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Abstract 

This paper is about gain scheduled multivariable 
control laws for advanced rotorcraft control systems. 
A robust control law based on H C< optimisation is 
used as a baseline for the control law development. 
It is shown that the enchancement of linear con­
trollers via current gain scheduling practices may 
not give the desired robustness or performance. A 
simple optimisation approach is employed to deter­
mine a class of nonlinear functions such that the 
closed loop performance stays within a prespecified 
tolerance. 

1. Introduction 

Linear controller design techniques are the most 
commonly used tool in industry. They are easy to 
use and the control solution is fairly visible to the 
systems' engineers. However, for helicopters with 
large operating envelopes quite often linear designs 
are driven beyond their limits. The assumptions 
regarding small deviations from nominal conditions 
are no longer satisfied. Airspeed dependent dynam­
ics and different loading configurations may degrade 
significantly the guaranteed performance. 

Over the last decade research in multivariable 
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control laws seems to have tackled partially the 
problem of deviations from nominal conditions by 
improving the robustness of the control laws. In­
deed, guaranteeing robustness against modelling er­
rors and excursions from the design point proves a 
very effective tool in reducing the number of the lin­
ear designs accross the flight envelope. However, it 
can be argued that some sort of scheduling strat­
egy for linear control laws will always be necessary. 
Therefore, the controller has to possess a clear struc­
ture and relatively low order. In the authors' opinion 
H 00 optimisation in conjuction with p - analysis of­
fers, so far, one of the most attractive solutions to 
these requirements. 

In the UK, several ground-based studies on the 
Large Motion Simulator (LMS) at DRA Bedford 
[16],[15] have shown that good stability margins 
alongside high performance requirements [2] are 
achievable. In [15] it was demonstrated that a two­
degrees-of-freedom (2DOF) approach to the Loop 
Shaping Design Procedure (LSDP) provides an ele­
gant framework for high bandwidth control law de­
sign. The design used a linear function to blend 
between two adjacent controllers. However, there 
is no guarantee that a linear schedule between two 
controllers guarantees closed loop stability let alone 
satisfactory performance. In practice engineers have 
to do extensive time domain simulations across the 
flight envelope to ensure that stability and desirable 



performance are guaranteed. 
The theoretical background on the analysis and 

synthesis of scheduled systems is only in its in­
fancy. Recent work has been concentrated on J.L· 
analysis and Linear Parameter Varying (LPV) meth­
ods most notably in [14, 3, 4]. Useful guidelines from 
[14] alongside J.L-analysis, in a multivariable context, 
have been used very succesfully in fixed wing areas 
eg. [13]. The key element of the above research was 
the uncertainty the designers were trying to compen­
sate for. In the special case of polytopic plants it was 
possible to link the uncertainty with Lyapunov func­
tions (see [3, 4]). However, Lyapunov functions are 
inherently a very conservative tool for control sys­
tems synthesis. It is not surprising that, so far, only 
small state dimension problems have been solved. 
Additionally the nonlinear plant description has to 
be converted into a LPV representation, which must 
depend a.flinely on the scheduling variable. 

In this paper we show on an example that a linear 
gain schedule does not give the desired performance. 
Instead, there appears to be a class of nonlinear 
scheduling functions providing good closed loop sta­
bility margins. A simple optimisation approach is 
also proposed which enables the designer to choose 
an appropriate scheduling function. 

2. Background 

The starting, and probably the most important, 
point in any control law is the choice of the models 
to be used for linear controller design. It is essential 
that the linearisations are good representations of 
the plant, capturing as many nonlinearities as pos­
sible. Controlling a hovering helicopter presents the 
most challenging problem for the control laws as 
the unaugmented plant is unstable, highly nonlin­
ear and cross-axis coupled. Therefore, the use of a 
low speed linearisations for controller design seems 
justified. However, good models in the hovering 
regime are hard to obtain. Airspeed, angle of at­
tack and sideslip are typical signals that cannot be 
measured accurately. A robust multivariable con­
troller would ensure that good disturbance rejection 
and command tracking are achievable in real flight. 

Having justified the need for a robust controller 
we have a variety of methods to choose from. All the 
H 00 techniques have their origins in the small gain 
theorem [17]. The designer is called to minimise 
oo-norms (i.e. maximum gains) of different transfer 
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functions, which in turn lead to different types of 
uncertainty. LSDP is compatible with additive per­
turbations to the normalised coprime factors and as 
it was shown in [6] the method encompasses the most 
general type of uncertainty. Additionally, there are 
other advantages making LSDP a powerful design 
tool for the helicopter control problem. We refer to 
the most important ones: 

• The controller is designed using classical loop 
shaping ideas. The open-loop plant is shaped 
with frequency dependent weights. The 
weights typically are P +I elements that specify 
the desired bandwidths. 

