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Summary 
Using the acceleration potential description of flow fields combined with a 
matched asymptotic expansion technique, a higher-order lifting line theory can be 
developed which takes into account all the unsteady, yawed flow effects encounter
ed by helicopter blades. This theory points out several errors in the usual lift
ing line methods of rotor analysis. 

1. Introduction 
There is a trend nowadays to use lifting surface methods in the theoretical anal
ysis of aerodynamic loads on rotorblades (e.g. ref. 1). It is easy to see why at
tempts are made to improve upon the lifting line analyses that have been used for 
so long: 
a) The basic concepts of lifting line theory were evolved by Prandtl, in relation 
with his classical work on straight, high aspect ratio wings in steady motion. His 
fundamental ideas were: the wingsection characteristics may be treated by two-di
mensional theory, whilst the three-dimensional character of the flow is taken in
to account by the calculation of an "effective" angle of attack. The latter dif
fers from the geometrical angle of attack by the effect of the downwash inducedby 
the wake of a lifting vortex line. Prandtl's method was never intended to be 
applied to cases of unsteady and/or yawed flow such as encountered in rotor aero
dynamics. And indeed, straightforward, intuitive application of Prandtl's ideas to 
the analysis of a helicopter rotor in forward flight leads to severe problems. In 
the past these problems have been solved by ingenious "tricks", effective enough, 
but sometimes rather hard to justify. 

For example, one was forced to introduce the simple cos-A sweep correction in 
order to rescue the concept of two-dimensional section characteristics in the 
yawed flow environment. The simple sweep correction originates from the well known 
discussion of a wind tunnel through which an infinite wing is sliding, and is val
uable as a qualitative explanation of sweep effects. Nevertheless, it is certain
ly not suitable for the quantitative analysis of a wing with rapidly varying load 
in spanwise direction. 
As a further example may serve the ob
servation that in fixed wing analysis 
one has rejected altogether the use of 
lifting line theory in unsteady flow: 
the shed vorticity (fig. 1) of a vor
tex line would cause infinite values of 
the induced downwash. The latter means 
in fact, that one should take into ac
count the distribution of shed vortic
ity over the chord, and any line-con
cept is thus lost in the process. 

Similar problems have prevented 
the use of an effective angle of at-
tack COnCept in the CaSe Of SWept WingS. Fig. I: Wakt vartictly ol QhtliCOf)ltrb!ade. 

One of the usual procedures for avoid-
ing such problems in rotoranalysis has 
been to replace the continuous wake by a system of discrete vortex elements, but 
then uncertainties arise as to what is the best distribution of the vortex ele
ments, both time- and spanwise relative to the points where the induced downwash 
is calculated. 
b) As mentioned already, the chordwise pressure distribution is in lifting line 
theory assumed to correspond to the distribution over a two-dimensional aerofoil. 
Since this approximation is not justified in many practical cases, not even in the 
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case of high aspect ratio rotorblades (where the rapid spanwise load variations 
cause low aspect ratio effects) it is impossible to calculate pitching moments by 
line theory, let alone to predict compressibility effects from calculated isobar 
contours, etc. 

These are, very briefly, the reasons why more sophisticated methods are de
sired for certain applications. Unfortunately, lifting surface methods are by no 
means superior to lifting line methods in all respects. An obvious point in favour 
of lifting line theory is the amount of computing time needed. Another important 
point to consider is, that many phenomena of rotor aerodynamics, e.g. dynamic 
stalling and dynamic compressibility effects, cannot yet be investigated and quan
titatively predicted in any other way than by experimental methods. As soon as 
such experiments take the form of two-dimensional wind tunnel tests, one is making 
use of typical lifting line concepts such as section characteristics and effective 
angles of attack. The incorporation of experimental results into lifting line a
nalysis is thus a very natural process. On the other hand, a similar blending of 
theory and experiment is more difficult to achieve when lifting surface methods 
are used. 

There is a third analytical approach in existence which combines the advan
tages of both lifting line and lifting surface theory. This approach is thehigher
order lifting line theory, derived by a "matched asymptotic expansion" technique 
(refs. 2 and 3). Using the acceleration potential for the description of the flow 
field, it is easy to develop classical lifting line theory systematically and rig
orously, so that one can correctly take into account the effects of non-steady 
and/or yawed flow. A higher-order approximation is also relatively easily derive~ 
leading to an improved surface pressure distribution. The correction of the pres
sure distribution due to higher order effects is additive to the two-dimensional 
pressure distribution of the first order theory, so that the basic concept of two
dimensional section characteristics is not lost. Finally, although continuouswake 
representations are used in the theory, the method is efficient in numerical ap
plications. An outline of rotor calculations using the asymptotic method will be 
given in the chapters 2, 3 and 4 of the present paper. The paper then proceeds, to 
concentrate on the conclusions concerning the validity of conventional lifting 
line methods and related concepts, drawn from the above mentioned references and 
from continued investigations. The aim is, to provide a better understanding of 
lifting line theory, to point out where conventional methods have gone wrong in 
unsteady, yawed flow analysis, and to show how these methods should be modified to 
solve the problems. It is also pointed out under what circumstances the basic as
sumption of approximate two-dimensionality will certainly break down, and how the 
theory may then be remedied. 

