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ABSTRACT 

This paper presents a linear semi-analytical model that is able to predict complex rotor-structure coupling 
phenomena and their stability. It was primarily designed so as to gain a better physical understanding of this 
kind of aeroelastic instabilities, triggering at higher frequencies than air and ground resonance, and involving 
several blade and structure modes. The analytical approach has a two-fold advantage since fast parametric 
studies can be carried out and a term-by-term analysis of the helicopter stability equations can be performed. 
In order to represent the elasticity of the structure and the blades, a modal decomposition method is 
introduced. The modal basis for the structure can either be obtained by a Finite Element Method or rigid 
degrees of freedom can be inputted. For the blades, a preliminary finite element routine is run, allowing for 
varying characteristics along the span. Blade offsets are introduced, and an unsteady aerodynamic model is 
implemented. The modal basis of the coupled system is then computed and a partial validation is done with 
HOST (Helicopter Overall Simulation Tool), a comprehensive aeroelastic code. Except for the built-in twist 
and the non-circulatory terms which are taken in a different manner in HOST and the presented model, the 
linearization results are similar. Future work using this model includes investigation of the helicopter stability 
thanks to parametric studies. 

NOTATIONS 

DoFs Degrees of Freedom 

HOST Helicopter Overall Simulation Tool 

MRH Main Rotor Hub 

AC Aerodynamic Center 

CG Center of Gravity 

SC Shear Center 

FA Feathering Axis 

LTI / LTP Linear Time Invariant/Periodic 

IBC Individual Blade Coordinates 

MBC Multi-Blade Coordinates 

         Number of structure, lead-lag and 
flapping modes 

   Deformed shape of the structure 
mode   

      Translational DoF of the MRH center 
(m) 

         Translational DoF of the MRH center 

for mode   (m) 

         Rotational DoF of the MRH center 
(rad) 

            Rotational DoF of the MRH center 
for mode   (rad) 

  Rotor speed (rad/s) 

   Azimuth of blade   (rad) 

  Number of blades 

     Transformation matrix from frame   
to frame   

  Radius of local section (m) 

  Time (s) 

    Lead-lag and flapping angles (rad) 

    Lead-lag and flapping deflections (m) 

      Lead-lag and flapping modal 
deflections (m) 

  Angle of rotation of the section (rad) 

         Built-in twist, elastic torsion, and 
control angles (rad) 

     Torsion modal angle (rad) 

                 Modal participations of  th structure, 
lead lag, flapping modes, and modal 
participation of torsion for one blade 

              Total and modal displacement of 
lead lag damper attachment point on 
its axis (m) 



              Aerodynamic center, Center of 
Gravity and three quarter chord 
offsets (m) 

  Air density (kg/m
3
) 

  Section chord (m) 

       Lift coefficient, Lift coefficient slope 

  Inflow angle (rad) 

   Quasi-static lift (N/m) 

  Vertical displacement of SC (m) 

      Tangential and perpendicular 
speeds of the ¾ chord point (m/s) 

    Total vertical induced velocity (m/s) 

            Collective and 1
st
 cyclic components 

of the vertical induced velocity (m/s) 

    Modal mass of structure mode   
(kg.m²) 

                 Modal stiffness of structure, lead-lag 
and flapping modes  , and modal 
stiffness of torsion mode (kg.m².s

-2
) 

      Lead lag damper and flapping 
stiffness (kg.m².s

-2
) 

            Modal damping of structure, lead-lag 

and flapping modes   (kg.m².s
-1

) 

         Blade section matrix of inertia and 
mass (kg.m, kg/m) 

          Structure and blade kinematic 
energies (kg.m².s

-2
) 

  Potential energy of the system 
(kg.m².s

-2
) 

  Dissipative energy of the system 
(kg.m².s

-3
) 

