). Consequently, before the concept can be 
safely taken to flight test, design changes geared at 
reducing the maximum stress in the leaf-springs are 
needed. 

To this end, two complementary approaches were 
decided to be investigated. The first approach 
consisted in focusing on the crossed flexure pivots as 
isolated entities and in trying to reduce the stress 
resulting from their pivotal rotation through shape 
optimization of their leaf-springs (see references 
[9,10]). The second approach, which is addressed in 
the present paper, investigates the potential for stress 
reduction through parametric optimization of the 
baseline mechanism as a whole, while sticking to 
constant cross section leaf-springs. The methodology 
employed to tackle the analysis is covered in Section 
2, while the results are presented in Section 3. The 
main conclusions are outlined in Section 4. 

 
Fig. 3 Schematic showing two independent 500mm long AGFs centred at 60% rotor radius. 
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2. METHODOLOGY 

2.1. Modelling assumptions and analysis method 

As mentioned in the previous section, the baseline 
design consists of two identical and independent 
500mm long AGFs centred at 60% rotor radius. Each 
flap —assumed to be manufactured in titanium and 
with a mass conservatively estimated at 250g based 
on preliminary CAD drawings— is linked to the blade 
structure via seven crossed flexure pivot leaf-springs, 
all with an active length of 10.14mm. Each pushrod —
assumed to be manufactured in aluminium and with a 
conservative mass estimate of 150g— is attached to 
its corresponding flap via two flexures, both with an 
active length of 9.4mm (see row labelled ‘ref.’ in Table 
4 and Fig. 8 for the spanwise position, as well as the 
width and thickness dimensions of all flexures in the 
‘reference’ baseline design). 

The fact that both AGFs are assumed to be 
geometrically equal simplifies things and allows the 
analysis to be restricted to the outboard AGF, which is 
the one subjected to the most severe loading and 
blade deflections. The rationale behind this is that if the 
optimization proves there is scope to reduce stress on 
the outboard AGF enough so as to make the concept 
fit for flight, there will be even greater scope to do so 
on the less severely loaded inboard AGF. 

With regard to the actuator and the gearing/linkage 
mechanism, these need not be included in the analysis 
as their effect can be replaced by a linear stroke input 
applied directly on the forward end of the pushrod. 
Another interesting aspect that should be pointed out 
is that, in the mechanism’s undeformed state, the flap 

is half deployed in order to minimise the angular 
deflection of the leaf-springs between the full 
deployment and full retraction positions (see Fig. 1 and 
reference [5]). 

Considering the crossed flexure pivots featured in the 
design are much more flexible than the rest of the 
components (namely the flap and the pushrod) and 
further taking into account that the leaf-springs in the 
pivots are prismatic-type members, it was deemed 
appropriate to discretize the AGF mechanism into a 
parameterized 3D model of interconnected 
Timoshenko-type [11] beam elements (see Fig. 4). 
Those elements representing the leaf-springs (i.e. 
elements 15, 17, 19, 21, 23, 25, 27, 29 and 31) were 
modelled as flexible and were assigned a Young’s 
modulus of E=200GPa and a density of ρ=7640kg/m3 
(see physical and mechanical properties 
corresponding to stainless steel 17-7 PH in [7,8]). 
Conversely, the elements representing the pushrod 
(namely numbers 32, 33, 34 and 35) and the flap (the 
remainder) were modelled as perfectly rigid and were 
assigned a Young’s modulus of E=1010GPa. The flap 
elements were assigned a variable density —updated 
in each iteration of the optimization process— such 
that the sum of their individual masses would 
permanently yield a total flap mass of 250g. Similarly, 
the density assigned to the pushrod elements was also 
updated on each iteration with the target of keeping the 
total pushrod mass at 150g. The need to update the 
aforementioned densities on each iteration arises as 
the result of the effect that the design parameters taken 
as optimization variables have on the lengths of some 
of the flap and pushrod elements, and by extension, on 
the total flap and pushrod masses. 