2. Brief review of the theory of the acceleration potential 
The acceleration pctential was first introduced in 1936 by Prandtl for the analy
sis of lifting surfaces in incompressible flow. The quantity -p/p was called the 
acceleration potential of the flow, since according to Euler's equation 

ov av 

Dt 
"t + (V.'V)V =grad (- 12.) 
0 --- p 

the gradient of -p/p equals the acceleration of the fluid particles. Writing 

( 1) 

~ = Q + ~' and p = p
00 

+ p' where Q is the undisturbed velocity (taken to be inde
pendent of the space- and time coordinates) and V' is the perturbation velocity, 
linearization of Euler's equation leads to 

DV 3V' 

ot "' at + 
1 

(~.~)Y' = - p grad p' (2) 

which yields, on taking the divergence of all the terms of (2) and applying the 
continuity equation div V' = 0, the Laplace equation for p': 
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div grad p' ( 3) 

In the following the primes will be omitted for convenience, so that p and y will 
both denote perturbation quantities. 
Eq. (2) expresses the fact that in the linearized theory considered here, the ve
locity in a point of the field is found by integrating the acceleration of a par
ticle of air coming from far upstream, whilst during this integration the parti
cle's trajectory may be approximated by its straight, unperturbed trajectory. 
Boundary conditions must accordingly be applied to flat surfaces, parallel to the 
undisturbed flow. 
In incompressible flow fields the pressure perturbation p cannot display any dis
continuities except on the solid boundaries of the field. This is the main advan
tage of the pressure formulation: describing the field in terms of the pressure, 
no such things like free vortex sheets can enter into the mathematical formulation 
of the problem. 

3. Boundary value problem of the helicopterblade 
The notations used in the rotoranalysis 
includes the angle a with the free 
stream velocity Q· Tfie blade includes a 
coning angle a with the tip path plane, 
and it execute~ a periodic pitching mo
tion when moving around the azimuth, the 
latter denoted by the angle Wb· Ex
pressed in terms of the blade-fixed co
ordinates ~,yb,zb, shown in fig. 2, the 
boundary value problem now becomes as 
follows. The field of pressure perturba
tions around a blade must satisfy 
Laplace's equation: 

are shown in fig. 2. The tip path plane 

0 (4) 

The pressure perturbations must vanish 
at large distances from the blade: 

p + 0 for ~ 
2 + 00 (5) 

The component of the pressure gradient 
normal to the blade surface must accord
ing to eq. (2) assume a certain value, 
specified as a function of azimuth angle 

X 

Zr 

Fig. 2: Notations rotor analysis 

~b' spanwise location zb, and chordwise position ~: 

~F 
R 2 

(6) 

The functions F
1 

and F2, containing as parameters the blade geometry and rotor 
working conditions, are given explicitly in ref. 2. Along the leading edge of the 
blade there is a streamline kink, which implies that there is pressure singularity: 

p + - 00 along the leading edge (7) 

The magnitude of the singularity should be such that the flow becomes tangential 
to the blade surface. Since we have already required by eq. (6) that the curvature 
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of the flow on the blade surface is correct, it is sufficient to require the flow 
to be tangential at one line of the blade only. A convenient choice is the mid
chord line, where the velocity component w normal to the blade surface is 
specified: 

(8) 

4. Asymptotic solution 
In order to find an approximate solution of the boundary value problem we intro
duce the following physical assumption: the variations oi the pressure in spanwise 
direction have a characteristic length of the order of the span, whereas the va
riations of the pressure in chordwise direction have a characteristic length of 
the order of the chord. 
Evidently, this assumption can be valid only in the socalled near field of the 
blade, i.e. the field close to the blade surface. Rewritten in terms of the char
acteristic coordinates ~/c, yb/c and zb/R (c and R denote chord and span respec
tively), Laplace's equat~on reads: 

d2 1 -"-"p'-;;- = 
' ( I ) 2 - A2 a yb c 

,2 
a p 

(9) 

where A is the aspect ratio R/c. On the grounds of the physical assumption men
tioned above, the partial derivatives in (9} are all of the s~e order of magni
tude. It follows immediately from (9) that p satisfies a two-dimensional Laplace 
equation when A is very large (A~ oo). One may go one step further, and write the 
near pressure field in the following form: 