   Generalized effort, relative to    
(kg.m².s

-2
) 

       state space variable 

               Collective and cyclic lead-lag modal 
participations for mode   

               Collective and cyclic flapping modal 
participations for mode   

                  Collective and cyclic torsion modal 
participations 

      Mass, Damping and Stiffness 
matrices 

  State space matrix 

     Modal Assurance Criterion for 
complex modes 

 

 

1. INTRODUCTION 

The introduction of light-weight fuselage and blades 
during the development of new helicopters, 
combined with an increased available power may 
lead to a new kind of rotor-structure coupling 
phenomena. Therefore, the airframe should not only 
be sized by static criteria from stress analysis, but 
requirements based on stiffness of the pylon 
supporting the rotor and frequency placement of the 
fuselage also have to be considered. These 
instabilities appear at higher frequencies than similar 
coupling phenomena such as ground/air resonance 
or whirl flutter. As a consequence, higher order 
blade and structure modes are involved. Helicopters 
manufacturers focus on developing predictive tools 
which are capable of anticipating the occurrence of 
such phenomena, long before the maiden flight. 
Comprehensive aeroelastic codes are capable of 
determining the stability of the aircraft, taking into 
account several elastic blade and structure modes, 
and linearizing the equations of motion about a trim 
state. HOST (Helicopter Overall Simulation Tool) is 
such a code, developed and used by Airbus 
Helicopters

[1]
, but CAMRAD (Comprehensive 

Analytical Model of Rotorcraft Aerodynamics and 
Dynamics) II, developed by Johnson Aeronautics, 
can be quoted as well. The modeling strategy in 
HOST is a modular approach, with several physical 
models linked to a kernel, which manages all 
general functions, from the data exchanges between 
the models to the linearization or the time-domain 
simulation. A batch mode also exists, allowing the 
user to study the effect of a parameter on the 
stability of the aircraft. However, parametric studies 
on several physical parameters such as offsets, 
main rotor speed, modal masses may be long and 
tedious. 

Rotor-structure coupling has also been extensively 
studied thanks to analytical models. Ground 
resonance analytical models exist, the first one 
being introduced by Coleman and Feingold

[2]
, along 

with air resonance models, with a minimum number 
of DoFs, as in 

[3]
. The whirl flutter phenomenon, 

triggering on tilt-rotor aircrafts at high advancing 
speeds is also predicted by analytical models

[4]
. In 

all these models, the structure DoFs are rigid, 
translations for ground and air resonances, and 
rotations for whirl flutter. Regarding more complex 
rotor-structure coupling, Silverthorn

[5]
 investigated an 

advancing whirl flutter mode on the main rotor of a 
YAH-64 helicopter using an analytical model based 
on a change in blade pitch due to hub motions which 
represents the blade pitch/mast bending coupling, 
as did Kunz

[6]
 a few years later. More recently, 

Oberinger analyzed these complex rotor-structure 
coupling by energy flow considerations from results 
given by comprehensive rotorcraft tools

[7],
 and Roes 

developed an analytical model with a focal point for 



the structure
[8]

. However, no analytical model taking 
into account structure and blade modes has been 
found in the literature.  

This paper deals with the development of such an 
analytical model, which is able to predict the aircraft 
stability regarding these rotor-structure coupling 
phenomena.  

2. MODELING ASSUMPTIONS 

To account for the elasticity of the fuselage and the 
blades, while keeping a small number of DoFs, a 
modal decomposition approach was considered to 
be the best. The aerodynamic model chosen is the 
unsteady formulation introduced by Theodorsen’s 
work. The equations of motions are obtained with 
the Lagrange equations, linearized and then put on 
the state-space form in order to investigate the 
stability with the eigenvalues of the state matrix. 

This approach is compatible only with Linear Time 
Independent equations. In a first place, no 
advancing speed is implemented and the Coleman 
transformation is used to get a LTI system out of the 
equations. An advancing speed may be added and 
would lead to a LTP system that could be analyzed 
by using Floquet theory, but such a study is beyond 
the scope of this paper. 

