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Abstract 

Tills paper summarises a recent smdy into the design 
of MIM 0 gain-scheduling controllers (in an LPV form) 
for the longitudinal flight control of helicopters. Based 
on Linear Matrix Inequalities (LMis) and quadratic/{" 
performance objectives (Ref. 1), the study proposes a 
2-degrees of freedom (2-DOF) gain-scheduling control 
configuration to achieve both good robustness and 
required flight handliog qualities within a whole 
specified region of operation. Relevant issues such as 
the choice of the weighting functions are discussed. 
The paper also provides a description of a new 
technique for affine LPV system modelling and its 
application to helicopters. 

1. Introduction 

A helicopter system can be generally modelled in the 
following non-linear and parameter-dependent form: 

Plant P(t, 6(t)): 

x(t) = f(x(t),u(t),w(t),6(t)), 

z(t) = hz( x(t),u(t), w(t),6(t)), 

y(t) =fly( x(t),u(t), w(t),6(t)). 

(1) 

where x(t) E 9\n the states, u(t) E 9\m the plant inputs, 
y(t) E :JtP the measurable plant outputs, w(t) E 9\q the 
exogenous inputs including reference input r( t), and 
z(t)E 9\' is a measured error (system performance) 
output. The parameter variables are defmed as an !­
dimensional parameter vector, 6(t), which, in most 
cases, may just be of the state variables x(t) and/or the 
system output variables y( t). 

With such a model, the control objective becomes to 
find a gain-scheduling control, defmed as the control 
u(t) from the parameter (8(t))-dependent controller 

Controller K(t,8(t)): 

xk = fk(xk(t),y(t),6(t)), 

u(t) = hk(xk(t),y(t),8(t)). 
(2) 

which maintains performance throughout the whole 
operating region (See Fig. 1). 

( 
w(t) P(t,fat.t)) z(t) 

I 
/ 

u(t) e(t) 1 y(t) 

( 

I K(t,~)) I 

./ 
F1g. 1 Gam scheduling control --- general case 

For a long time, the design of gain-scheduled 
controllers has mostly followed a classic two-step 
approach. First linear controllers are designed for 
linearised plants at frozen points (frozen 8) and then a 
schedule is designed which links the linear controllers 
normally by ad-hoc interpolation. Overall qualities 
such as stability and robust performance are then 
evaluated through simulation. 

The classic synthesis of a gain-scheduled controller 
from a group of linear controllers has the advantage 
that a variety of up-to-date linear control methods can 
be used. However, the disadvantage is that there is no 
guarantee of satisfactory performance and robustness 
along all possible trajectories of the scheduling 
parameters 8(t). 

During recent years, significant progress has been 
made in gain-scheduling control and a comprehensive 
survey study on the frameworks used has recently been 
made (Ref. 2). Among these so called 'one step 
synthesis' (simultaneous control and scheduling) 
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methods for gain-scheduling control, there is the 
Lyapunov function/quadratic II" performance 
approach based on a Linear Parameter-Varying (lPV) 
model of the plant (1). 

2. Framework for LPV Model Based Gain­
Scheduling ContJ"Ol 

Generally, an LPV system is a linear time-varying 
system in which the state-space matrices are fixed 
functions of some vector of parameter variables, i.e. in 
state-space form, 

LPV System P(6): 

z(t) = Cz(6) 
[

x(t)l [A(6) 
Bw(6) 

Dzw(6) 

Dyw(6) 

Dzu(6) w(t) (3) 
Bu(6) ][x(t)l 

y(t) Cy(6) Dyu(6) u(t) 

where A(•): :R1-t:R""", B(•): :R1-t9l""1•+mJ, C(•): 
:R1-t:Jtl•+pJxn and D(•)::R1-t:R1'+pJxlq+mJ are continuous, 

bounded functions of the parameters e. 

From LPV system modelling, an obvious choice for the 
strnctnre of the associated gain scheduling controllers 
would be the LPV form of controllers, i.e., in state 
space form, 

Controller K(6(t)): 

xk = Ak(6(t))xk +Bk(6(t))y, 

u = Ck(6(t))xk + Dk(6(t))y 
(4) 

where Ad• ): :R1-t:Rnkxnk, Bd• ): 
:R1-t:Rmxnk and Dd•)::R1-t:R""'P 
bounded functions of e. 

:R'-t:Rnkxp, Cd•): 
ere continuous and 

In terms of Linear Matrix Inequalities, the quadratic 
II" performance gain-scheduling control of LPV 
systems can be expressed as: 

For the LPV plant P(6) (3), find an integer m ;;, 0, a 
matrix X, = X/>0, and a continuous and finite­
dimensional (nk-states) controller K(6)(4), such that 
for all admissible parameters 8(t): 

[
A~(6)Xc +XcAc(6) XcBc(6) C~(6)] 

B~(6)Xc --yl D~(6) <0 

Cc(6) Dc(6) --yl 

(5) 

which is sufficient to ensure that the closed-loop 
matrix function A, is quadratically stable over the 
parameter domain If' (the Lyapunov function 
V(x) = x'Xcx gives global asymptotic stability) and 

the L2-induced norm of the input/output map (w-tz) is 
bounded by y. llz[[2 ,; y llwll2 . 