1 1 
p = ptwo-dim +A P1 + ~ P2 + ••• 

A 
for A + oo ( 10) 

This is an asymptotic expression, in which the first term is the two-dimensional 
pressure field, whereas the other terms describe the way in which the pressure 
field becomes two-dimensional when the aspect ratio grows larger and larger. Sub
stituting ( 10) into (9) and equating terms of equal order, one arrives at the fol
lowing conclusion: even when terms of order O(A-1) are included, the pressure 
field still satisfies a two-dimensional Laplace equation: 

-1 0 up to order 0 (A ) ( 11) 

In the next, higher-order, approximation p satisfies a two-dimensional Poisson
equation: 

-2 
(pt di ) up to order O(A ) wo- m 

( 12) 

where pt di is the solution obtained from (11). 
Onc~0aga~n, eqs. (11) and (12) are valid only in the near field. It is pos

sible to obtain a solution for the complete pressure field by a socalled matching 
procedure (see ref. 2). The structure of the final solution thus found for the 
first order problem (up to order A-1) is shown in the following expression, and 
will be explained briefly: 

sin<£ + 
coshl')+cos\jl 

e-n sin\jl + 

NEAR PRESSURE FIELD 
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FAR PRESSURE FIELD 

( 13) 

CORRECTION TERM (COMMON PART) 

Near field. The symbols ~ and~ denote elliptic coordinates, explained in fig. 3 
and conforming to the transformation 
formulae: xb= c/2. cosh~.cos~ 

yb= c/2. sinM.sin~. 
It may be shown that the near field 
terms in eq. (13) satisfy the two-di-
mensional Laplace equation and also 
satisfy the boundary conditions (6) 
and (7). The near field depends param-

.. c.d''-:..'·---1----. 
" 

etrically upon the azimuth-angle wb and ·~·-·~----t---·'···'---+----~---+~·~·~'~---
spanwise coordinate z...._, via the func- _ c

12 
xb 

tions ct (Wb,zbl anaF1 (Wb'~l. F1 is 

the same 1 function as occurs in boundary 
condition (6), and the local thrusf co-

efficient ct is defined as ct = J 
2 

1 1p\1Rc 
in neg-
1 in the 

(the lift £
1 

is taken positive 
ative yb-direction). The index 
lift ~l is used, since another 
near f~eld term with F

1
. 

contribution to the lift follows from the second 

The first term, depend1ng on c , is the pressure field of a flat plate aerofoil, 
t:1 

becoming singulaL· along the leading edge (~ = ·~, ~ = 1T) and having :lp/:lyb = 0 on 
the blade. It is the pressure field causing the streamlines to be kinked at the 
leading edge so that immediately past the leading edge the tangential flow con
dition is satisfied. Any further streamline curvature required by the periodic 
pitching motion of the blade is taken care of by the second pressure field de
pending on F . 
Far field. It may be shown that at large distances from the blade the pressure 
field simplifies to the field of a line of pressure dipoles pd. (r,x,~'Wbl' a 
socalled lifting line. The coordinates r,x,zb are cylindrical agordinates center
ed around the mid-chord line of the blade. The strength of the pressure dipoles 
along the lifting line is equal to the lift on the blade. 
Correction term or the socalled "common part". In order to construct an expres
sion for the blade's pressure field that is valid throughout the field, at large 
distances as well as close to the blade, the near- and far field have been summed, 
and a correction term is subtracted. This correction term has been chosen such, 
that far from the blade it cancels the near field to the required order of accu
racy, so that only the far field remains. Close to the blade surface, the correc
tion term cancels the far field, so that only the near field remains there. The 
correction term has the form of a two-dimensional pressure dipole, with dipole 
strength equal to the total lift of the section whose position is given by Wb·~· 
Having obtained now an expression for the pressure field around the blade of-a 
helicopter rotor, we can calculate the velocity perturbation in yb-directionalong 
the mid-chord line by using the equation of motion (2). The evaluation of the 
velocity is equivalent to the computation of the velocity acquired by a particle 
of air travelling through the known pressure field and passing the considered 
collocation point on the mid-chord line at the required timet. In the linearized 

0 
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theory the trajectory of the particle is approximated by a straight line (in the 
XYZ-system of fig. 2) parallel to the unperturbed flow velocity £• The position of 
tbe particle relative to the rotating blades is thus known at any instant of time, 
as well as the pressure gradient component <lp/8yb "experienced" by the particle, 
and the final velocity perturbation is found by solving the integral: 

w 1 J 
(JR = - p(JR 

t 
0 

(t) dt summed over all the blades ( 14) 

1 <ln 
where--~ {t) is the vertical acceleration experienced by the particle, when 

p <lyb 
it moves through the pressure field of the rotor. 

