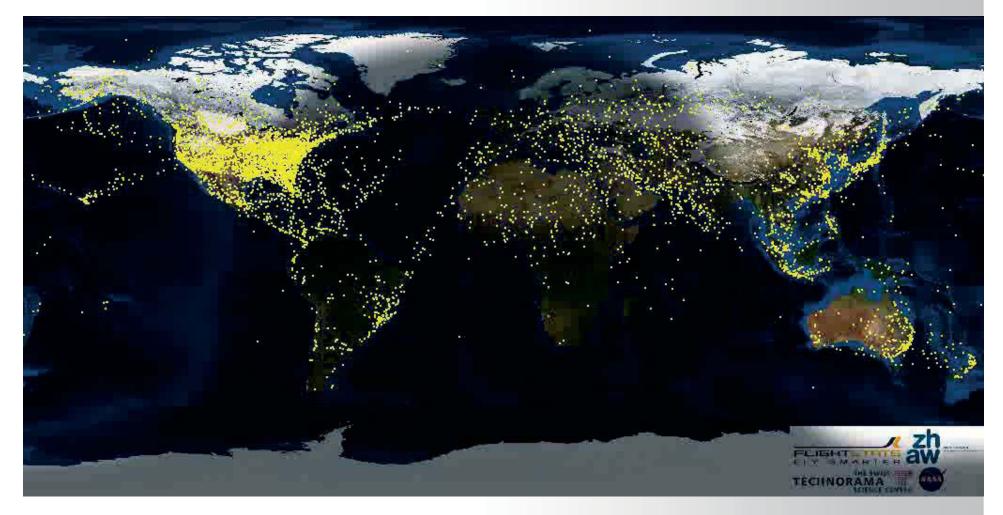


Aerospace Research in Germany

The Impact of the Air Transport System on Cl imate Change

Szodruch DLR

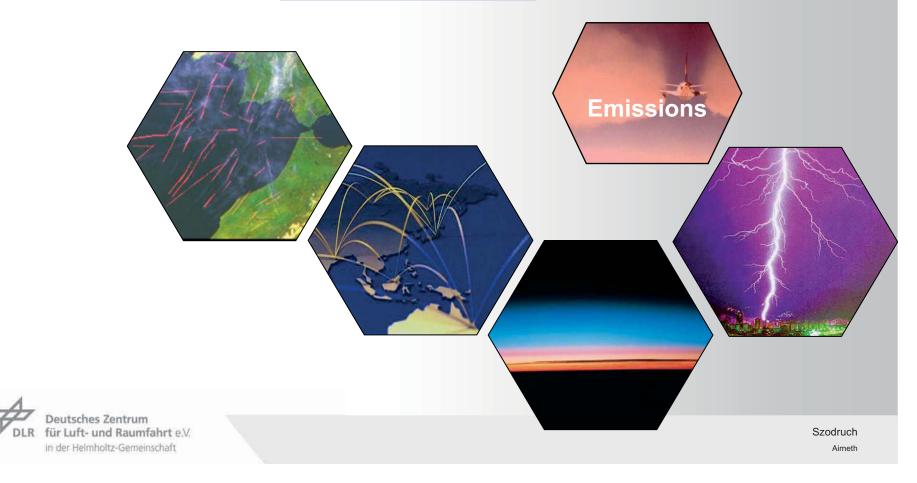
Deutsche Gesellschaft für Luft- und Raumfahrt Lilien#bile @bevontrad > Autor


Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR

Dokumentname > Datum

The Air Transport System



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Environment

The degree of one's emotion varies inversely with one's knowledge of the facts -- the less you know the hotter you get."