2.1 Structure Modeling 

The structure is represented by a modal basis 
defined at the main rotor hub (MRH) center.    
modes can be inputted to the model, in terms of 
modal damping, deformed shape (3 translations and 
3 rotations defined in the structure frame   ), and 2 
parameters among modal mass, modal frequency 
and modal stiffness. This way, either data from 
Finite Element Modeling, as in figure 1, or rigid DoFs 

can be used as modal deformed shapes. The 6 rigid 
DoFs of the MRH center are then written with 
respect to these modal deformed shapes   , as 
shown equation  (1). Thus, in the state vector, the 
modal participations     are the only structure state 
variables. 

 

Figure 1. Finite Element Modeling of the structure 
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From these rigid DoFs are computed the translation 
of the MRH center, but also the rotation matrix 
    from the structure frame    to the non-rotating 
hub frame    with Rodrigues formula. To decrease 
CPU time, while not omitting any terms in the final 
mass, damping and stiffness matrices, this matrix is 
expanded to the second order according to the small 
angle assumption, as written equation (2). From this 
frame, a rotating frame    for each blade   is 

introduced with the azimuth   , equation (3). 
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2.2 Blade Modeling 

As the blade elasticity has an important role in the 
triggering of the instabilities to be studied, the same 
modal decomposition is chosen. In order to be able 
to investigate the influence of blade lead-lag, 
flapping and torsion separately, an uncoupled modal 
basis is set up in the model. The blade modes are 
computed thanks to a preliminary routine

[9]
, 

integrated to the model, which is derived from the 
beam theory. This routine calculates the blade 
modes in vacuum. The first lead-lag and flapping 
modes are assumed to be rigid, so the modal DoFs 
for these modes are the angles   and  , which are 
used in the transformation matrices from the frame 
  , defined above, and the floating frame 

associated to the blade   . For higher order modes, 

up to    for lead-lag and    for flap, deflections are 

defined in this floating frame for each blade radius. 
The total deflection is computed using the modal 
decomposition as written in equation (4). According 
to Euler-Bernoulli’s hypothesis, the cross sections 
have to stay perpendicular to the neutral axis. Two 
other transformation matrices are thus computed, 
depending on the deflections rates as shown figure 
2 for the lead-lag example. From the frame    and 

the angle       is defined the frame   , and from 
the latter and the angle        is computed   . 
Finally only one torsion mode is considered, as the 
higher order torsion mode frequencies are too high 
to be strongly coupled to structure modes. The 
shear center is assumed to be on the feathering 

MRH Center 



axis. So a last frame    is defined from    and the 

angle   which is the sum of control, built-in twist and 
elastic torsion angles, as written equation (5). The 
elastic torsion is the product of a modal deformed 
shape and a modal participation, equation (6). 
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Figure 2. Blade deflection and angles 
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Bielawa
[10]

 details one way to include elastic 
couplings while using an uncoupled modal basis, 
with deflection correction functions which are      -
dependant functions to be integrated over the span 
for each section. These functions have to be added 
to lead lag and flapping deflections   and  . As 
there is no trim calculation, the modal participations 
are unknown and the correction functions cannot be 
computed. That is why this modeling does not 

account for couplings due to twist. However, 
couplings will be introduced by offsets. 

The coordinates of the center of gravity of a section 
located at the distance   from the blade hinge are 
written equation (7) thanks to the definition of a few 
points:  

    the MRH center when motionless, which 
is also the center of the structure frame   , 

    the MRH center in movement, center of 
the hub frame   , 

    the point of the blade hinge, center of the 
blade frame   , 

     the point of feathering axis point at the 
current section, center of the airfoil frames 
     , 

     the center of gravity of the section, at an 
offset     from     along the blade chord. 

 (7) 
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All these points and the reference frames are 
showed figure 3, where the softness of the blades 
(thus the frames    and   ) is not represented for 
clarity.  

The lead-lag damper is supposed to be linear. In 
order to compute its dissipative energy, the velocity 
of the attachment point  ̇     is computed from its 

lead-lag modal displacement projected on the axis of 
the lead lag damper        , equation (8). 

 (8) 
 ̇    ( )  ∑          ̇( )

  

   

 
 

 

 

Figure 3. Frames of the global system 
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2.3 Aerodynamic Modeling 

The aerodynamic modeling chosen comes from the 
lifting-line approach. Theodorsen unsteady airfoil 
theory

[11]
 is included. All points and parameters 

needed to detail the aerodynamic model are drawn 
figure 4.  

 

Figure 4. Blade section 

The lift is assumed to be the only aerodynamic force 

applied on the airfoil. Therefore, only   ⃗ , at the 
aerodynamic center     is represented on the figure, 
and its expression is given equations (9) and (10). 
Even if the drag is neglected, the lift once projected 
on the blade frame produces an in-plane 
contribution. As the in-plane velocity    is assumed 

to be much greater than the out-of-plane velocity   , 

     and the small angle assumption can be 
made for      .   is the air density,   the blade 

chord and    the lift coefficient, which is supposed to 

be linear with respect to the inflow angle  , with a 
slope    , equation (11). With all these assumptions, 
the final form of the quasi-static lift is given in 
equation (12). 

 (9) *           +  {
  ⃗ 
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Along with this quasi-static formulation, 
incompressible unsteady aerodynamics is included, 
based on Theodorsen’s work

[11]
. Bielawa

[10]
 and 

Johnson
[12]

 applied this theory to rotorcrafts, and 
notations have been adapted to those chosen 
previously. A non-circulatory force     is applied to 
the Aerodynamic Center, along with a non-

circulatory moment       , which is also written at 

the axis of rotation of the section, the Feathering 

Axis,       , equation (13).  ̈ is the acceleration of 

the point     on the    axis, and  ̇ is total rotational 
speed of the airfoil with respect to the galilean 
frame, equation (14). Only this moment is inputted to 
the model as non-circulatory loads are expected to 
affect mainly blade torsion. Damping and inertial 

effects due to non-circulatory terms on lead-lag and 
flapping are negligible next to damping and inertial 
sources due to quasi-static aerodynamic lift, blade 
inertia and lead lag damper. 

 (13) 
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As of today, no dynamic induced velocity model is 
implemented, as the one presented in

[13]
, because 

no trim calculation is performed. However, the 
induced velocity is seen as a parameter, directly 
inputted to the model thanks to results given either 
by HOST or trim routines. It is a drawback especially 
when the nominal rotor speed is swept, but when 
investigations of the effect of structure or blade 
parameters are performed, the induced velocity is 
considered to be the same than a reference case for 
a given nominal rotor speed. The formulation 
chosen, which defines the vertical induced velocity 
through the rotor, is written equation (15). This 
allows for results given by Meijer-Drees theory

[14]
 to 

be used, even if the three induced velocity 
components            , positive downward, are not 
seen as state variables. Coupling between blade or 
structure DoFs and induced velocity is thus not 
represented by the semi-analytical model presented 
here. 

 (15) 
   (    )     ( )     ( )    (  )

    ( )    (  ) 
 

This component has to be added to the vertical 
relative air speed of the airfoil. The expressions of 

the vectors   ⃗⃗⃗⃗  ⃗ and   ⃗⃗ ⃗⃗   are detailed equation (16). 

 (16) 
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All modeling assumptions have now been 
presented; let us focus on the solving scheme. 

3. SOLVING PROCEDURE 

This part deals with the equation setup, the 

linearization process in Mathematica and the 

numerical integration in Matlab.  

3.1 Equations setup 

The Lagrange equations are used to get the system 
differential equations, which request for the 
computation of kinematic, potential and dissipative 
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energies, along with generalized aerodynamic 
forces. The kinematic energies    and         for the 
structure and the blade are written equations (17) 
and (18), where      is the matrix of inertia of the 
section, which is supposed to be diagonal. 