It is shown in ref. 2 that all the terms in (13) can be expressed in closed 
form, so that the velocity calculation amounts to one-dimensional integration with 
respect to time, replacing the two-dimensional integration over the skewed helical 
vortex sheets needed in the vortex theory. 
Equating~ according to (14) to ,J'R as required by the boundary condition (8) re-

sults in the final integral equation for the unknown function ct (~b'~). 
1 

It can be showu (chapter 5) that the method described above reduces to 
Prandtl's classical lifting line theory in the case of a straight wing in steady 
parallel flow. However, when the present theory is applied to the case of thehel
icopter blade with its unsteady, yawed flow, certain essential departures fromthe 
conventional lifting line methods are bound to occur. This may be concluded from 
the fact that - in contrast to conventional methods - no difficulties at all are 
met with respect to singular values of the downwash. Neither is anything like a 
special sweep correction needed in order to make the method work. It is apparent
ly worthwhile to investigate the differences between Prandtl 1 s lifting line theo
ry and the asymptotic theory outlined above, in order to obtain a better under
standing of lifting line theory, and to see where conventional rotor analyses have 
gone wrong. 

5. Lifting l~ne theory in unsteady flow 
Instead of the more complicated case of a rotorblade, an easy "model 11 case will be 
considered, i.e. the rectangular, uncambered wing (notations: fig. 4). As a pre
liminary we will write down the expres-
sions for the ~swept wing (A = 0) in 
steady flow, in which case the pressure 
field of the wing is given by (compare 
eq. (13)): 

_E_ = 
~pu2 

+ pdip 

~pu2 

-....c;scoio:n.:..\fl.._-, + 
coshn+costp 

to order 0 (A - 1) (15) 

The vertical velocity perturbation a
long the mid-chord line is calculated 
using the equation of motion (2) in a 
manner analogous to eq. (14). Now the 
first term in the r.h.s. of (15) is the 
pressure field of a two-dimensional 

y 

X 

z 

Fig_ 4: Notations ~tralght, rectangular wmg. 

flat plate aerofoil. Consequently, this term 

1 (-v) contributes a ve ocity U = 
theory. near field 

c9, (z) 

"21!"' 
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Integration of the other two terms in the r.h.s. of (15) yields: 

+b/2 

( ::.) 
u far field+ 

common part 

= f ( 16) 
1 

81T 
-b/2 

which evidently equals, what is usually called the "induced angle of attack11 v. /U 
(with a minus-sign), in vortex theory considered to be caused by the trailing~ 
vorticity of the lifting vortex line. In the pressure theory it is caused by the 
lifting pressure dipole line, together with the common part term consisting of a 
two-dimensional pressure dipole. 

If a (z) is the incidence of the wingchords, we obtain as the integral equa
tion for ~e function ct (z): 

or, rewritten: 

-CI. (z) 
0 

+ 
field 

( ::.) 
u =-----

far field+ 21T 

common part 

c,(z) = 21T {a (z)- v./U(z)} 
" 0 L 

(17) 

which is Prar.dtl's classical integral equation, stating that a wingsectionbehaves 
like a two-dimensional aerofoil placed at an effective angle of attack a -v./U. It 

0 L 
does not appear at first sight that we have found anything new, except perhaps the 
error estimate that Prandtl's theory neglects effects of order 0(A~2). In fact, 
however, eq. (17) does on closer consideration reveal a shortcoming in Prandtl's 
classical model. For, in the asymptotic approach to lifting line theory v. was 
found as the contributions of the pressure dipole line together with the bommon 
part term. Translated into vortex terminology, this means that v. is the velocity 
due to the lifting vortex and its as- ~ 
sociated trailing vorticity together 
with the velocity due to a two-dimen
sional vortex of equal local strength 
but with opposite direction {see fig. 
5) . Naturally, this does not affect the 
quantitative results in steady flow: 
the contribution of the two-dimension
al vortex to v. is zero. 

Things ar~ very different however, 
when we come to consider ~steady flow 
(see fig. 6). Again, we should take for 
v. (z,t) the velocity due to the lifting 
v6rtex line {having a wake of trailing 
as well as shed vorticity) and add to 
this the velocity due to the two-dimen-
sional vortex, which now also is acconr 
panied by shed vorticity. It will be 
clear, that this definition of 11 induced 
velocity" does ~ lead to infinite val
ues of v. (z,t). One of the deficiencies 
of the c5nventional lifting line ap-
proach to unsteady flow has thus been traced 
Prandtl's steady flow model. 

r 

u -

Fi 9.s, Definition of induced velocity in P: 
sum of contributions vortex systems 
@and(BJ. 

back to a wrong interpretation of 

At the same time, the asymptotic approach to lifting line 
purpose. of actua~ calculations a very efficient procedure 
outlinea in chapter 4. 