Bertrand Russell

Environment

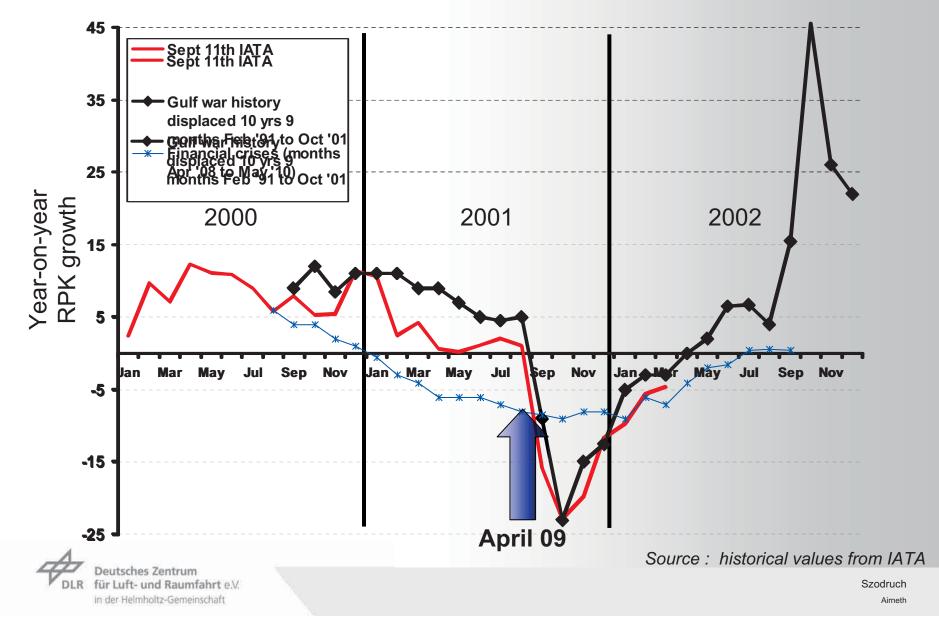
Climate Impact of Air Transport

- CO₂ Emissions have the largest influence on our climate. For modest growth rates this applies also for air transport
- Global air transport emitts about 2 % of all fossile CO₂-emissions.
- Global air transport contributed with 1,6 W/m²

to the Radiative Forcing (3%).

- Contrails CO₂ NO. **Emissions** Soot
- In consequence air transport of the 20th century is responsible for about 0,02 to 0,03°C global temperature increase.
- The largest uncertainty is related to the effect of contrails on the climate.
- However, contrails might be "easily" reduced by changing altitude.

Air Transport System


in der Helmholtz-Gemeinschaft

A complex system with opposing interests of the various stakeholders

Crisis 2009

Traffic growth compared during different crises

Introduction

Opportunities

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

Airneth

Vision 2020

Challenges and Associated Goals

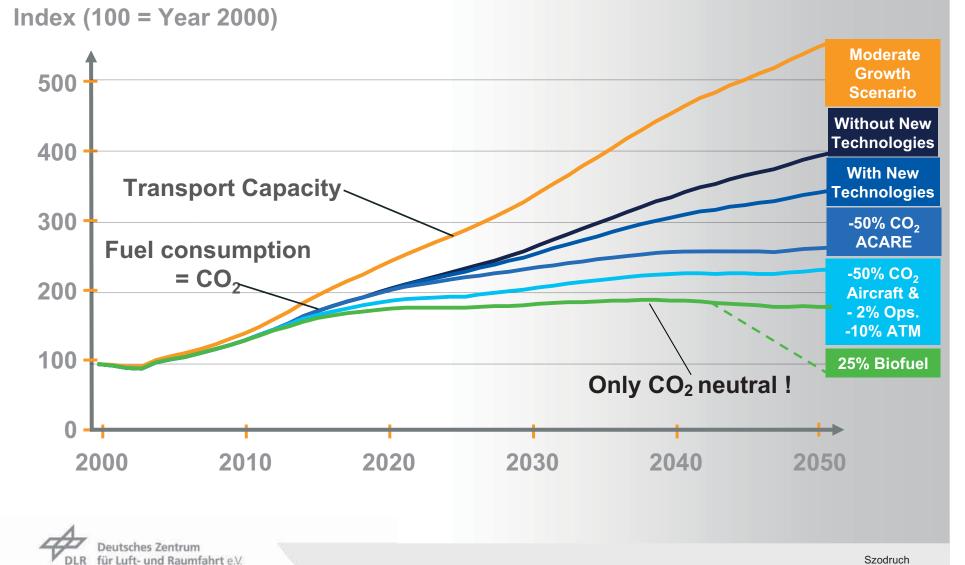
Group of Pers Razin Pedro Argüelles	sonalities Ann John Lumsden	 Quality and Affordability 	 Reduced passenger airfares Increased passenger choice Modernized freight operations Reduced time to market by 50%
h. Aug Manfred Bischoff Philippe Busquin	Denis Ranque Olification Søren Rasmussen	 The environment 	 Reduction of CO2 by 50% Reduction of NOx by 80% Reduction of external noise by 50% Substantial progress towards 'Green MMD'
B.A.C. Droste	Ann lyn Paul Reutlinger	 Safety 	 Reduction of accident rate by 80% Drastic reduction in human error and the consequences
Sir Richard Evans	JA JSC. Sir Ralph Robins	 The Efficiency of the Air Transport System 	 3X capacity increase 99% of flights within 15 min of schedule Less than 15' min waiting time in the airport for short distance flights
Walter Kröll Walter Kröll Jean-Luc Lagardère	Helena Terho Helena Terho	 Security 	 Airborne – terrorism prevention Airport – prevention of unauthorized access (persons or products) Air navigation - safe control of hijacked aircraft
Alberto Lina			

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Szodruch Airneth

1

How much technology do we really need?