• The controller is calculated exactly and the 
achievable cost function is also a measure of 
robust stability. Recall that the cost function 
as introduced in [12] reads the relationship 

~ II [ K ] (I- GK)-1 M-1 II 1 I- I :0: -;· (1) 
00 

For SISO systems the maximum stability mar­
gin E is equivalent to gain and phase margins 
[GM,PM] via the formula 

GM ~ (1 + <)/(1- <), PM~ 2arcsin(<). 

o The controller has equal dimension to the 
shaped plant and there are no pole-zero cancel­
lations between the controller and the shaped 
plant. 

e Gap-metric and J.L-analysis can be employed to 
assess the robustness against perturbations on 
the plant and/or the controller. The transition 
from a controller K" designed at an operating 
point a to a controller K fJ designed at an oper­
ating point f3 can be performed, in the simplest 
way, by interpolating the gains of the control 
laws. In the case ofloop shaping controllers K fJ 
can be viewed as a perturbation of K" along the 
trajectory of the scheduling variable. Similar 
arguments can be stated for the plant model 
used for the design of controller K(J. In view 
of the v-gap theory (see [7]) we can have an 
estimation of the degraded performance when 
both plant and controller are perturbed to 
a certain distance, as viewed by the metric. 
More precisely the stability margin is degraded 
by no more than arcsin( EfJ) ~ arcsin( Ea) -
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arcsinov( Gcx, G(3) - arcsinov(Kcx, K(3), where 
Ov(Gcx, G(3), Ov(Kcx, K(3) is the gap- metric be­
tween the plants and the controllers respec­
tively. 

• The controller can be written as an exact ob­
server and implemented in the feedback loop. 
The state feedback uses rotor states within the 
augmentation loop and therefore it may be used 
for high bandwidth control as pointed in [5]. 
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as Linear Time Invariant (LTI). An LTI system 
with internal stability requirements alongside H 00 

bounds such as ( 1) guarantees closed loop stabil­
ity only at frozen operating design points. To en­
sure full envelope performance we need to replace 
the infinite number of constraints imposed, with a 
!'-performance test. In other words the set of LTI 
plants alongside the LTI controllers have to be repre­
sented in a Linear Fractional Transformation (LFT) 
form as in figure 2. Here, r is the exogenous distur­
bances, q the vector of the signals to be minimised, 
u the control inputs and y are the outputs to be fed 
back to the controller. 

y 

j3 

q 
p 

Figure 1: H 00 controller written as an observer u y 

3. "Intelligent" interpolation 

Consider a loop shaping controller written in an ob­
server form as in figure 1. The basic stabilisation 
gains are the control and output injection matrices 
H and F respectively. It was assumed that the plant 
and the controller can be written as convex functions 
of the form: 

K 

f((3) 

P = (1- j3)Pa + i3Pb 
K = (1- f(j3))Ka + f(j3)Kb 

Figure 2: Linear Fractional Transforma­
(2) tion of the gain scheduled system 

where j3 E [0, 1 J is the normalised speed (serving as 
scheduling variable) and f(/3) E (0, 1] is the speed­
dependent controller scheduling function. Here, con­
vexity ensures that for j3 = 0 and j3 = 1 the con­
troller corresponds to hover and high speed designs 
respectively. Clearly the nonlinear behaviour of the 
helicopter across the flight envelope has been di­
vided into spaces where the model can be regarded 
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In this case both plant and controller are approxi­
mated with high order polynomials (or with rational 
functions) and a standard !'-analysis test is carried 
out. Alternatively, a search over all the possible 
trajectories of the scheduling variable can be per­
formed from which the designer is able to choose the 
scheduling law he wishes. More precisely, it is pro­
posed to solve (3) Vi = O ... n where n is the number 



of the grid points. 

~,!(~) II [ ~i J (3) 

4. Example 

The helicopter under investigation is the Cana­
dian B205 fly-by-wire research vehicle operated 
by the Flight Research Laboratory, Institute of 
Aerospace Research, National Research Council, Ot­
tawa, Canada. Recently, an Hoo ACAH 2 , controller 
was designed using a 2DOF approach [10] and suc­
cesfully :flight tested according to the ADS-33C re­
quirements. Now we show that a linear gain sched­
ule would not ensure performance over the entire 
:flight envelope. The model used for this study is the 
quasi-static model found in [8]. The measurements 
selected for the feedback stabilisation loop are 

o Vertical velocity ( w) 

o Pitch rate ( q) 

o Roll rate (p) 

o Yawrate(r) 

The design of the frozen point controllers (one at 
hover and one at 120 knots) can be found in [1]. 
Figure 3 shows the cost function (3) evolution over 
the entire :flight envelope. From the plot it can be 
deduced that if the hover controller was operating at 
speeds above 80 knots then a dramatic deterioration 
of the stability margins would be encountered. For 
the pair of the two designed controllers the schedul­
ing function ensuring that the performance is less 
than a prespecified level has the form of figure 4. 
In other words the loop shapes that the designer 
specified at the frozen point designs remain com­
patible with robust stability requirements. There 
seems no reason why this process should converge for 
an arbitary distance between two adjacent operating 
points of the flight envelope. However, it seems to 
work well in practice, as demonstrated by the previ­
ous example. Any constrained optimisation method 
can be used to find the optimal / robust scheduling 
law. 

2 Attitude-Command Attitude-Hold 

84.4 

Figure 3: Cost function across the operating en­
velope. f((J) - controller scheduling function, f3-
normalised forward speed, F( P, K) - cost func­
tion 
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Figure 4: Scheduling function vs forward speed 
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