theory offers for the 
to find v. , as has been 

L 

Having obtained a rigorous definition of the induced velocity v. for the un
steady case, we C.:l!l wri ;.e down the integral equation for the time de~endent func
tion c~(z,t). Let us assume that the rectangular wing considered is moving through 
a gust field, whose vertical velocity vgin the XOZ-plane (fig. 4) is vg(x,z,t). 
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~he pressure field of the wing has the 
same form as the pressure field (15), 
except that c£ becomes a function of 
time: 

--:c."s:':i':-n~\f)'::-::-:: 
coshn+coscp + 

( ) sinx 
+ cQ, t; z c 211r (18) 

It should be noted that this pressure 
field is entirely different from the 
field of a wing placed in a steady par
allel flow, where the unsteadiness re
sults from a pitching or heaving motion 
of the wing with respect to an inertial 
frame of reference. In the latter case 
the pitching motion of the wing surface 
implies a vertical acceleration of the 

Fig.6: Definition induced velocity in unsteady flow. 

particles of air moving along the wing surface, so that the near pressure field 
(18) would then have to be supplemented by an additional field taking care of this 
additional acceleration. 

In expression (18) the near field is the pressure field of a two-dimensional 
flat plate aerofoil at rest with respect to an inertial frame of reference, al
though its lift is variable. The value of v/U(z,t) along the mid-chord line con
tributed by the ne~r pressure field should then be calculated according to the 
two-dimensional theory for an aerofoil in a gustfield, and is symbolically written 
like: 

{~ (t;z))near field=- f2-d gust {cQ,(t;z)} ( 19) 

where the minus sign has been added just for convenience. Analogous to the devel
opment of steady lifting line theory, the final integral equation determining 
c

2
(t;z) may then be written in the form: 

-1 
c,(z,t) = f

2
_d {a (z) + 

" gust o 

v 
-2. 
u 

vi 
(O,z,t) - U (z, t)} (20) 

which states that a wing section behaves like a two-dimensional aerofoil which is 
at rest with respect to an inertial frame of reference and is placed in an "effec
ti ve 1

' gust field. 
If a in (20) is a function of time a (z;t), then we have the case of a wing 

in pitchigg motion, and (20) does not rema~n valid. The wing sections may then be 
considered to behave like two-dimensional pitching aerofoils, whereas the induced 
downwash associated wich the lift due to pitching may be considered as a "self
induced" gust field which adds to v . The unsteady lifting line theory thus takes 
the form: g 

c,(z,t)= f 2-
1
d .t h. {a (z,t)}+ f~~d 

" - p1 c 1ng o • 

v 
(-2. 

gust U 

where vi is caused by the total lift of the sections. 

6¥ The use of measured section characteristics 

v. 
1 (O,z,t)- u 

(z, t)} (21) 

As stated already in the introduction, one of the advantages of lifting line the
ory is that measured two-dimensional section characteristics may be substituted 
wherever the theory indicates two-dimensional relationships between c

2 
and an ef

fective angle of attack or an effective gust velocity. One of the questions then 
becoming relevant is: should one use in rotoranalysis the measured characteristics 
of an aerofoil in pitching motion, in heaving motion, or the characteristics of an 
aerofoil moving through a gust field? 
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If we consider eq. (13) expressing the pressure field of a helicopter blade, it 
is seen that the near pressure field not only consists of a 11 flat plate part" but 
also contains the field with F 1 . The latter field is necessitated by the vertical 
acceleration to which the particles of air moving along the blade surface are sub
jected by the rather complicated motion of the blade. As shown in ref. 2, the 
pressure field with F1 cannot be simulated in a wind tunneJ by just giving the 
test aerofoil a pitching motion. To indicate the complexity of the case: the func
tion F 1 (~,zb) contains a component independent of ~b' which could cnly be simu
lated by giving the test aerofoil an "effective 11 camlSer. Fortunately, the field 
depending on F1 is weak (A is in the denominator) whereas it has a low frequency 
content (0-, 1- and 2-P components only). 
An obvious approximation would then be to treat all the non-steady effects of the 
blade section as quasi-steady, except of course the high intensity, high frequen
cy variations of lift associated with the 11 flat plate" part of the pressure field, 
i.e. except the unsteadiness associated with the variations of the induced veloc
ity v. experienced by the blade sections. This implies, according to eq. (21), 
that the test aerofoil should be fixed with respect to the wind tunnel, whereas 
the tunnel flow should have a variable direction corresponding to the induced ve-
locity variations. 
This would still require a rather awkward experimental set-up, and it 
surprising that most actual experiments are carried out the other way 
aerofoil oscillates in a steady parallel flow. However, one should be 
cautious when interpreting the results so obtained! 

is hardly 
round: the 
extremely 

The figures 7 through 10 show a compar-
ison, based on theory, between a flat 
plate aerofoil in a gust field and a 
flat plate oscillating around its c/4-
point. In both cases it is assumed that 
the angle between the chord and the 
free-stream velocity varies like: 

a(t) = a 
0 

sinwt. 