Here the matrix function [Ac(B) B,(e)] represents the 
C,(8) D,(8) 

closed-loop system from w-tz. In terms of the 
conventional open-loop plant (3) with Dyu(6)=0, and a 
nkth-order scheduling controller K(6) (4), we have 

Ac(6) = Aa(6)+Bu a(6)K(6)Cy a(6) 

Bc(6) = Bw a(6) + Bu a(6)K(6 )Dyw a(e) 

Cc(6) = Cz a(6) + Dzu a(6)K(6 !Cy a(6) 

Dc(6) = Dzw(6) + Dzu a(6)K(6)Dyw a(e) 

(6) 

When compared to the conventional two-step synthesis 
framework for gain scheduling control (Ref. 2), the 
LPV description is clear! y a good basis for one-step 
synthesis and the framework introduced here possesses 
a strong form of robust stability with respect to time­
varying parameters and has the clear advantage over 
the others in exploiting the realness of the parameters, 
thus producing a less conservative design. 

However, a principal difficulty in solving the LM!s 
problem appears to be the infinite number of 
constraints imposed by (5); a convex feasibility 
problem with an infinite number of constraints. For 
feasibility, one must normally resort to finding a grid 
of the parametric space If' on which to solve for 
approximations to the infinite problem. 

A particularly interesting case is the class of LPV 
plants where the state space matrices depend affmely 
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on a time-varying parameter 8 that varies in a polytope 
Pofvertices ro1, ro2, ••. , ro, i.e. 8(t)ECo{rol,ro2,---ffir} 

: = {f: a ;ro;: a > 0, I a; = 1}. Under some feasibility 
1 i=l 

assumptions on Dyu(8),Bu,Cy,Dzu•Dyw and the 

pairs (A(8(t)),B.) and (A(8(t)), Cy) (Ref. 1), the plant 
system matrix P(8) can be defined to be in a matrix 
polytope with vertices P( ro,), i.e. 

It therefore seems justified to design a polytopic form 
of the controller along the same projections of 8(t) on 
the vertices ro; (with the same a;,{i=l, ... ,r}, which are 
measured on-line): 

~) (8) 

Routine for gain-scheduling controller svnthesis 

The basic design routine for the affine LPV based 
quadratic Jt" performance gain-scheduling controller 
comprises: 

• Compute a single Lyapunov matrix X,=X/>0 
satisfying all the r convex constraints (5) for the 
vertices ro;(i=l , ... ,r) of the parameter polytope; 

• Define the LPV controller K(8) as affine and 
therefore an 'interpolation' of the vertex controllers 
K;. Once the Lyapunov matrix X, has been 
determined, adequate vertex controllers K;{i=l , ... r} 
can be calculated (off-line) by solving the 
corresponding convex optimisation at each of the 
vertex points ro;{i=l , ... ,r}, employing standard 
IMis routines. 

• The gain-scheduling control K(8)(4) is updated on­
line in real time based on the measurement of 
parameter 8(t) and its decomposition (a;), 

enforcing the expected quadratic performance over 

the entire parameter polytope P and along arbitrary 
parameter trajectories. 

This particular control synthesis procedure is included 
in the recent Matlah IMI Control Toolbox (Ref. 3) 
from which some principal m-functions have been used 
in our design work 

A configuration for 2-DOF gain-scheduling 
controller svnthesis 

In most cases, control synthesis is based on an 
augmented open-loop plant model plus various 
auxiliary weights, through which different closed-loop 
control strategies, e.g. model-tracking, 2-DOF (Ref. 4, 
5) control etc., can be realised through the optimisation 
of a designated input/output response. 

For the affine model based quadratic Jt" performance 
gain-scheduling controller design, one has to bear in 
mind that if a basic LPV plant model is affine in 8( t) 
(fortunately, this exists in many practical situations), 
the augmented open-loop configuration developed has 
normally to maintain the affmess property to achieve 
the polytope form of gain-scheduling controL 

A control configuration suitable for 2-DOF gain­
scheduling control is shown in Fig. 2. 

For w (w1 w2) ~ z (z1 z2), this set up has the following 
state-space (system) description: 

-'P 1foJ 0 0 0 ¥J ¥J 
xa 0 .-1:@) 0 J:it@) 0 0 -'P 

>in 0 0 l),j8) 0 0 lJJJ) xa 
~) -p:;fo) 0 -p2L/fo) ~) ~) >in 

ZJ 

0 0 c;J)) 0 0 f)IJ) "1 
Z2 

YJ 0 0 0 ri 0 0 "2 

c;foJ 0 0 0 qfo) qfo) u 
JZ 

(9) 
where: 

[
A0(8) B0(8)] 

Wd:= Co(S) Do(S) is a tracking model, 

[
Am(8) Bm(8)] 

Wm:= Cm(S) Dm(S) is an uncertainty weighting, 

We= pi is a performance weighting, pilot = pi, and 

C,1 is an output selection matrix. 
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Fig. 2 2-DOF Control Configuration 

As the description (9) reveals, when the performance 
weight W, is chosen as a constant gain pi (or some 
other parameter-independent dynamics), the augmented 
open-loop configuration is readily made affine, 
provided the basic plant model is affine. However, the 
modelling uncertainties may not be precisely 
incorporated into the model, (and hence into the 
synthesis), throughout the whole operating envelope, 
owing to the heuristic and constrained design of W m(8). 