 (17) 
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Whether it is for the structure modes or the blade 
modes, the potential energy is calculated from the 
modal stiffness and the modal participation, 
equations (19) and (20). Some terms brought by the 
angular stiffness in lead-lag (due to the damper)    

and the angular stiffness in flap (   for an 
articulated rotor)    are added to the energy of the 

blade as shown equation (19). The dissipative 
energy is computed in a similar manner, equations 
(21) and (22), except for the damping brought by the 
lead-lad damper, which is computed with the total 
velocity of the attachment point  ̇     and its linear 

damping       . The structural damping of the torsion 

mode is neglected. 
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Finally, the generalized aerodynamic forces, relative 
to the state variable   , are computed from the 
quasi-static lift and the velocity of its point of 
application,    , and from the non-circulatory 
moment and the angular velocity of the point where 
it has been computed,     (which is supposed to be 

merged with    ), as shown equation (23). 

 (23) 
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   ̇
         

All the blade energies                and        have 
been computed for one blade, so it is necessary to 
sum all these energies over the   blades. The state 
variables of the blade, which are the lead-lag, 
flapping and torsion modal participations, are 
created for the   blades: the energies given 

previously are to be written with             and        

for blade   instead of         and     . Each blade 
has an azimuth   , defined by equation (3), and all 
the blade DoFs are written in the vector IBCDoF, 
equation (24). Once the total energies of the   
blades are computed, and added to the structure 
energies to get the energies     and  , the 
Lagrange equations are used to get the differential 
equations of the system, equation (25). 

(24) 
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3.2 Getting a LTI system 

All these equations are neither linearized nor have 
time independent coefficients. In order to investigate 
the stability of the system with the eigenvalues, this 
set of equations has to be LTI. The MBC are so 
introduced for all blade DoFs, as written equation 
(26) for the example of lead-lag, thanks to the 
Coleman transformation. The same is done for 
flapping and torsion DoFs. 

(26) 

     ( )      ( )      ( )    (  ( ))

     ( )    (  ( )) 

               

 

The number of DoFs is so decreased as soon as the 
number of blade is greater than 3. Moreover, without 
advancing speed, the system, if linearized, becomes 
LTI instead of LTP. The final state vector is given 
equation (27). 



(27) 
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The equations obtained by Lagrange equations, 
        have to be manipulated in order to get a LTI 
system depending on MBC. The equations relative 
to structure DoFs remain unchanged, equation (28), 
while equations relative to MBC have to be  
computed from equations relative to IBC, as shown 
equation (29) for the example of lead-lag. The same 
transformation is done for flapping and torsion 
equations. 

(28)                            

(29)         
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Whatever the number of blades,     (       ) 

equations are obtained, and are then linearized 
thanks to the small angle assumption made on the 
angles                  and   . However, 
trigonometric functions which depend on    have to 
be simplified by the symbolic calculation software 

Mathematica. In order to make this simplification 
possible, we have to fill in the matrices term by term 
and not simplify a whole equation in one step. If the 
term (     ) of the mass matrix is computed, all 
    ̇   ̈  are set to zero in the equation         , 

except  ̈  , and then the simplification procedure is 

performed to find the coefficient of  ̈  . For the 

damping matrix,  ̇   is kept and for the stiffness 

matrix,     is kept. Then two loops are created on   

and   to fill in all the matrices term by term to get the 
LTI system written equation (30). 

(30)    ̈     ̇          

 In order to reduce the CPU time, the minimum 
necessary DoFs are chosen for this calculation. That 
means the calculation is run for 2 structure modes, 2 
soft lead-lag and flapping modes, thus 3 lead-lag 
and flapping modes, and the only torsion mode, 
which gives 23x23 matrices. If the matrices are 
obtained for this number of modes, we can 
generalize it to          modes and one torsion 

mode without running the whole calculation and 
simplification. For instance, if we take the coupling 
term between the first and the second structure 

modes, we can generalize it to the     and the     

structure modes by replacing all 1
st
 structure mode 

parameters such as        by        and        by 
       as written equation (31). The same procedure 

is run for all coupling terms (structure/lead-lag, lead-
lag/flap…), which gives the generalized matrices. 

(31) 

[
  (        )    (               )

   (               )   (        )
] 

 

*

  (        )     (               )

   
   (               )    (        )

+ 

The mass, stiffness and damping matrices obtained 

in Mathematica are then split into two matrices:  -
independent matrices and  -dependant matrices to 

be integrated numerically over the span in Matlab, 
with varying characteristics from a section to 
another. Once this integration performed, these two 
matrices are added to get the full mass, damping 
and stiffness matrices. 

3.3 Stability investigation 

The final objective of this model is to investigate the 
stability of the helicopter regarding rotor-structure 
coupling. The equation (30) has to be put in the 
state space form: 

(32) (
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The conclusion on the system stability is made 
thanks to the sign of the real part of the eigenvalues 
of the state-space matrix  . The eigenvectors allow 
the user to observe the modal participations of blade 
and structure modes in the coupled rotor/structure 
modal basis obtained. 

4. VALIDATION 

In order to investigate the accuracy of this semi-
analytical model, a partial validation is made with the 
comprehensive aeroelastic code HOST

[1]
. Of course, 

the model is not expected to be as accurate as 
HOST, but the main objective of the model is to get 
the effect of several design parameters on the 
stability of the aircraft. Anyway, HOST linearizes 
about the trim computed, while no trim is performed 
in the model so the linearization is done about zero-
imposed trim conditions. Moreover, two aspects 
cannot be validated:  

 The built-in twist: when activated in HOST, it 
automatically elastically couples the blade 
modal basis, which is not done in the 
analytical model.  



 Theodorsen unsteady aerodynamics model, 
because another unsteady aerodynamics 
model is implemented in HOST. 

Three test cases are presented here: isolated rotor, 
ground resonance and whirl flutter. All these test 
cases are run for a five-bladed rotor with no 
advancing speed and no dynamic inflow but with the 
quasi-static aerodynamic model and offsets.  

4.1 Isolated Rotor 

In this test case, 6 blade modes are used (2 lead 
lag, 3 flapping, and 1 torsion), which gives 18 rotor 
modes after the Coleman transformation. The 
Campbell Diagram is given in appendix A, figure 5.  
As 18 curves are plotted on the same graph, the 
errors in damping and frequencies for 90% of the 
nominal rotor speed are given table 1. The MACX 
value is an extension of the Modal Assurance 
Criterion to complex modes

[15]
, equation (33) (where 

* is the conjugate transpose) and indicates the 
deformed shapes correlation (MACX goes from 0 to 
1 if the correlation is prefect).  

Model 
Freq. 
(Hz) 

HOST 
Freq. 
(Hz) 

Error 
(Hz) 

Model 
Damp. 
(%) 

HOST 
Damp. 
(%) 

Error 
(%) 