The lift coefficient c2 (t) varies like 

c~(t) = c~ sin(wt~) 
0 

where the amplitude 

value cR.. = 

tions. F~g. 

2na in 
0 

7 shows 

c~ would have the 

qugsi-steady condi-

the actual unsteady 
value of c

2 
as a function of the re-

0 
duced frequency k = 
phase angle ljl. 

wc . 
Zu' and f~g. 8 the 

It appears that fork of the order 0.1, 
which is a typical value for the rela
tively slow cyclic pitch motion, the two 
cases would not differ significantly. 
The wake induced angle of attack varia-
tions, however, are much faster than 

1.5 
Cto 

2Ttao 

i 
to 

0.5 

rcyclk pitch 
' mot1on 

~ 

///' 
//// t1p vortex 
< /24./ encounter ... 

,; 
/ 
; 

0'-"----~---'-'-'--

Fig. 7. 

0 0.5 - k= we 
2U 

10 

Amplrtude rat1o vs reduced frequency 
of aerofo11 rn pitching matron and rn 
oscillating flow. 

this. Actually, a blade section passing ~1e tip vortex of a preceding blade may 
experience flow angLe frequencies well above k = 1.0. 
In this range of frequencies a wind tunnel experiment not simulating the real 
gust-like environment would make hardly any sense at all. This conclusion is en
hanced by the figures 9 and 10, where the chordwise load distribution is shown as 
a function of time for the two cases. The reduced frequency is assumed to be 
large: k = 1.0. The differences shown illustrate clearly that the bounda-cy layer 
development cannot but differ markedly between the two cases. One should thus be 
careful to simulate the flow conditions realistically when experimentally study-
ing effects like dynamic stalling. 
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7. Lifting line theory in yawed flow 
As a 11 nx:>del" case, we will again take a 
rectangular, uncambered wing whose mid
chord line includes a sweep angle A 
with the free-stream velocity U (nota
tions: fig. 4). The pressure field of 
the wing is identical in form to that 
of the unswept wing: 

c9,(z) 

1T 

sin'!) + p dip 
coshn+cos'i) ':.PU2 

(r,x,zl+ 

(22) 

where the sectional lift coefficientis 
still defined as 

c9, (z) (2 3) 

In order to calculate the vertical ve
locity perturbation at the mid-chord 

90 
'4' (0) 

i 60 

30 

-30 

1.0 
___., k- wCf2 

- u 

Fig.8: Phase angle vs reduced frequency 
of aerofoil in pitching motion and in 
oscillating flow. 

line, say at the section z , we consider a particle of air coming from far up
stream and reaching the po~nt x = 0, z = z at time t = 0. At any instant t its 
position relative to the wing is known, an8 so is the value of 3p/3y(t) experi
enced by the particle. The value of vat the mid-chord line is then found by solv-
ing the integral o 

v(O,O,z ) ~ - l J ~ (t) dt (24) 
0 p 3y 

-00 

The induced velocity v. is defined as v (with a minus sign) due to the pressure 
' 

gust 
an le time 

.t.e. d' 10 1f.!pu2 per~ ran 
maxrmum 
gust angle 

dipole line and the two-dimensional 
?ressure dipole in eq. (22) and does 

0'.1----c_:-::_"'--=-=--=-=--~~ --

not become singular in yawed flow since 
there occurs only a logarithmic singu
larity in the integrand of (241. The 
explanation of this marked difference 
with conventional lifting line theory 
is easy, when it is recognized that the 
case of yawed flow shows some resem
blance with the earlier discussed case 
of unsteady flow. This is immediately 
clear when the lifting line itself with 
its trailing vorticity is considered 
(fig. 11). The skew trailing vortex 
sheet may be decomposed in a sheet with 
vorticity perpendicular to the lifting 
line, apd a sheet with vorticity paral
lel to the lifting line. It is the lat
ter vorticity which causes the singu
larities in conventional theory, just 
like the shed vorticity in the unsteady 
case. Now the asymptotic lifting line 
theory shows that there must also be 
taken into account a contribution to v. 
due to the two-dimensional pressure di= 
pole. The strength of the pressure di
pole is (see eq. (22)) .Hzit)}. This is 

,/ 

Fig. 9: Time hrstory load distributron on an aerofoif 
movrng through harmonrc gust field,k:1.0 

a variable dipole, since the z-coordi
nate of the considered particle varies 
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as a function of time, due to its 
skewed trajectory with respect to the 
mid-chord line. Translated into vortex 
terminology, this means that from the 
velocity field depicted in fig. 11 a 
field must be subtracted which is as
sociated with a variable two-dimensi
onal vortex. The shed vorticity asso
ciated with the variable vortex sup
presses the singular velocities. A rig
orous definition of v. in yawed flow 
can thus be given, an~logous to the 
definition for unsteady flow depicted 
in fig. 6. 