3. Affine LPV Modelling of Helicopters 

Modelling of the helicopter longitudinal dvnamics 

Our study starts with a family of 6th-order (4th order 
plant + 2nd order actuator dynamics) linearised models 
representing helicopter longitudinal dynamics. The 
models are derived from a non-linear helicopter model 
of the West! and Lynx trinuned ar a series of even­
interval forward flight velocities (the scheduling 
variable U) throughout the flight envelope, ranging 
from 0 to 160 knots. 

The family of linear models can be put into a 
parameter (D)-dependent model, which, in this 
particular case, has the form: 

x=AH(U)x+BH(U)u 

y = CH(U)x+DH(U)u 
(10) 

where the six states: x=[ub wb q-& 0 0, BJ,]', the two 
control inputs u=[00 BI]', and ub, wb are the forward 
and vertical linear body velocities, respectively, q is 
the body pitch angular velocity, tl- is the body pitch 
angle, 0 0 is the main rotor collective input and 0 0, is 
the state from its associated l st -order actuator 
dynamics, Bl is the longitudinal cyclic control input 
and Bl, is the state from its 1st-order actuator 
dynamics. 

As expected, the introduction of the actuator dynamics { 
in the two control channels makes the control matrix 
BH(U) parameter-independent. Suppose the actuator 
dynamics modelled for these two channels are 

parameter-independent with 1st-order models a me 

s+amc 

and ~.Then AH(U) and BH(U) in (10) become: 
s+a1c 

au(U) aJ2(U) a13(U) aJ4(U) ais(U) al6 

a2J(U) aZ2(U) a23(U) a24(U) a25(U) a26(U) 

AH(U)= 
a31(U) a32(U) a33(U) a3i(U) a35(U) a36(U) 

0 0 g 0 0 0 

0 0 0 0 -a, 0 

0 0 0 0 0 -ale 

0 0 

0 0 

0 0 
BH = 

0 0 
(ll) 

a me 0 

0 ale 

The matrices Ca(U) and DH(U) in the output equation 
are apparently dependent on the choice of the output 
variables, for which two factors are taken into account: 
1) the system should be detectable/observable from the 
output variables, 2) the output variables should 
comprise those to be controlled under a handling 
specification. 

With reference to the handling qualities specification 
for rotorcraft, ADS33C (1989), for the basic handling 1 
mission modes in longitudinal flight [(l) Attitude 
Command with Attitude Hold (ACAH), (2) Rate 
Command (RC) and (3) Transitional Rate Command 
with Position Hold (TRCPH)] three principle output 
variables are selected: the vertical velocity wb, the 

angular pitch rate p and the pitch angle tl-. These defme 
a simple and parameter-independent form of the output 
equation in (10): 

[

0 1 0 0 0 OJ 
CH = 0 0 1 0 0 0 · 

0 0 0 1 0 0 [
0 0 OJ 

DH= 0 0 0 

0 0 0 
(12) 

An analysis of the un-augmented helicopter plant 
models reveals that: 
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• The helicopter has a narural instability in the 
longitudinal dynamics throughout the whole flight 
envelope. 

• The open-loop plant has a considerably low transfer 
gain in the body pitch control channel. 

• There is a considerable change in the entries of the 
parameter-dependent system matrix AH(U) as the 
scheduling variable U varies from 0 to 160 knots, 
which results in a large variation in the plant 
dynamics, in terms of the eigenvalues, across the 
operational region. 

Affine LPV modelling 

Here the aim is to determine an LPV model in the form 
of (11) which is 1) affine in the scheduling variable U, 
and 2) a good representation of, or a close 
approximation to, the family of linear Lynx models. 

One general and direct method of affine modelling is to 
treat each of the parameter-dependent entries, aij(U), in 
the matrix AH(U) (11) as an independent parameter 
variable with a bound aij·bound defmed on U, which 
results in the following affine LPV model with the 
parameter vector 6=[a11 a12 ••• aij ... ] (i =1-3, j = 
1-6): 

AH(P) = AHo +[ A11 A12 ... Aij ... ]6' (13) 

where: 
0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
AHa= 

0 0 g 0 0 0 

0 0 0 0 -a me 0 

0 0 0 0 0 -azc 

A;; • [' 

}_,_,,}_,_., j 

.j. 

i-'> I 
0 ... 