MACX 

2,59 2,45 0,14 96,81 97,57 0,77 0,99 

4,29 4,31 0,03 58,49 55,47 3,01 0,99 

8,00 8,08 0,07 31,32 29,62 1,69 0,99 

2,53 2,54 0,01 19,39 15,12 4,27 1,00 

1,72 1,66 0,06 28,49 23,06 5,43 1,00 

5,79 5,76 0,04 8,45 6,66 1,79 1,00 

6,58 6,64 0,06 24,25 23,02 1,22 0,99 

10,63 10,70 0,07 15,01 14,29 0,71 0,99 

14,72 14,79 0,08 10,84 10,34 0,50 0,99 

15,06 14,62 0,44 9,89 9,04 0,85 0,82 

19,17 18,73 0,44 7,77 7,06 0,72 0,83 

23,28 22,85 0,43 6,40 5,79 0,61 0,82 

16,59 16,74 0,14 -2,60 -0,94 1,66 1,00 

20,72 20,86 0,14 -2,08 -0,75 1,33 1,00 

19,86 20,11 0,25 30,46 30,78 0,32 0,90 

24,84 24,99 0,15 -1,73 -0,63 1,11 1,00 

23,82 24,07 0,25 25,40 25,72 0,32 0,99 

27,83 28,08 0,25 21,74 22,05 0,31 0,90 

Table 1. Frequencies and damping given by the model and 
HOST at 90% NR for the isolated rotor 

For the isolated rotor case the errors stay between 
0.01 and 0.44Hz for the coupled modes frequencies 
and between 0.31% and 5.43% (for a highly damped 
mode, around 23-28%) for the damping which is 
reasonable for the purpose of the model. The MACX 

criterion is greater than 0.90 except for three modes 
where this criterion is around 0.82. These are the 3

rd
 

flapping modes, more strongly coupled with torsion 
in HOST than in the analytical model. 
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4.2 Ground resonance 

The second test case is a ground resonance case, 
with two structure modes, whose properties are 
given table 2,1 lead-lag mode and 1 torsion mode. 

Structure 
mode n° 

Deformed 
shape 

Modal mass 
(kg.m²) 

Modal 
freq. (Hz) 

  (           )         

  (           )         

Table 2. Structure modes for the ground resonance case 

The Campbell diagram is plotted in Appendix A, 
figure 6. Only 8 modes are inputted to the model so 
the deformed shape can plotted in Appendix B for 
90% NR. On the X-axis, the numbers 1 and 2 
correspond to structure modal participations, 4 and 7 
to collective lead-lag and flapping modal 
participations, 5,6 and 7,8 to cyclic lead-lag and 
flapping modal participations. As expected, the 
structure modes are strongly coupled to the cyclic 
lead-lag modes (modes N° 4,6,7 and 8) while the 
flapping modes stay uncoupled, with a good 
correlation between HOST and the model. The 
errors and frequencies and damping are given table 
3. 

Model 
Freq 
(Hz) 

HOST 
Freq 
(Hz) 

Error 
(Hz) 

Model 
Damping 
(%) 

HOST 
Damping 
(%) 

Error 
(%) 

2,13 2,10 0,03 98,14 98,38 0,24 

4,26 4,28 0,02 49,05 48,29 0,75 

8,12 8,14 0,03 25,77 25,40 0,38 

2,45 2,44 0,01 26,68 24,14 2,54 

1,70 1,68 0,02 28,47 23,81 4,66 

2,50 2,48 0,02 -8,22 -8,73 0,52 

2,61 2,59 0,03 0,09 0,09 0,00 

6,66 6,61 0,05 8,86 7,33 1,53 

Table 3. Frequencies and damping given by the model and 
HOST at 90% NR for the ground resonance case 

For this coupled rotor/structure case, the errors in 
frequencies are very small (from 0.01 to 0.05Hz), 
and the damping errors stay low, except for highly 
damped modes which are not to be investigated in 
detail. 



4.3 Whirl Flutter 

The last test case is a whirl flutter case, but applied 
to helicopters, which is run to check the accuracy of 
the structure modeling for angular deformed shapes. 

Structure 
mode n° 

Deformed 
shape 

Modal mass 
(kg.m²) 

Modal 
freq. (Hz) 

  (           )         

  (           )         

Table 4. Structure modes for the whirl flutter case 

The frequencies of the structure modes are put a 
little higher than for the previous test case, to couple 
these modes with higher order blade modes. 1 lead-
lag mode, 3 flapping modes and 1 torsion mode are 
inputted. The Campbell diagram is given in appendix 
A, figure 7, and the errors in frequencies and 
damping are written table 5. 

Model 
Freq. 
(Hz) 

HOST 
Freq. 
(Hz) 

Error 
(Hz) 

Model 
Damp. 
(%) 

HOST 
Damp. 
(%) 

Error 
(%) 

MACX 

2,47 2,38 0,09 96,66 97,09 0,44 0,99 

4,29 4,29 0,01 58,49 56,57 1,92 0,99 

7,81 7,84 0,04 31,61 30,38 1,23 0,99 

2,54 2,52 0,02 19,06 15,87 3,19 1,00 

1,70 1,68 0,02 28,47 23,82 4,65 1,00 

5,78 5,77 0,00 8,39 6,94 1,45 1,00 

6,40 6,30 0,10 23,54 21,93 1,61 1,00 

10,63 10,54 0,09 15,01 13,81 1,19 1,00 

14,72 14,64 0,08 10,93 10,03 0,90 1,00 

7,26 7,27 0,01 2,05 1,85 0,20 1,00 

7,40 7,39 0,01 1,35 1,45 0,10 0,99 

15,11 14,77 0,33 9,64 9,34 0,30 0,94 

19,17 18,84 0,33 7,77 7,53 0,24 0,94 

23,29 22,96 0,33 6,43 6,22 0,21 0,95 

16,61 16,75 0,13 -2,47 -1,25 1,22 1,00 

20,72 20,85 0,13 -2,08 -1,12 0,96 1,00 

24,87 25,00 0,13 -1,75 -0,96 0,79 1,00 

Table 5. Frequencies and damping given by the model and 
HOST at 90% NR for the whirl flutter case 

For this last validation case, the errors in frequency 
stay low (from 0.01 to 0.33Hz), and the errors in 
damping are below 1.5% for modes which are not 
highly damped (damping greater than 15%) and thus 
are interesting for the stability. The deformed shapes 
show a good correlation as well, with MACX criterion 
greater than 0.94 for all modes. The frequencies and 
damping, and the deformed shapes of the coupled 
structure modes are plotted figure 9 and figure 10, 

appendix C, which show that the couplings between 
rotor and structure modes are similar in the two set 
of results. 

5. CONCLUSIONS AND PERSPECTIVES 

The semi analytical model developed is predictive 
on the stability of rotor/structure coupling for these 
test cases, but the built-in twist and the unsteady 
aerodynamics model cannot be validated with 
HOST. The model also allows the use of Finite 
Element Modeling results for the structure modal 
deformed shapes. Its semi-analytical aspect is a 
great advantage when sweeps on several design 
parameters have to be performed. The calculations 
are fast (less than 3 seconds for a point of all test 
cases) because all matrices are simplified once for 
all in the symbolic calculation software, and only 
have to be evaluated numerically. Moreover, unlike 
HOST, the parameters are easily changeable in 

Matlab. As an extension, a more physical 
interpretation of rotor structure couplings can be 
made with a term by term investigation of the 
matrices. 

Future work includes the validation with CAMRAD II, 
and with experiments. An extension is the 
implementation of a dynamic inflow in the model, in 
order to capture the couplings between the modes of 
both the rotor and the blades, and the inflow. 
Sweeps on several design parameters will be 
carried out in order to quantify the effect of these 
parameters on the stability of the aircraft. 
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APPENDIX A. Campbell diagrams 

 

Figure 5. Campbell diagram of the isolated rotor case 

 

Figure 6. Campbell diagram of the ground resonance case 



 

Figure 7. Campbell diagram for the whirl flutter case 

 

 

 

  



APPENDIX B. Modal shapes at 90% NR for the ground resonance case 

 

 

Figure 8. Deformed shapes of coupled rotor/structure modes for the ground resonance case at 90% NR. 

  



APPENDIX C. Coupled Structure modes for the whirl flutter case 

 

Figure 9. Frequencies and damping of the coupled structure modes (N°10 and 11) for the whirl flutter case. 

 

Figure 10. Modal deformed shapes for coupled structure modes (N°10 and 11) for the whirl flutter case, at 90% NR. 

 