It is furthermore interesting to 
consider the velocity in the point z 

0 due to the near pressure field: 

_£__ 

~pu2 

c£ (z) sin<j> 
- -- --7--::"'---'---:: 

Tf coshf)+cos\f) 
( 25) 

The value of 3p/3y due to the near 
field, experienced by the particle has 
the form 

~ (t) = £(z(t)}. f(x(t)} (26) 

What the particle experiences, is equi
valent to the acceleration due to the 

incidence lime 

wt:1!" 

Ap 
10 - perradian 

Y2flu
2 

maximum 
inc1dence 

0' 
' ' ' ',, ...... ____ ........ 

Fig 10 T1me h1story load d1stnbutmn onanaerofoll 
p1tCh1ng around eli. po1nt,k:1.0 

pressure field of a awe-dimensional flat plate aerofoil, which it approaches with 
a relative velocity dx = U cosA. The lift of the equivalent aerofoil is variable 
in time, since z is atfunction of time. The analogy between the case of yawed flow 
and (nonperiodic) unsteady flow makes it possible to use unsteady aerofoil theory 
in order to find the contribution to v associated with the near pressure field. 
The derivation will not be given here, in view of its complexity caused by the 
non-periodic character of the equivalent unsteadiness. The final result for v/U 
found at the mid-chord line is: 

1 [-£(z")+ tan/\ 
2 o A 

p1Tc(Ucos/\) 

Fig.11: Trailing vorticity swept wing decomposed 
into vorticity perpendicular and parallel 
to lifting line. 

tan A 
£' (z") £n I sgnA+z"l --- + 

A 0 0 

" ~-]. 
z 

.IC' (~"')-£' (z") 
tan/\ J 

0 
0 ---

A z"-~"' 
-sgnA 0 

V, 

0 (A- 2 ) --'- (z"') + ( 2 7) 
UcosA o 

"' "' . d" where z and l;; denote spanw~se coor l.-

nates non-dimensionalized by b,2, ~~ de
notes the derivative w.r. to z , and 
sgn(/\) = + 1 according to the sign of 
the sweep-angle A. 

If the incidence of the wing with 
respect to the XOZ-plane is denoted as 
a , the vertical velocity at the mid

o 
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,. 
chord line should become v(z ) = -a UcosA which on substitution into (27) com
pletes the integral equation°for ~(~). Let us neglect for a moment the terms in 
eq. (27) involving tanA/A. The integral equation then becomes: 

9,(z) = 21f(a 
0 

vi 
- --) ., 

UcosA 
2 p (UcosA) c (28) 

This is the familiar result stating that the wingsections behave as two-dimension
al aerofoils at an effective angle of attack in a flow with free-stream velocity 
UcosA. It should be noted that this result is obtained by neglecting terms of or
der O(tanA/A) in eq. (271. Since lifting line theory itself neglects only terms 
of O(A- 2} the simplification leading to the simple cosA-sweep correction is not 
consistent with lifting line theory, unless A is very small. ---

In order to give an impression of the errors which may be introduced by 
using the simple cosA sweep correction, fig. 12 has been prepared. A rectangular 
wing in parallel flow is considered 
whose twist distribution is assumed to 
be such that, using the simple cosA 
correction, a lift distribution results 
as ;iven by the solid line in fig. 12. 
Th.t.s is an asymmetrical distribution 
typical for rotating blades, although 
in the case of helicopter blades the 
asymmetry would not be caused by twist, 
but would instead result from the 
"free-stream" v-elocity increasing to
wards the tip. Using the c~-distribu
tion drawn irt fig. 12 as a starting 
point, the terms of eq. (27) depend
ing upon tanA/A have been evaluated 
and have been used to determine a new 
liftdistribution as shown by the dotted 
lines in fig. 12. Iterating further 
would theoretically add non-relevant 
further corrections of order A-2. How
ever, it may be seen that the dotted 
dist~utions lead to errors in the 
wing tip regions, since c~ no longer 
vanishes at the tips. In practice 
thei;efore, eq. (27) would be solvedby 
conSidering it as an integral equa
tion, which procedure prevents such 
problems. Nevertheless, fig. 12 shows 
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Fig.12: Error due to simple sweep 

correction. 

very well the primary effects of the additional sweep 
{27), being a "phase shift" and an amplitude decf-ease 

correction terms of eq. 
of the lift. 