The major advantage of this kind of modelling clearly 
lies in the exact match between the affine model and 
the original LPV model. However, a fundamental 
problem in practice is the fact that for large, or even 
reasonable, sized parameter-dependent systems, it 
produces a large number (of the order of 2m, where m 
is the total number of the independent variables taken 
into account) of vertices upon which the polytope of 
the parameter vector is defined. Even in our example 
of a simplified longitudinal system, for the 18 

parameters in the AH this modelling process will bring 
about 218=262144 vertices! Since this number is also 
that of the sets of LM!s involved in the convex 
optimisation process, the approach will inevitably 
result in a massive or even impractical computational 
task with current resources. 

Also, for many practical LPV systems (such as 
helicopters) where the parameter variations are 
dependent on, or defmed by a few parameter variables, 
the actual parameter variation domain can only form a 
very limited subspace in the convex hull of the vertices 
from the above modelling process. Therefore any 
ignorance of this special dependence or constraint will 
inevitably produce a conservative design. This has 
been seen in some of our earlier gain-scheduling 
designs where some designated handling quality 
objectives could hardly be reached. It wonld therefore 
seem sensible to reduce the number of independent 
parameters (from 18 in the helicopter example) to a 
reasonable level. 

At the other extreme, if each of the dependent 
parameters can be put, or approximately put, into an 
affine function of the independent parameters, in our 
case for example, aij(U)=Koij+Kij*U (i=1-3, j=l-6), 
( 11) will be transferred into a very simple affine model 

Kon Ko12 Ko1s Kol4 KoiS Koi6 
Kr121 Kon Kll23 K024 K025 K026 

AH(U)= 
Kosi Kos2 Koss K034 Koss Kos6 

0 0 g 0 0 0 

0 0 0 0 -a,., 0 

0 0 0 0 0 --ale 

Kn KJ2 Kn K14 KJ5 KI6 

K21 K22 K23 K24 K2s K26 

K31 K32 KJJ K34 KJs KJ6 
+ u (14) 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

where the only parameter variable is U and the number 
of vertices is 2, corresponding to the minimum (0 
(knots)) and maximum (126 (knots)) bounds of U. 

Clearly, the feasibility of this modelling approach will 
depend on the extent to which each U-dependent entry 
in AH(U) can be approximated by an affine function of 
U, assuming that the associated derivations can be 
tolerated by the robustness properties of the controller. 
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An examination of the feasibility of fitting each of the 
U-dependent entries in the state matrix AH(U) with a 
proper affine function was made through a specially 
developed Matlab m-function. It demonstrates that the 
majority of these entries can be reasonably 
approximated by linear/affme fittings. 

Following this approach, a trial gain-scheduling design 
was made based on the affine LPV model of the 
helicopter with AH(U) (ll). Due to the very simplified 
model, the control synthesis became feasible and 
effective. However, the resulting gain-scheduling 
design bad very poor robustness with regard to the 
original plant model. It was observed that once the 
affine design model was replaced by its corresponding 
real plant model at an operating point, the closed-loop 
performance deteriorated and in some cases even went 
unstable. 

The only explanation for this appears to be that the 
simplification went too far and the errors resulting 
from the modelling were beyond the tolerance allowed 
by the robust control. Actually, for some parameters, 
e.g. a21(U) (Fig. 3), use of linear fittings was indeed 
very risky and, as observed, contributed to the major 
errors in the modelling. 

0 ~~mr':.:':.:ris:.:'":..:•..:.•tw..:.':.;':.c" th:.::'..::';:.''='m:::•..:.'"...:."::c":::'':;." '":.:'..:."':.;u::.' :.::"":.::":.:' '::."':.:"'c;(in x) 

0 - -·- - .J - - '- - -·- - 1. .• -•- - .J - -

- -I- - , - - 1- - -, - - r '' -I- - , - -

·0.15 - - '- - -' - - .!. .• -I- - ~ - -

' 0 ·2o!;--~;:--,-;-;.,--.:,o-, --:::.,:---.:,-:::00~-::,:::,--:,7.,,:---:-!,., 
U (knots) 

Fig. 3 Entry az1(U) and its approximation 

Based on these studies and experience, a hybrid 
method for finding an affine LPV model is proposed. 
As a natural combination of the two approaches 
introduced above, it pursues an affine LPV model by 
fitting those of the matrix entries having, or 
approximately having, a linear dependence on the 
scheduling variables with affine functions, while taking 
the others which not only cannot be quite so fitted but 
also very influential, such as a21 (U) and a31 (U), as 
independent bounded parameter variables. 

This has proven to be a good and effective modelling 
strategy for gain-scheduling control, and a useful 

compromise between feasible modelling for controller 
synthesis and accurate modelling. Following this 
approach for the helicopter plant where a21 was taken 
as an 'extra' independent parameter variable, making 
m= 2 (U and a21 , 4 vertices), the affine model of the 
state matrix AH(U) becomes: 

Kon Kon Ko13 Kou Ko1s KoJ6 
0 Ko22 Ko23 Koz4 Ko2s Ko26 

AH(U)= 
Ko31 Ko32 Ko33 Kos4 Ko3s Kos6 

0 0 g 0 0 0 
0 0 0 0 -arne 0 
0 0 0 0 0 -ale 

Kn Kn K13 K14 KJs K16 
0 K22 K23 K24 K25 K26 

{ } Ks1 K32 K33 K34 K35 K36 0 ... 