 
Fig. 4 Discretized FE model of the baseline AGF mechanism as shown in Fig. 3.
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The structural performance of the above model can 
be characterized through matrix equation {F}=[K]{u}, 
where {F} is the vector of nodal forces, {u} is the 
vector of nodal displacements and [K] is the global 
stiffness matrix of the system, which can be obtained 
by appropriately assembling the local stiffness 
matrices (defined in [12]) of all individual beam 
elements. Said matrix equation can be solved using 
the Direct Stiffness Method [12], which is a 
particularization of the Finite Element Method (FEM) 
that enables the specific in-flight loading and blade 
deflection conditions to be readily applied on the 
model (see Fig. 7). 

It should be noted that the above equation 
corresponds to a quasi-static type of analysis, which 
yields accurate results only if the highest frequency of 
the loading acting on the system is —as a rule of 
thumb— at least four times lower than the 
fundamental frequency of the system itself. In the 
case of the AGF mechanism, the highest excitation 
frequency comes, not from the blade, but from the 
deployment/retraction movement of the mechanism, 
whose maximum operational frequency is 
approximately 30Hz. Therefore, for a quasi-static type 
of analysis to be acceptable the fundamental 
frequency ‘ωn’ of the AGF design should be at least 
ωn ≥120Hz. In order to verify this requirement, the 
fundamental frequency of the model (which was 
estimated at 314Hz for the original baseline design) 
was calculated on each iteration of the optimization 
process by solving the equation |[K]-ω2[M]|=0, where 
[K] is again the global stiffness matrix of the system, 
‘ω’ any one of its natural frequencies and [M] the 
global mass matrix of the system which can be 
obtained by appropriately assembling the local mass 

matrices (also defined in [12]) of all individual beam 
elements. 

As regards the boundary conditions employed, the 
model is assumed to be fixed (to the blade) at nodes 
16, 18, 22, 24, 26, 30, and 32. Bearing in mind that the 
blade has a much greater mass and stiffness than the 
AGFs within it, the deformations suffered by the former 
are assumed to be unaffected by the presence of the 
latter. Accordingly, the deflections pertaining to a 
naked blade case were used for the analysis. In the 
corresponding load cases (see Section 2.2), these 
deflections were applied directly on the 
aforementioned nodes in the form of known 
displacements. Finally, node 35 —which represents 
the connection point to the linkage/gearing 
mechanism— was modelled as a fixed spherical joint, 
thus allowing node 35 to freely rotate. In those loading 
cases where a full flap deployment/retraction was 
required (see Section 2.2), the necessary pushrod 
movement was simulated by applying a known 
displacement directly on node 35 in the axial direction 
of element 35. 

Once the vector of nodal displacements {u} is obtained 
from the equation above, this can be used, together 
with the individual stiffness matrix of each leaf-spring 
element, to calculate the forces acting at their ends 
(see Fig. 5). In turn, these forces will be used to 
calculate the stresses at any point throughout the leaf-
springs. For the purposes of this study, in each leaf-
spring stress was only evaluated at the 99 points 
shown in Fig. 5. The generic stress state at any one of 
them (shown on the top right-hand side of Fig. 5) can 
be mathematically described through the symmetrical 
stress tensor shown in Eq. ( 1 ): 

 
Fig. 5 Generic leaf-spring in equilibrium (left) subjected to loads Fx, Fy, Fz, Mx, My and Mz at one of its ends. The 99 red 

dots on the leaf-spring represent the points at which stress is evaluated. The generic stress state arising in each one of 
them is shown on the top right hand side. 
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( 1 ) [σ] = [

σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

]= [

σxx τxy τxz

τxy 0 0

τxz 0 0

] 

Where σxx, τxy and τxz can be calculated as [12,13]: 

( 2 ) 
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 ∀  i ∈ {15,17,19,21,23,25,27,29,31} 

The values for α and η are given in Table 1. 