Prognoses

- Traffic Growth between 5% and 3,5%
- Load Factor
- Service Life
- PAX / Freight and Combi-Aircraft
- Blockfuel
- Average Seat Calculation
- Distance pro hour
- Flight-hours per Aircraft
- Considered Aircraft Types:
 - Classic and New Generation,

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

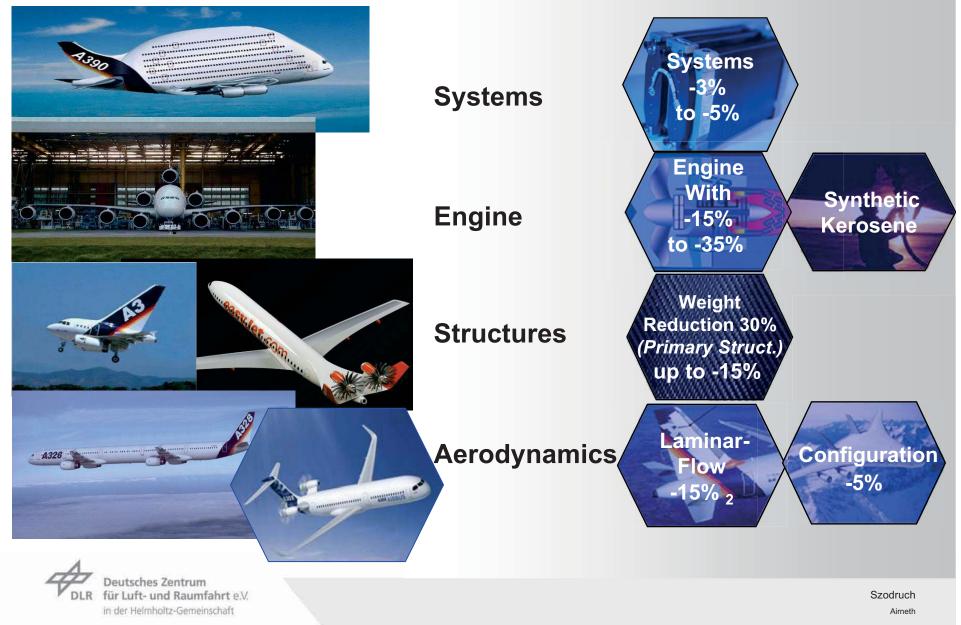
Technology Impact Fuel Burn

Technology Impact – Extrapolation 2000 - 2050

in der Helmholtz-Gemeinschaft

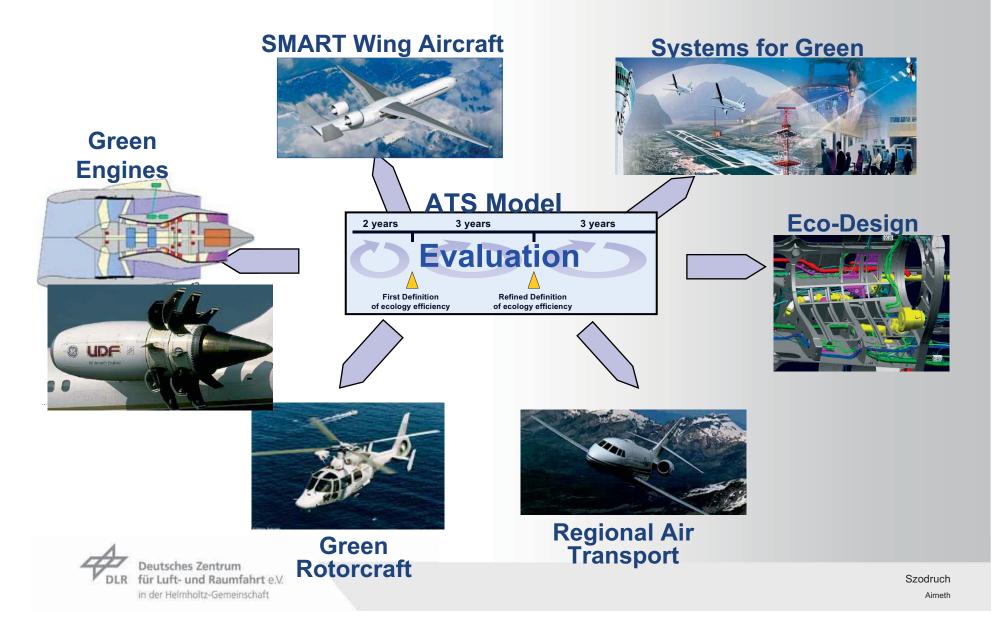
Airneth

Technology Impact


"However beautiful the strategy, you should occasionally look at the results."