0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

(15) 

where U and a21 vary within: UE [0 160], az1E [azJmin 

a21m=l-

4. Synthesis for Gain-Scheduled Controllers 

2-DOF gain-scheduling It" control objective 

A generalised gain-scheduling !:!."" performance control 
design based on LPV modelling can be described 
within the framework of Fig. 4 below: 

w z 

Fig. 4 !:!."" performance design framework 

The control objective can be stated as the 
minimisation, over all possible LPV controllers, K(s, 
e)' of the If' performance (the induced L' -norm) of the 
closed-loop LPV system T ,(s, 8), from w (the 
exogenous input) to z (the plant output), under the 
uncertainty perturbation block !!.( s, e) and over the 
whole compact parameter set e upon which the LPV 
plant model, P(s, 8), is defined. 

In the case when a 2-DOF If' performance control 
problem adopts the design configuration as in Fig. 2, 
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the controllers consist of both a feedforward control, 
k,, from y, (the pilot), and a feedback control, kz, from 
the plant output y2 (Fig. 5) 

- - - - - - - - - - - - - -

'- -k~ ~-~~ <?'~~0~~ - ' 
Fig. 5 

And the control objectives at each frozen parameter 
vector, e, can be further expressed in terms of the 
standard I:t" norm optimisation: 

IITwzlloo-> min. (6 is omitted for simplification) (16) 

where one of the following modes of operation can for 
example be selected: 

Mode 1. For w (w1 w2 w3)-> z (z, zzzs): 

1
'r.;(G,s(I-IX:?Fkrl'@]ila W/:'.i{l-Fk:?P W/:'.i{l-Fk:?l 

T"" V{Jl-k;!'P kpt V{JI-k;!'P k;!' Wnfl-k;f)-1 12 
WJI-H<2P FkJJikt v.;o-&2r P WJI-&:? 

(W,: the uncertainty weighting at the sensor point) (17) 

This is an overall synthesis mode aiming for 
optimisation of model-following control (w1 -> z1), and 
robustness with respect to multiplicative uncertainties 
at both the actuator point (w, -> zz) and at the sensor 
point (w, -> z,). 

Mode 2: For w = (w1 w2), z = (z, Zz): 

T. =[W.(Cse~(I-Pk2T1Pk1 -%)Jik:t W.C.;(l-Pk2T
1
P] (l8) 

wz Wm(I-kz?T1 k1Jik:t Wm(I-k2PT1 k2P 

aims at model-following control (w1 -> z1) and 
robustness with respect to multiplicative uncertainties 
at the actuator point (wz -> zz). 

Mode 3: For w = w1, z = (z1 z2): 

T. =[We(Csez(l-Pk2F
1
Pkl-Wd)Pilot] (19) 

wz Wm(l-k2PF1k1pilot 

is the mode for model-following control and a 
constraint on the control output. 

Most of the uncertainties resulting from the modelling 
of helicopters are associated with the rotors and may 
be put into multiplicative uncertainties at the front 
actuating point, PH= P(l +Ll). For this reason, and also 
for simplicity, mode 2 was used for defining the 
objectives of the gain-scheduling control. In this case, 

the exogenous inputs are w1 (reference inputs) and w, 
(uncertainty perturbations), whilst the control outputs 
are z1 (weighted tracking errors) and z2 (weighted 
controller outputs). From formula (18), it can be seen 
that by appropriate choices of the sensitivity 
weighting, W., which balances the demands for desired 
handling and disturbance rejection, and the control 

weighting, Wm (on (I-k2PF1k1pilot and 

(I- k2P r1 k2P ), the gain-scheduling controller 

generated will guarantee, in the sense of the I:t" 
performance optimisation, a closed-loop system at 
each operating point which follows the desired 
performance reqnirements (in Wa), while maintaining 
guaranteed robusmess in the face of modelling 
uncertainty within the plant. 

Design of weighting functions 

Weighting function Wa: For helicopter control, the 
open-loop interconnection for controller synthesis (Fig. 
2) makes. it possible for Wa to adopt directly the 
frequency-defined handling qualities specillcation that 
the closed-loop system should follow. These are given 
in ADS33C (Ref. 6) which formulates the specification 
as a series of transfer functions relating pilot inputs 
and vehicle responses of interest. 

According to the qualities specification, for the RC and 
TRCPH handling modes, the desired transfer functions 
for the vertical velocity (w), roll rate (p), pitch rate (q) 
and yaw rate (r) can be modelled as first-order 
systems, while for the ACAH mode, the pitch attitude 
1} and the roll attimde <j> are of great importance and 
normally presented as second-order models. 