Table 1 Values for the α and η parameters as a function of 
the beam’s w/t ratio [13]. 

wi/ti 1.0 1.5 2.0 3.0 6.0 10.0 ∞ 

α 0.208 0.231 0.246 0.267 0.299 0.313 0.333 

η 1.000 0.859 0.795 0.753 0.743 0.742 0.742 

Finally, the Von Misses stress at any point in the leaf-
spring can be calculated according to Eqs. ( 5 )-( 7 ), 
where σ1, σ2 and σ3 are the principal stresses at the 
point in question: 

( 5 ) |[σ]-λ[I]|=0    ⇒   |

σxx-λ τxy τxz

τxy -λ 0

τxz 0 -λ

|=0    ⇒ 

 λ∙[-λ2
+σxx∙λ+(τxy

2+ τxz
2)]=0 

( 6 ) 

{
 
 
 

 
 
 

σ1=λ1=
σxx

2
+√(

σxx

2
)

2

+(τxy
2+ τxz

2);

σ2=λ2=
σxx

2
-√(

σxx

2
)

2

+(τxy
2+ τxz

2);

σ3=λ3=0;                                              

 

( 7 ) σVM=√σ1
2+σ2

2 - σ1σ2 

2.2. Loading and blade deflections 

The loads and blade deflections used for the analysis 
are shown in Table 2, where they have been grouped 
into different sets depending on whether or not they 
occur simultaneously. It is worth reminding that, on the 
grounds explained in Section 2.1, these loads and 
deflections correspond with those the outboard AGF is 
subjected to. 

Set A encompasses the loads and deflections which 
are constantly present throughout the time the 
helicopter is airborne. This set includes: the 
gravitational and centrifugal loads acting on the flap 
and the pushrod (which are applied at their respective 
centres of mass, namely nodes 5 and 34 in Fig. 4), 
and the axial extension experienced by the blade over 
the AGF region (applied on nodes 16, 18, 22, 24, 26, 
30, 32 and 35 as a known displacement given by Eq. 
( 8 ), where EA and Fradial can be found in Table 3, and 
di are described in Fig. 8). The values of the 
centrifugal loads were calculated considering a rotor 
speed of 5.8rev/s and 5rev/s for the ‘limit’ and ‘normal 
operation’ cases respectively. In the case of the axial 
extensions, a reduction factor of 0.7 was applied to 
Eq. ( 8 ) for the ‘normal operation’ case. 

 

Table 2 Loads and deflections acting on the outboard AGF shown in Fig. 3. 

      LIMIT CASE NORMAL OPERATION 

      x y z x y z 

A 

Flap weight [N] - - -2.45 - - -2.45 

Pushrod weight [N] - - -1.47 - - -1.47 

Centrifugal force on flap [N] 1464 -108 - 1088 -81 - 

Centrifugal force on pushrod [N] 879 -35 - 653 -27 - 

Radial extension of blade (Δxmax) [mm] 0.56 - - 0.39 - - 

B 
Aerodynamic loads (distributed) [N] - 0 -288 0 -42 - 0 -288 0 -42 

Pushrod travel (p) for flap retraction/deployment [mm] - p·cos(2.36) -p·sin(2.36) - p·cos(2.36) -p·sin(2.36) 

C 
Flap chordwise inertia [N] - 95 0 -80 - - 18 0 -30 - 

Pushrod chordwise inertia [N] - 57 0 -48 - - 11 0 -18 - 

D 
Flap out-of-plane inertia [N] - - 242 0 -310 - - 102 0 -190 

Pushrod out-of plane inertia [N] - - 145 0 -186 - - 61 0 -114 

E Blade lag (Δymax) [mm] - 0.21 0 -0.21 - - 0.12 0 -0.12 - 

F Blade flap (Δzmax) [mm] - - 2.24 0 -2.24 - - 1.34 0 -1.34 

G Blade twist (θxmax) [deg] 0.16 0 -0.16 - - 0.16 0 -0.16 - - 



 

 

( 8 ) 
∆x=

di

L
∆xmax=

di

L

L

EA
Fradial=

di

EA
Fradial  

 ∀  i ∈ {15,17,19,21,23,25,27,29,31} 

Set B groups the loads associated with the full 
deployment/retraction states of the flap. These 
include the chordwise and out-of-plane aerodynamic 
loads present at full deployment (applied as 
distributed loads on elements 36-37 and 1-2 
respectively), and the pushrod displacement ‘p’ 
(applied on node 35 in the axial direction of element 
35) required to guarantee either a full retraction or a 
minimum deployment of 1% chord (i.e. 5mm) of all 
points along the flap’s span. 