3. The assumption of approximate two-dimensionality of the sections 
Tn chapter 4 it was shown that the assumption of approximate two-dimensionality 
of the blade sections is valid up to order O(A- 1). In the next higher order ap
proximation, taking into account terms of O(A- 2), the near field satisfies the 
two-dimensional Poisson equation ( 12). The far field in a higher-order theory al
so becomes more complex: it is given by a line of pressure dipoles as well as 
quadrupoles. If we again consider the model case of a rectangular wing in parallel 
flow, it may be shown (refs. 2 and 3) that the liftdistribution finally becomes: 

+1 

+ 4:2 I 
-1 
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h ~ d ~ . d . w ere z an S aga~n enote spanwlse 
coordinates non-dimensionalized by b/2, 
and £" is the second spanwise deriva
tive of lift w.r. to z*. 
It appears that classical lifting line 
theory will be unsatisfactory if the 
second spanwise derivative of the lift 
attains large values. This is often so 
in the case of helicopterblades. 

In order to give an impression of 
the order of magnitude of the higher 
order terms, fig. 13 has been prepared. 
The full line in this figure is assumed 
to be the liftdistribution as determined 
by classical lifting line theory. The 
dotted line is the liftdistribution as 
found by adding the higher order terms. 
The classical lifting line theory may 
clearly lead to significant errors for 
the type of liftdistribution existing 
on helicopterblades. The non-vanishing 
of the lift at the wing tips may again 
be prevented by treating eq. (29) as an 
integral equation (see ref. 2). 

It may be shown that the resulting 
integral equation is, in the case of a 
rectangular wing in steady parallel flow, 
equivalent to Weissinger's 3/4-chord 
point method. Fig. 14 shows a comparison, 
taken from ref. 4, of results for a flat 

1.5 

1.0 

0.5 

classical lifting 
line theory 

0 

higher-order 
Utting line 

theory 

-
Fig.13: Error due to assumption ot 

sectional two- dimensionality. 

plate rectangular wing obtained by classical lifting line theory, higher order 
lifting line theory, and a lifting surface theory. It appears that the discrepancy 
between the classical lifting line theory and lifting surface theory can be re
moved almost entirely by adding the terms of order O(A-2) as is done in the higher 
order lifting line theory. The higher order theory derived by an asymptotic method 
has several advantages compared with Weissinger's method: 
a) it remains valid in unsteady flow, whilst the 3/4-chord method does not, 
b) it gives information about the changes in pressure distribution over the wing
chords due to the higher order effects. 

In order 
local centres 

5 

to illustrate the latter point, fig. 15 shows the position of the 
of pressure for the dotted lift distribution of fig. 13, as calcu

lated by the higher order asymptotic 
theory. The figure indicates a signi
ficant shift of the centres of pressure 
as compared with conventional lifting 
line theory. 

classical lifting line theory 

higher-order lifting line-, 
and lifting surface theory 

5 10 
------... aspect ratio A 

9. Conclusions 

Fig. 14, Accuracy of lifting line theories . 

Using as a simple model a rectangular 
wing in parallel flow having a spanwise 
liftdistribution typical for helicop
terblades, the validity of conventional 
lifting line analysis and related con
cepts has been examined. This was done 
by first deriving more complete expres
sions by an asymptoLic theory, and then 
showing the form and order of magnitude 
of the terms neglected in conventional 
lifting line theory. It is concluded 
that: 
a) The singular behaviour of ~e in-
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duced velocity in unsteady and yawed 
flow aSsociated with a continuous trail-
ing vortex sheet is due to a misinter
pretation of Prandtl's original steady 
flow theory, A satisfactory definition 
of v. can be derived. 
b) Tfie simple cosA-sweep correction is 
inconsistent with lifting line theory 
and may lead to very large errors. 
c) The use of measured section charac
teristics in a lifting line analysis 
requires experiments on a fixed aero
foil placed in an oscillating flow. 
Wind tunnel results obtained from os
cillating aerofoils may be erroneous 
in the range of high values of the re
duced frequency, especially when it is 
tried to extract the dynamic stall be-
haviour. 
d) The assumption of approximate two
dimensional behaviour of blade sections 
may lead to significant errors when the 
second spanwise derivative t" of the 
lift is relatively large. Especially 
the position of the sectional centres 
of pressure may be affected by large 
values of t". 
Remedies for the above mentioned pro
blems have been derived: an asymptotic 
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of fig.13. 

theory suitable for helicopter rotor calculations has been described in refs. 2 
and 3 which correctly takes into account all the unsteady, yawed flow effects of 
inviscid theory, to an order of accuracy comparable with lifting surface theory, 
with computational efforts comparable with conventional lifting line theory. 
It is also conceivable to use the expressions given in the present paper, valid 
for the rectangular wing, as approximate corrections to be incorporated into con
ventional lifting line theory. This approach - approximate, but perhaps more con
venient and efficient than the exact procedure of ref. 2 - to helicopter blade a
nalysis is at present being investigated by the author. 
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