A typical example of the function Wa for control of the 
longimdinal flight, with output variables (wb q 1'}), is: 

[

_12_ 0 ] m s+2.0 
"d = 43 

O l+293s+43 

(jXlir(l"f,,t})for ACAH&TRCPH) 

[
-_w_ 0 ] m _ s+20 

"d- _jf}_ 
or: 0 (s.f4.0) 

(pair(WJJ,q)for RC&TRCPH) 

(20) 

where a fast mode (M = 4 (rad.s-1)) is assigned to 

pitch rate q for the demanded RC control. A, = 2 is 
assigned to the vertical velocity for Level l heave 
dynamics. For pitch angle 1}, standard Level 1 

·l 
parameters of ro. = 2.071 (rad.s ) and ~. =0.707 are 

used. The diagonal Wa structure also implies de­
coupled model following control. 
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Weighting function W "': Tbis weight has the role of 
describing the model uncenainties and constraining the 
control outputs (refer to (18)), both of which generally 
require the weight to have a high-pass characteristic. 

LTI controller synthesis suggests a weight with equal 
emphasis on the uncenainty description and the control 
constraint, e.g. 

Wm = . (s+IO) 

[

05(s+0.1) 0 l 
0 0 S(s+O.l) 

. (s+IO) 
(21) 

Tbis defmes good robusmess at the actuating point for 
all the LTI designs throughout the model range. But 
experience with this weight for LPV gain-scheduling 
control suggests a weight with much smaller gains, i.e. 
a more relaxed constraint on the control outputs, e.g. 

W, 
_ · (s+IO) 

m-
[

0 05 ( s+O.I) 

0 005~+0.l)] 
. (s+IO) 

(22) 

Weighting function W,: this is the so-called 
performance weighting which is used to scale the 
model-following criteria. A dynamic form of the 
weighting was used in the synthesis to achieve a good 
trade-off between the requirements for model-following 
and disturbance rejection. 

For the longitudinal control case, We adopts different 
bandwidths for the venical velociv; (6 rad.s'1) and the 
pitch angie (10 rad.s'1), respectively, to cope with the 
different tracking models. Two steps were involved in 
this particular weighting development for gain­
scheduling control, step 1: search for a suitable 
weighting We for each of the linear models in the 
family, through use of the standard linear time­
invariant (LTI) li control design and analysis for 
these 'frozen' models; then step 2: evaluate and, if 
necessary, modify the universal weighting from step I 
to generate an appropriate performance weighting for 
LPV gain-scheduling controL 

For step I, a typical performance weighting design for 
the ACAH/TRCP H mode is: 

_ [rs~6! xO.I W,-
0 

0 ]' 10 
(s+JO) 

(23) 

which, in view of the small singular value in the open- ( 
loop pitch control channel, has a relatively large gain 
in the second channel to bring about satisfactory 
control for all the LTI models throughout the 
operational region. 

However, as expected, direct use of this same 
weighting in the LPV-model based gain-scheduling 
control design revealed that the effon to stabilise the 
plant within a much expanded polytopic space (owing 
to the introduction of some extra independent 
parameters) results in poor handling control in the 
pitch channel over the mid-frequency range of interest. 

To reduce conservatism and to improve pitch handling, 
the weighting for the pitch was modified and, in 
particular, an extra pole and zero were introduced to 
make the weighting more centred and effective in the 
low/mid-frequency (0.1 rad - 10 rad.) range to boost 
performance matching. A typical example of a 
modified weight is: 

W =[(s~6)x0.1 
e 0 0 l IO(s+O.OOJ) 

(s+IO){S+O.Ol) 
(24) 

As the later results show, this produces satisfactory 
handling control in both the venical and pitch 
manoeuvres. 

Robustness evaluation 

A robusmess evaluation of a closed-loop LTI system 
with plant P and controller K can be achieved by use 
of singular value(cr) analysis, structured singular value I 
(J.L) analysis, and associated MIMO gain and phase 
margins (Ref. 7). From robusmess indicators at 
various perturbation points of interest, guidelines for 
the refinement of the controller synthesis can be 
formulated. 

Uncertainty Perturbation Structures. Two uncenainty 
penurbation structures of interest were considered. 
They are multiplicative uncenainty at the actuator side 
of the plant (Fig. 6(a)), and multiplicative uncenainty 
at the sensor side of the plant (Fig. 6(b)). The 
robustness evaluation considers the transfer functions 
'seen' by the mixed feedforward/feedback 
multiplicative uncenainty blocks, i.e. transfer 

-1 
functions M={I-KP ){I+KP) for Fig. 6(a) and M=(I­

-1 
PK)(I+PK) for Fig. 6(b). 
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(a) (b) 

Fig. 6 Multiplicative uncertainty perturbation 
strucrures 

Svnthesis routine and software development 

Gain-scheduling controller designs were performed in 
Matlab using primarily the IMI Control Toolbox 
(Ref. 3). For transferring a practical helicopter control 
problem into the standard gain-seheduling controller 
synthesis module and incorporating the principles of 2-
DO F lf' control within the design, some specified and 
user-defmed Matlab m-functions were developed. 
These together with some other auxiliary m-functions, 
made for setting up weightings, and various forms of 
system evaluation (including !!-analysis) etc., are used 
in the controller synthesis routine. 

5. Application of Gain-Scheduling Control to 
Helicopter Longitudinal Flight 

Following the various procedures introduced in the 
previous sections for the modelling, controller 
synthesis and closed-loop system evaluation and 
analysis, the 2-DOF gain-scheduling control 
methodology was applied to the design of a 
longitudinal flight controller for a Lynx helicopter. 

2-DOF configuration and controller synthesis -
example 

Here a synthesis for the gain-scheduling control is 
presented, with the plant being modelled as (15), the 
open-loop control configuration being the 2-DOF form 
as in Fig. 2 and the performance objective as (18). The 
relevant weightings were defmed as (20) for Wd 
(ACAH{TRCPH mode), (22) for Wm and (24) for W,. 
The pilot input gain matrix pilot was unity and the 

[1 0 OJ output selection matrix C sel = 
0 0 1 

. 

The synthesis brings an optimal (minimum) solution 
for the lf' performance: Ymin = 0.95. 

Evaluation and simulation 

Remember the synthesis process actually produces a 
family of gain-scheduling controller vertices 
corresponding to the 2" parameter vertices (corner 

(
Ak; Bk;) (8) Th · vectors), (J) ·r·-1 > = , see . e gam 

I 1- , ••• n cki Dki 

scheduling control, K(8), is a polytope of these vertices 
and is formed/updated on line in real time along the 
same projections of the polytope of 8(t) measured. 

Case 1: evaluation of the time-varying gain-scheduled 
control system. This is based on a lmownfpre-defmed 
time-varying trajectory 8(t), upon which both the plant 
P(8) and controller K(8) are defined. Tlllle-domain 
simulation is mainly used for this case. 

Case 2: evaluation of the closed-loop system under 
gain-scheduling control at selected operating points, 
with an assumption of frozen 8 at these evaluation 
points. This brings the convenience of incorporating 
any original LPV plant models and has the advantage 
that LTI models and analysis can be used. 

Evaluation case 1 - time-varying gain-scheduled 
control 

This was performed upon the linkup between the 
designed gain-scheduled controller and the family of 
Lynx LTI models. A Matlab function group, with the 
main function PDSIMUT4.m, was specially developed 
for this purpose. 

Case description: suppose starting from a hover 
( U =0) state, the helicopter undergoes 20 seconds of 
constant acceleration (10.12ft/s2

), with a change of 
forward speed from hover (0 (!mots)) to 120 (!mots). 
During the process, two step inputs from the pilot, for 
vertical velocity (5 fils) and pitch angle (5 deg.), 
respectively, are imposed to the system for a 10 
seconds period from the starting point of hover. 

Fig. 7(a) shows the time-varying patterns of the two 
parameter variables, the forward speed U(t) and the 
entry a21(t), which cover most of the parameter 
polytope (convex hull). 

Fig. 7(b) and 7(c) show the control and stabilisation of 
the two major system variables, the heave velocity and 
pitch angle, from the time-varying gain-scheduling 
controller, with Fig. 7(b) for the step control input 
w1=[5 0]' and Fig. 7(c) the control WJ=[O 5]'. 
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Trajectory o1parameterU{t) and a21 (t) 
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Fig. 7 Simulation of LPV gain-scheduling control 

This can be viewed as an extreme evaluation, in view 
of the variations of the parameters and LPV model 
covers large parts of the polytope. The time-domain 
simulations demonstrate the ability and effectiveness of 
the gain-scheduling control on stability and almost 
perfect handling of the time-varying helicopter 
longitudinal dynamics. As far as the flight handling 
quality specification is concerned, both the vertical and 
pitch controls reach the Ievel-l handling quality for the 
ACAH/TRCPHmode. 

Evaluation case 2 -- gain-scheduling control at 
frozen operating points 

This was based upon the LTI closed-loop systems i 
generated by interconnecting the original LPV plant 
models of the helicopter with the corresponding gain­
scheduled controllers at a series of frozen operating 
points ·selected throughout the operational range. For 
example, for evaluation of the LTI closed-loop 
helicopter system at hover, firstly find 8 at U= 0, 80, 

then get the particular controller, k(80}, from the gain­
scheduling controller polytope and link it with the 
linearised plant model for this point taken from the 
family of plant models given. 

Evaluation of control: In response to pilot inputs, 
both the time- and frequency-responses of the two 
longitudinal output variables of most interest, the 

vertical velocity wb ("' -h for level-off flight) and the 
pitch angie 1'}, were evaluated at varions operating 
points. 

The evaluation reveals that due to the very small gain 
in the pitch control channel at low frequency, special 
measures such as the magnification of the performance 
weighting, W,, as (24) are required to boost the pitch 
control effect 

Fig. 8 shows both the frequency and time-domain 
responses of wb to step 0 0 (main rotor collective 
control), and of 1'} to step B 1 (longitudinal cyclic 
control). It can be seen from the frequency response of 
1'} in Fig. 8(a) that its mid-range frequency response 
has been enhanced to match the desirable response (in 
'-'), bringing satisfactory handling control in both 
heave and pitch, see Fig. 8(b) . 

Fig. 9 and 10 show the same responses for a medium 
forward speed, U= 60(!mots), and a high speed, U= 
120(!mots), respectively. Both present good handling 
control qualities of the two important output variables 
representing the ACAH/TRCPH mode. Systematic 
evaluation of the control from low speed to high speed 
also reveals that hover can be the most delicate state 
for control augmentation and demands some strong 
performance weighting to match the required 
performance objectives. However, along with the 
forward speed increase, there should ideally be a 
decreased performance weighting to match the 
increased plant gain in the pitch channel; this is clear I y 
shown in the high speed case (Fig. 10) where some 
unexpected high gain response occurs at low 
frequency. This suggests the use of a parameter(U)­
dependent weighting function to effect an 
improvement. 
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Fig. 8 Scheduled control at U= 0 (hover) 
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Fig. 10 Scheduled control at U= 120 (knots) 

Evaluation of robustness: Finally, the robustness of 
the closed-loop system was examined, based on both 
singular value and Jl analyses. 

For robustness in the face of multiplicative uncertainty 
perturbations at the actuator side of the plant (Fig. 
6(a)). and having the block (8) defined as: 8:= 
{diag[o1 52]: o1E C), the evaluation indicates good 
robustness, as expected from the design objectives 
(18), across the operating envelope in terms of the 
maximum stability tolerance for both strucrured and 
unstrucrured uncertainties. Results of analyses at some 
points of interest are shown below in Table 1, using a 
guaranteed MIMO gain and phase margin analysis 
(Ref. 7 ): 

Table 1 Robustness at the actuator side 
U(knots) r"""' (romm) GM.(GMa) PM.(PMa) 

(±dB) (±0) 

0 0.77(0.63) 17 .83(12.96) 75.36(64.65) 
40 0.77(0.77) 17.67(17.64) 75.10(75.05) 
80 0.76(0.75) 17.31(16.74) 74.47(73.44) 
120 0.59(0.56) 11.83(10.99) 61.25(58.74) 
160 0.37(0.33) 6.68(6.05) 40.25(37.02) 

For the evaluation of robustness in the face of 
multiplicative uncertainty at the sensor side of the 
plant (Fig. 6(b)), the strucrured perturbation blocks for 
Jl analysis are defined as 8:= {diag[o1 52 '63]; o1E C). 
The results for the selected points are listed in Table 2. 

In summary, the evaluation indicates that the designed 
11 performance gain-scheduling controller enables the 
closed loop helicopter system to possess good 
robustness throughout the whole operational region. At 
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the sensor side of the plant, although inspection of the 
singular values show relatively poor robustness, Jl­
analysis does suggest that the robustness can be much 
improved if the perturbations can be made de-coupled 
(i.e. confmed to individual channels). 

Table 2 Robustness at the sensor side 
U(knots) r'""" (romm) GM.(GMa) PM.(PMa) 

(±dB) (±") 
0 0.59(0.028) 11.67(0.48) 60.75(3.17) 

40 0.62(0.034) 12.62(0.60) 63.68(3.95) 
80 0.62(0.05) 12.63(0.87) 63.69(5.70) 
120 0.58(0.054) 11.39(0.93) 59.83(6.14) 
160 0.41(0.018) 7.60(0.31) 44.75(2.04) 

6. Concluding Remarks 

This work appears to be the ftrst to use 
IPV/Lyapunov-based quadratic Fi performance 
optimisation gain-scheduling control on a practical 
MIM 0 system, the helicopter. 

A novel 2-DOF control configuration was proposed 
and combined with gain-scheduling controller design. 
The roles of different weightings in the configuration 
were studied and valuable experience gained in weight 
selection for IPV gain-scheduling control. The 
resulting gain-scheduled flight control system 
possessed satisfactory handling qualities and 
robustness. 

Affine modelling of IPV systems, in order to bring a 
practical design problem into the specified J:t 
performance gain-scheduling control framework, is 
another important issue. Although in many 
applications, IPV systems can be treated as affine, 
without considering the constraints of the parameters 
(e.g. the dependence of one parameter on another), the 
design will inevitably be conservative and inefficient. 
A contribution from this study has been the 
introduction and use of hybrid affine modelling of 
plants such as helicopters. This helps to bring a 
satisfactory compromise between the fidelity of the 
model and control effectiveness. 

Application of the developed gain-scheduling 
methodology to longitudinal flight control of a Lynx 
demonstrated the effectiveness of the new approach to 
gain-scheduling control, and the prmrJse it has for 
future use on large-scale MIMO control systems such 
as full 6-degrees of freedom helicopters. 
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