Sets C and D consist of inertia loads produced by in-
flight blade vibrations of random nature. These inertia 
loads acting on the flap and the pushrod are applied at 
their respective centres of mass, namely nodes 5 and 
34. The aforementioned blade vibrations also cause 
blade deflections which are transmitted to the AGF 
mechanism (sets E to G). The flap, lag and twist 
deflections of the blade (shown in Fig. 7) affect nodes 
16, 18, 22, 24, 26, 30, 32 and 35 making them not only 
displace but also rotate. In the ‘limit’ case, the 
displacements and deflections corresponding to each 
of the aforementioned nodes are given by Eqs. ( 10 )-
( 13 ). For the ‘normal operation’ case, reduction 
factors of 0.6 (to Mflap and Mlag) and of 0.7 (to Fradial) 

were applied in said equations. 

( 9 ) 
θx=

di

L

π

180
θ

xmax

  

 ∀  i ∈ {15,17,19,21,23,25,27,29,31} 

( 10 ) 

θy=arcsin(

di

L
2Rflap sin θymax

- Rflap sin θymax

Rflap

)= 

 =arcsin [(2
di

L
 - 1) sin θymax

]   

 ∀  i ∈ {15,17,19,21,23,25,27,29,31} 

( 11 ) 

 ∆z=Rflap (cosθy - cosθymax
)= 

 =
EIy

Mflap

(cosθy - cosθymax
) 

( 12 ) 

θz=arcsin(
Rlag sin θzmax

- 
di

L
2Rlag sin θzmax

Rlag

)= 

 =arcsin [(1 - 2
di

L
) sin θzmax

]   

 ∀  i ∈ {15,17,19,21,23,25,27,29,31} 

( 13 )  ∆y=Rlag(cosθz - cosθzmax
)=

EIz

Mlag

(cosθz - cosθzmax
) 

where EA, Fradial, EIy, Mflap, EIz, Mlag, can be found in 
Table 3, di are described in Fig. 8, and θymax

 and θzmax
 

are given by Eqs. ( 14 )-( 15 ). 

Table 3 Blade section constants in the region of the AGFs 

and limit loads acting on the blade. 

RADIAL FLAP LAG 

EA Fradial EIy Mflap EIz Mlag 

[N] [N] [Nmm2] [Nm] [Nmm2] [Nm] 

2.1E+08 236427 9.E+10 6434 2.4E+12 15820 

 

 

  
Fig. 6 Outboard flap and pushrod inertia loads corresponding to a ‘deployment @ 26.3Hz - hold - retraction @ 26.3Hz’ 

type of sequence (line in blue) for a rotor speed of 5.8rev/s (‘limit’ case, left) and 5rev/s (‘normal operation’ case, right). 

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

M
o
m

e
n
t 

[N
m

] 
o

r 
D

e
p

lo
ym

e
n
t 

h
e
ig

h
t 

[d
m

]

F
o

rc
e

 [
N

]

Time [s]

Flap: Fx Flap: Fy Flap: Fz
Pushrod: Fx Pushrod: Fy Pushrod: Fz
Flap: Mx Flap: My Flap: Mz
Pushrod: Mx Pushrod: My Pushrod: Mz
Flap deployment height

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-1200

-1100

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

M
o
m

e
n
t 

[N
m

] 
o

r 
D

e
p

lo
ym

e
n
t 

h
e
ig

h
t 

[d
m

]

F
o

rc
e

 [
N

]

Time [s]

Flap: Fx Flap: Fy Flap: Fz
Pushrod: Fx Pushrod: Fy Pushrod: Fz
Flap: Mx Flap: My Flap: Mz
Pushrod: Mx Pushrod: My Pushrod: Mz
Flap deployment height

( 14 ) θymax
=

L+∆x
2

Rflap

=
L (1+

Fradial

EA
)

2
EIy

Mflap

 

( 15 ) θzmax
=

L+∆x
2

Rlag

=
L (1+

Fradial

EA
)

2
EIz

Mlag

 



 

 

With regard to the inertia loads associated with the 
deployment/retraction movement of the AGF 
mechanism, these were analysed using the multibody 
systems simulation tool ‘Motion Simulation’ integrated 
within Siemens’ NX software [14]. The results of the 
analysis (displayed in Fig. 6) show that, with the 
exception of the centrifugal forces (already included in 
Set A), these loads are negligible and were therefore 
not considered in the analysis. 

As can be observed in Table 2, loads and deflections 
in sets C to G may take three possible values: an 
upper bound value, a ‘zero’ value (if they are not 
present) or a lower bound value. Loads in set B may 
take two: either a given value or a ‘zero’ value. 
Whereas loads in set A can only take a single 
constant value as they are permanently present 
during the time the helicopter is airborne. This means 
that the AGF mechanism may be subjected to up to 
1·2·35=486 different load combinations during flight. 
As it is not possible to know which specific load 
combination will be the most severe (i.e. that giving 
rise to highest stress levels) beforehand, the 
mechanism will have to be analysed under each of 
the aforementioned load combinations. This does not 
mean, however, that equation [K]{u}={F} need be 
solved 486 times. Instead, by virtue of the principle of 
superposition applicable to linear equations such as 
the one concerned, it will be sufficient (and 
computationally much more cost-effective) to solve 
said equation 8 times and then to appropriately 
combine the displacement vectors {u} corresponding 

to each solution to obtain the individual responses of 
the 486 possible load combinations. Specifically, the 
8 ‘basic’ load cases that it will be sufficient to solve 
the above equation for are: the load case labelled set 
A; load cases C, D, E, F and G using either their upper 
bound values or their lower bound values; the 
‘aerodynamic loads’ case within set B; and the 
‘pushrod travel ‘p’ for flap retraction/deployment’ case 
also within set B, using an arbitrary reference value 
‘pref’ for the pushrod travel. The reason why the two 
load cases within set B need to be analysed 
separately is that, depending on whether the flap is 
considered to be deployed or stowed, the amount of 
pushrod travel ‘p’ required to guarantee either a full 
retraction or a minimum deployment of 1% chord (i.e. 
5mm) of all points along the flap’s span in each of the 
486 load combinations will be different. Hence the 
need to calculate the isolated response of the AGF 
model in terms of {u} under a pure ‘pushrod travel’ 
type of input. 

2.3. Description of the optimization procedure 

The analysis of the model presented in Section 2.1 
and its optimization were carried out using Matlab 
[15]. The implementation of the Direct Stiffness 
Method written for this purpose was thoroughly tested 
using a model equivalent to that in Fig. 4 built in 
Abaqus [16]. Once the correctness of both the 
analysis method and the model was verified, these 
were coupled to an optimization algorithm (pattern 
search [15]) built into Matlab itself. 

 
Fig. 7 Blade deflections transmitted to the AGF mechanism. Δzmax and Δymax represent the flap and lag deflections 

respectively at the centre point of each 500mm long flap relative to a line joining the end points. The frame of reference 
and the node numbering are the same as those shown in Fig. 4.
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The objective of the optimization was to minimize the 
stress in the flexures and to see whether this could be 
brought below the threshold of σy/SF=1300/1.5= 
867MPa when subjecting the design to the limit loads. 
To this end, three different optimization runs were 
performed. In run I, from all the parameters required 
to fully define the mechanism, only the relative 
position of the flexures along the flap’s span ‘di’ and 
their individual widths ‘wi’ were taken as optimization 
variables (see Fig. 8). For run II, the central flexures 
joining the flap to the blade were removed from the 
model (namely elements 21, 23, and 25) and again 
the relative position of the remaining flexures along 
the flap’s span ‘di’ and their individual widths ‘wi’ were 
taken as optimization variables. For run III, in addition 
to those employed in run II, the flexure’s individual 
thicknesses ‘ti’ were also taken as optimization 
variables. The results regarding the aforementioned 
optimization runs are discussed in Section 3. 

In order to determine the highest possible stress, in 
each optimization iteration the model was analysed 
under the 486 different load combinations discussed 
in Section 2.2. It is important to note that each load 
combination requires a different amount of pushrod 
travel ‘p’ in order to guarantee —depending on the 
flap position corresponding to each load 
combination— either a full retraction or a full 
deployment (minimum of 1% chord, i.e. ~5mm) of the 
flap along its entire span. If both the flap and the blade 
remained perfectly straight under any loading 
condition, in order to calculate the required pushrod 
travel ‘p’ it would be sufficient to analyse the z-wise 
displacement of nodes 1 and 3 (i.e. the ends of the 
flap) under the load combination in question. 

However, since only the flap remains straight (being 
modelled as perfectly rigid), unlike the blade which is 
assumed to take the shape of a circular arc in flap, it 
will also be necessary to check the z-wise 
displacement of node 2 (i.e. the midpoint of the flap). 
To calculate the model’s response under each load 
combination, firstly the pertinent individual responses 
corresponding to sets A, C-G and to the ‘aerodynamic 
loads’ case must be added together, thus obtaining a 
preliminary incomplete response (see reference to 
the principle of superposition in Section 2.2). In order 
to obtain the complete response of the system, it will 
be sufficient to add to the aforementioned incomplete 
response, the response corresponding to a reference 
pushrod travel ‘pref’ (which must have been separately 
calculated beforehand) multiplied by a factor such 
that nodes 1, 2 and 3 satisfy the corresponding 
deployment/ retraction requirement pointed out 
above. This factor must be calculated based on the z-
wise displacement of whichever node (out of the 
aforementioned three) is furthest from fulfilling said 
deployment/retraction requirement according to the 
incomplete response. 

As for the optimization constraints used in the 
optimization runs, the conditions/checks built into the 
algorithm were the following: a lower bound on the 
allowable width ‘wi’ of the flexures of 1mm, the 
requirement for there to be a minimum distance 
between flexures of 0.5mm, for all flexures to fit 
completely within the flap’s 500mm span, and for the 
fundamental frequency of the model to be always 
equal or greater than 120Hz as it evolves throughout 
the optimization process (see reasons explained in 
Section 2.1).  

 
Fig. 8 Graphical presentation of the results in Table 4. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

2

3

4

5

Spanwise (radial) position on the flap [m] 

I

II

III

ref. 15 3117 19 21 23 25 27 29σVMmax
= 19798 MPa

σVMmax
= 1217 MPa

σVMmax
= 1425 MPa

σVMmax
= 1572 MPa

w15 w17 w19 w23w21 w25 w27 w29 w31

d15
d17 d19 d21

d23 d25 d27 d29 d31

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

2

3

4

5

Spanwise (radial) position on the flap [m] 



 

 

3. RESULTS 

A graphical and a numerical representation of the 
optimization results is given in Fig. 8 and Table 4 
respectively. Under the limit loads, the maximum 
stress arising in flexures of the baseline design 
(labelled as ‘ref.’ for ‘reference design’) was found to 
be 19798MPa, a value which is well above the yield 
strength of stainless steel 17-7-PH (σy=1300MPa). 
Consequently, in order to make the design viable and 
fit for flight, there was a clear need to reduce stress 
through optimization of the baseline mechanism. 

Optimization I managed to bring the maximum stress 
arising in the flexures down to 1572MPa. This 
represents a significant reduction of 92.06% relative 
to the reference case, yet insufficient as said value 
remains above the material’s yield strength. As can 
be observed in Fig. 8, said optimization tends towards 
a design where, in comparison to that of reference, 
the flexures are much closer to each other, distributed 
over a length of approximately 17cm, and centred 
about a point inboard relative to the flap’s midpoint. A 
further interesting observation is that the resulting 
width for flexure elements 21, 23 and 25 is 1mm (i.e. 
the allowable minimum built into the optimization 
algorithm). This suggest that, had the width been kept 
completely unconstrained in the algorithm, these 
elements would have likely ended having a zero (or 
close to zero) width, which means that they are 
unimportant from a structural perspective and that it 
would likely be beneficial to have them completely 
removed from the design. 

Based on this rationale, optimization run II was 
virtually a repetition of run I, the only difference being 
that the aforementioned elements were removed from 
the design and therefore left out of the optimization. 
In this second run II, the maximum stress was further 
reduced down to 1425MPa (see Table 4). This 
constitutes an important (yet still insufficient) 
reduction of 92.8% relative to the reference case. In 
light of these results and as a last resort to bring 
stress below the σy=1300MPa threshold, a third and 
last optimization run III was carried out where the 
flexure’s individual thicknesses ‘ti’ were additionally 

taken as optimization variables. This final run III 
resulted in a maximum equivalent Von Mises stress 
of 1217MPa (i.e. a 93.85% reduction relative to the 
reference design). This result —which can be 
regarded as positive in as much as it provides a set 
of design parameter values such that the stress 
arising in the flexures is below the yield strength of 
their material— is, however, not quite the desirable as 
the design should also have a built-in safety margin 
for it to be considered airworthy. Consequently, the 
maximum stress should have been equal or less than 
σy/SF=1300/1.5=867MPa, considering a reasonable 
safety factor to be 1.5. 

Despite the somewhat unsatisfactory result, bearing 
in mind that the limit loads used for the optimization 
are not representative of the predominant forces 
during flight, the design coming out of optimization 
run III was decided to be further analysed under the 
loads corresponding to the ‘normal operation’ case. 
The analysis shows that, even under this more benign 
loading scenario, the maximum stress arising in the 
flexures would still be above the target threshold of 
867MPa(<895MPa). Therefore, as shown in Fig. 9, 
the design coming out of run III would not satisfy the 
viability requirements either from a safety margin 
perspective, or from a fatigue-life perspective (the 
flexures are required to have virtually infinite fatigue 
life and the endurance limit for stainless steel 17-7 PH 
is σe=510MPa). 

 
Fig. 9 Soderberg diagram corresponding to stainless steel 

17-7 PH in condition TH 1050 in thin sheet form. 

Table 4 Reference case compared with the results corresponding to optimization runs I, II, and III. 

 σVMmax σ ↓ 
fund. 
freq. 

d15 d17 d19 d21 d23 d25 d27 d29 d31 t15 t17 t19 t21 t23 t25 t27 t29 t31 w15 w17 w19 w21 w23 w25 w27 w29 w31 

 [MPa] [%] [Hz] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [μm] [μm] [μm] [μm] [μm] [μm] [μm] [μm] [μm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] 

ref. 19798 0.00 314 16.7 50.0 172.2 216.7 250.0 283.3 327.8 450.0 483.3 (127) (127) (300) (127) (127) (127) (300) (127) (127) 25 25 25 12.5 25 12.5 25 25 25 

I 1572 92.06 312 124.3 169.8 185.2 193.6 195.6 197.2 207.9 225.7 250.5 (127) (127) (300) (127) (127) (127) (300) (127) (127) 55.8 15.1 14.7 1.0 1.0 1.0 19.3 15.1 33.6 

II 1425 92.80 317 149.8 185.4 201.7 - - - 218.3 235.0 257.6 (127) (127) (300) - - - (300) (127) (127) 54.8 15.5 16.1 - - - 17.1 15.3 28.9 

III 1217 93.85 373 183.8 214.5 229.3 - - - 242.7 254.6 271.6 127 127 300 - - - 544 127 127 47.7 12.7 16.0 - - - 10.9 11.8 21.3 

 



 

 

4. CONCLUSIONS 

The optimization approach presented —consisting of 
coupling a simplified parameterized finite element 
model to an optimization algorithm— constitutes a 
useful and cost-effective method, especially well-
suited to early design stages of complex mechanical 
systems difficult to handle otherwise. This method 
does obviously not guarantee a high accuracy in the 
stress predictions. However, it provides a good 
enough estimate so as to make a judgement on the 
viability of the design and to decide whether there is 
scope for it to be successfully put through a detail 
design phase. 

When applied to the AGF mechanism under study, 
this optimization strategy yielded very significant 
stress reductions relative to the reference baseline 
design, namely bringing stress levels from 19798MPa 
down to 1217MPa (i.e. a reduction of 93.85%). 
However, despite the fact that the maximum stress of 
the optimized design is below the yield strength of the 
flexures’ material, the stress reduction achieved is not 
sufficient as the equivalent safety margin is only 1.07 
(it should be at least 1.5 for the design to be 
considered airworthy). It is important to point out that 
this result can be deemed to be somewhat 
pessimistic, as the modelling assumptions adopted 
were in some ways conservative (for instance, the 
flap and the pushrod were modelled as perfectly rigid 
when, actually, they have some compliance). 
Nevertheless, the impact of said assumptions on the 
results is believed to be small and in all probability 
these would not have changed greatly had more 
realistic assumptions been made. In view of this 
outcome, future work will look into altering additional 
design parameters to reduce stress even further. 
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