Winston Churchill

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft


Technologies

Aircraft Technologies for Fuel Burn Reduction

EU Technology Programmes

Joint Technology Initiative "Clean Sky"

Aircraft 2020

-20% Engine SFC
-20% Drag Reduction
-10% Empty Weight Reduction
+25% Wing Span (AR=9.81 → 14)

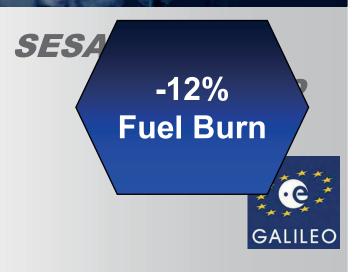
+7%	Wing Area 82 m ²
+18.7%	Wing Weight
-27.4%	Required Thrust
-26.5%	Engine Weight
-8.2%	Landing Gear Weight
-8.7%	Take-Off Weight

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Regional = (70 PAX, 3000 km)

-37%

Fuel Burn

Technologies


Operational Technologies for Fuel Burn Reduction

EU Technology Programmes

Europe today

- 25.000 flights per day
- With 5.000 aircraft
- Over 650 sectors
- Between 100 large airports
- With 27 different Air Traffic Management Systems
- For a total ATM costs of 7 billion Euro per year
- Corresponding to 6% of the flight costs

DLR – Virtual Integrated Product (VIP)

Complete Air Transport System Concept for 2020

DLR in 2013: -35%

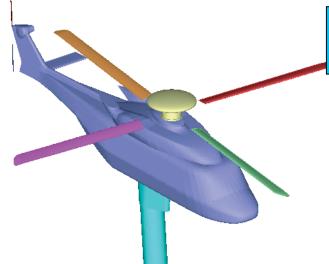
Some typical technology issues:

- Engine concepts
- Low drag aerodynamics
- Light weight structures
- Low noise design and procedures
- Optimised high lift system
- City airport operation
- Climb performance
- Cruise operation
- Pilot assistance systems
- Short turn-around time
- Airport passenger flows
- Reduction of development time

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Vision 2020 – Strategic Research Agenda

SRA Addendum Recommendations


DLR / ONERA Research Programm

Aeroacoustics

(Numerical Methods for Design, Low Noise Flight Procedures, WT and Flight Tests)

Active Technologies

(active flaps, active twist) Flow Control (passive and active) Aerodynamics (CFD, Optimisation, WT Test, Flight Test for Performance Improvement)

New concepts: compounding

Flight Mechanics

(simulation tools, aircraft identification, flight mech models, handling qualities)

Crew Station: *active side sticks, pilot support, display symbology*

Tools for WT tests: *highly equipped rotors and blades, PIV, new measurement techniques*

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Safety: crash modeling tools, composite behavior, new composites

Infrastructure

DLR Rotorcraft Research Facilities

EC 135 – Inflight Helicopter Simulator

ARTIS-Family (Micro, Midi, Maxi)

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Bo-105 Experimental Workhorse

H/C Research Simulator (Planning Phase)

Rotor Test Facility for DNW-LLF

Virtual Rotorcraft Research: CASE

DLR advanced CFD methods

- Modelling of complete helicopter including BVI
- Reliable performance predictions
- Unsteady effects like dynamic stall

Virtual Integrated Products (VIPs)

HELIXX

HELIxx

- All-weather Operations
- Noise
- Vibration
- Comfort
- Enhanced Vision
- Pilot Assistance
- Speed

Summary and Outlook

The ACARE Vision goals for future air transport

- are very ambitious,
- but not sufficient in the long-term "green scenario".
- They do not de-coupled traffic and fuel consumption
- and further related technologies are not readily available.

We need to foster creativity and innovation

- Focussed research activities required for critical issues
- Enabling technologies
- Infrastructure
- Pioneering research
- Education / Young Professionals

Can we afford ...

.....not to wait for the technological window of opportunityto miss the economical window of opportunity? not to develop a sustainable air transport system? not to consider helicopter research?

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Vision 2020

Szodruch Aimeth "In light of the fact that humanity is not able to learn from past mistakes we can not afford to make mistakes in the future." -

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft