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Abstract
Current frequency-domain system identificationmethods require an open-loop experiment design for data

collection to identify one model of a vehicle. This makes open-loop system identification for unstable sys-

tems like rotorcrafts challenging. The optimized Predictor-Based Subspace Identification method also es-

timates accurate models from closed-loop data. In this paper, a parameter study is conducted to identify

a set of bare airframe models of the ACT/FHS research rotorcraft using this subspace method. A selection

method is introduced to chose appropriate candidate models from the identified set. The selected candi-

datemodels differ slightly in terms of themodel invariants and are all a valid approximation of the rotocraft

dynamics. Consequently, the selected candidate models can be used to predict the possible properties of

the system and their uncertainties. Here, the candidate models are employed to estimate the dynamic sta-

bility and handling qualities of the ACT/FHS bare airframe and two control system of the ACT/FHS research

rotorcraft.

NOTATION
ACT/FHS Active Control Technology / Flying

Helicopter Simulator

ARX AutoRegressive model with eXoge-

nous input

DLR Deutsches Zentrum für Luft- und

Raumfahrt (German Aerospace Cen-

ter)

FR (measured) frequency response

HQ handling qualities

PBSIDopt optimized Predictor-Based Sub-

space Identification (method)

rms root mean square (error)

SCAS stability control augmentation sy-

stem

A, B, C,D discrete-time state-space matrices

Act, Bct, Cct continuous-time state-space matri-

ces

AK , BK predictor form state-space matrices

d1, d1 index of agreement, overall d1
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D damping coefficient

ek , uk , xk , yk discrete-time innovation, input,

state and output vectors at k -th
time step

E, U , X , Y data matrices for system innova-

tions, inputs, states and outputs

(used with indexes)

f, p future, past window length

K feedback controller gain

K Kalman gain matrix

Mn,Mp sets for n and p
n number of states (model order)

nu , ny number of inputs, number of out-

puts

N number of measurements

p, q, r roll, pitch and yaw rates, rad/s

TP time period, s

u, v , w aircraft fixed airspeed components,

m/s

x0, y0 initial state, output offset

ym;k measured output (index m)

zk k -th merged input-output vector
Z data matrices for merged input-

outputs (used with indexes)

K(p)
extended controllability matrix

O(f)
extended observability matrix

S diagonal singular value matrix

�x , �y longitudinal and lateral cyclic con-

trols, %

�p , �0 pedal and collective controls, %

� regularization parameter

�(:) standard deviation

�, � roll and pitch attitude angles, rad
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1. INTRODUCTION
Common rotorcraft system identification approa-

ches use frequency-domain methods to identify li-

near models of the corresponding vehicle. Depen-

ding on the complexity of the model and whet-

her rotor or engine states are included, the identi-

fied models can be accurate for frequencies up to

30 rad/s as described in ref.
1
. The identification of

such complexmodels using frequency-domainmet-

hods and the appropriate generation of the flight

test data is a laborious task, but essential to gain

useful rotorcraft models for analysis, simulation,

and flight control.

During the last decade, physics-based models

of DLR’s research helicopter EC135 ACT/FHS (Active

Control Technology/Flying Helicopter Simulator)

have been identified using a Maximum Likelihood

frequency-domainmethod, see refs.
2–6
amongst ot-

hers. For this task, dedicated flight tests have been

conducted for system identification and model va-

lidation with the ACT/FHS research rotorcraft. The

system identification flight tests consist of at least

two manual frequency sweeps with increasing fre-

quency for each control input and reference air-

speed. This approach is considered to give good

identification results of the bare airframe dynamics

in an open-loop experiment design using the appro-

ved system identification methods in the frequency

domain.

Today, state of the art system identification met-

hods like the optimized Predictor-based Subspace

Identification method (PBSIDopt) offer the possi-

bility to estimate models for systems with multi-

ple inputs and outputs without the definition of a

model structure beforehand. The PBSIDopt method

directly operates on the measured input-output

data in the time domain and is able to estimate

asymptotically unbiased models from noisy closed-

loop data, see refs.
7–9
. The ACT/FHS research ro-

torcraft was identified using the PBSIDopt met-

hod in ref.
10
and ref.

11
using the open-loop flight

test data. The resulting high-order models provided

good to excellent accuracy (regarding the rms er-

rors) and the resulting model states were interpre-

ted physically using the system’s eigenvalues and

eigenvectors. Furthermore, multiple-input closed-

loop system identification maneuvers were develo-

ped and evaluated to identify the bare airframe dy-

namics of the ACT/FHS rotorcraft simulator to sim-

plify the laborious flight tests for system identifica-

tion. This was the first step at the DLR to prepare

the PBSIDopt method for the application in rotor-

craft series production, see ref.
12
.

This paper presents a novel approach to gain re-

liable candidate models from flight test data to pre-

dict possible properties of the system to be iden-

tified. This approach is the second step to use sy-

stem identification in rotorcraft series production

applying the PBSIDopt method. For that purpose, a

parameter variation study is conducted identifying

a set of linear state-space models of the ACT/FHS

research rotorcraft applying the PBSIDopt method

to dedicated flight test data. The contribution of

this paper is new a method to select a subset of

reliable candidate models from the identified mo-

del set. The chosen candidate models represent the

dynamics of the rotorcraft appropriately and dif-

fer slightly in terms of the model invariants, i.e. ei-

genvalues, zeros and input-output transfer functi-

ons. In general, only one model is used to deter-

mine the system’s properties and no uncertainties

are accounted for. In this paper, the chosen candi-

date models are used to predict the possible vehicle

characteristics and their uncertainties, since flight

tests does not show a unique property of the sy-

stem, but a range of possible properties, e.g. for a

system’s response. In detail, the dynamic stability

and the handling qualities (HQ) of the ACT/FHS bare

airframe are evaluated using the candidate models.

In addition, the possible HQ of two control systems

for the ACT/FHS are investigated. The paper finishes

with conclusions and an outlook for future work.

2. EXPERIMENTAL SETUP
2.1. The ACT/FHS Research Rotorcraft
The ACT/FHS, shown in figure 1, is the main test-

bed for rotorcraft research at DLR, see ref.
13
. This

rotorcraft is a twin-engine helicopter with fenestron

and bearingless main rotor and a maximum take-

off weight of about 2.9 t based on a highly modified

Airbus Helicopters EC135 (former Eurocopter).

Figure 1: DLR’s research rotorcraft ACT/FHS

The ACT/FHS has a full-authority fly-by-wire/fly-

by-light control system which complement its me-

chanical controls to allow actuator inputs genera-

ted by an experimental system in flight. Therefore,

the dynamics of the ACT/FHS are not comparable to
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data from a production EC135 (or H135) rotorcraft.

The ACT/FHS is fitted with various sensors (e.g. a

noseboom, two differential GPS receivers, flight test

instrumentation and a high-quality inertial measu-

rement system). Experimental system identification

of the ACT/FHS yields the necessary models for the

model-based control and in-flight simulation rese-

arch activities at DLR.

2.2. Flight Test Data
Dedicated flight tests with the ACT/FHS research

rotorcraft for system identification and model va-

lidation were conducted in 2009 and 2010. These

flight tests consist of at least two manual fre-

quency sweeps with increasing frequency up to

about 2 Hz for each control input at each of the

five reference airspeeds (i.e. hover, 30, 60, 90, and

120 knots). During the manual frequency sweeps, a

flight state near the reference trim condition has

been maintained by applying uncorrelated, pulse-

type inputs on the secondary controls only. In this

way, cross-correlations between the four control in-

puts are minimized. At the same flight conditions,

computer-generated 3211-multistep input maneu-

vers have been recorded as a dissimilar basis for

model validation purposes.

For this paper, eight manual frequency sweeps

at 60 knots have been selected from the system

identification database. Furthermore, eight 3211-

multistep maneuvers at the same airspeed have

been chosen for model validation. The selected ma-

neuvers, the applied control amplitudes and the

test durations are summarized in table 1.

Table 1: ACT/FHS system identification and model valida-

tion maneuvers at 60 knots forward flight

maneuver control axis amplitude

2x manual sweep �x max. 10 %

2x manual sweep �y max. 10 %

2x manual sweep �p max. 15 %

2x manual sweep �0 max. 11 %

2x automatic 3211 �x �4 %
2x automatic 3211 �y �4 %
2x automatic 3211 �p �9 %
2x automatic 3211 �0 �6 %

2.3. Flight Path Reconstruction and DataPre-Processing
A flight path reconstruction is used to estimate the

motion of the rotorcraft’s center of gravity and the

local wind from raw sensor data after flight, since

the corresponding rotorcraft states are not measu-

red directly. The flight path reconstruction is a post-

flight process using two Unscented Kalman Filters

consecutively to estimate the rotatory and transla-

tory states of the rotorcraft. Both Unscented Kal-

man Filters and the used sensors are described in

detail in ref.
14
.

In addition, the estimated states are processed

by two separate Unscented Rauch-Tung-Striebel

Smoothers described in ref.
15
. Thus, the estimated

states are smoothed in an optimal sense without an

additional phase delay. Measured signals that are

not included in the flight path reconstruction, i.e.

the helicopter controls are provided with the a sy-

nchronized sampling time of the experimental sy-

stem. Since the maximum frequency of interest is

about 35 rad/s all data is down-sampled to 40 ms

which provides a Nyquist frequency twice as high.

The reduced sampling time is beneficial to lower the

computational costs for system identification.

3. SYSTEM IDENTIFICATION
The applied PBSIDopt method yields a linear

continuous-time state-space model of the form

_x = Actx +Bctu(1a)

y = Cctx :(1b)

and required a finite number k = 1 : : : N of data
points for the inputs uk and outputs yk respectively.

This subspace method transforms the system iden-

tification problem into a high-order vector-ARX mo-

del (AutoRegressive model with eXogenous inputs).

This is solved by a regularized least-squares appro-

ach. Then, the models states are reconstructed ap-

plying a singular value decomposition on ARX pa-

rameters. Subsequently, the discrete-time system

matrices are estimated using the known inputs

and outputs, as well as the calculated model sta-

tes. The discrete-time model is transformed into

continuous-time representation via a zero-order

hold.

More details about the applied PBSIDopt method

can be found in the appendix at the end of the pa-

per.

3.1. Identification of ACT/FHS models
The four helicopter controls for longitudinal and la-

teral cyclic, pedal, and collective are used as system

identification inputs, uk . The body fixed airspeed

components u, v , w , the angular rates p, q, r as well
as the roll and pitch attitude angles � and � of the
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aircraft are used as outputs yk :

uk =
(
�x �y �p �0

)T
;(2a)

yk =
(
u v w p q r � �

)T
:(2b)

In addition to the model order n, the past win-
dow length p and the future window length f have

a major influence on the accuracy of the identified

models and their invariant characteristics like the

system eigenvalues. Several guidelines exist to de-

fine these parameters, see
7–9
. Nonetheless, deter-

mining an optimal p and f is still active research

and is still very time consuming. For this reason,

a parameter variation study with respect to p, f

and n is conducted to identify many linear state-
space models of the ACT/FHS research rotorcraft,

see also
10–12
. Parameter studies are fast on modern

desktop computers. Hence, a huge range of suita-

ble parameter settings are tested in this paper. The

values for the past window length p and the future

window length f are

p 2 MpjMp = f20 30 40 : : : 990 pmaxg ;(3a)

f 2 Mp : f � p:(3b)

The past window length is limited to pmax = 994
to avoid the underdetermined case of the least-

squares problem in equation (A.9). The maximum

past window length is given by

(4) pmax =

∑
Nj

nu + ny +
∑

j

with the number of samplesNj of each maneuver j .
In this paper, models with an order between n =

8 and n = 20 are identified:

(5) n 2 MnjMn = f8 9 : : : 20g :

In summary, 4.950 models of the ACT/FHS are

identified (and validated) for each chosen model or-

der n. The overall identification and validation pro-
cess took about 65 h on a standard desktop compu-

ter.

3.2. Model Validation
All identified models are validated in the time dom-

ain to gain a comparable model performance me-

asure. For each control axis an automatic 3211-

multistep maneuver with positive and negative con-

trol deflection starting in the trim point is used for

model validation. In total, eight 3211-multistep ma-

neuvers are available for model validation. The mo-

del validation procedure consists of the estimation

of the initial model states x0 and output offsets y0
for every linear continuous-time state-space model

and each maneuver, respectively.

The overall simulated model output y(t) is the
superposition of the output for x0 = 000, the output
offsets y0 and the reaction of x0 on the model out-

put:

(6) y(t) = y (t; x0 = 000; y0 = 000) + y0 + Ccte
Acttx0

with the matrix exponential of the state matrix mul-

tiplied by time eActt .

Thus, the initial model states x0 and output off-

sets y0 can be effectively estimated solving a least-

squares problem which minimizes the difference

between the output error ye and the last two terms

in equation (6). The output error ye between the si-

mulated model output with x0 = 000 and the measu-
rements is

(7) ye = ym � y (x0 = 000; y0 = 000) :

An effective way to solve this optimization pro-

blem is to set up a system of linear equations

(8)


ye(t = t0)
ye(t = t1)

.

.

.

ye(t = te)

 =


Ccte

Actt0 I

Ccte
Actt1 I
.
.
.

Ccte
Actte I


︸ ︷︷ ︸

H

(
x0
y0

)

with the stacked output errors on the left hand

side and the identity matrix I. Consequently, solving

Equation (8) for x0 and y0 requires simple linear al-

gebra only. Only the initial values for the first eight

states with the lowest frequencies are estimated to

avoid an overfitting of high-order models with more

free initial model states. Therefore, the identified

model is transformed into a modal representation

with sorted eigenvalues before. Furthermore, only

the first eight columns and the identity matrix of H

in equation (8) are required.

3.3. Model Performance
It is common practice to use the root mean squared

(rms) fit error as a performance measure for rotor-

craft models. According to ref.
1
the following ratings

are used for rms errors

(9)

Jrms � 2:0 to 3:5 adequate;

Jrms � 1:0 to 2:0 good;

Jrms < 1:0 excellent to perfect

for coupled rotorcraft models using scaled veloci-

ties in ft/s, angular rates in deg/s and attitudes in
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deg. The rms error can be easily interpreted ana-

lyzing only one output. Nonetheless, the rms error

depends on the physical quantity (or scaling) and

the perturbation magnitude of the evaluated time

series. Thus, the rms error tend to become incon-

sistent as a performance measure comprising diffe-

rent outputs like velocities, rates, and the rotor tor-

que from different validation maneuvers.

The Theil inequality coefficient (TIC) normalizes

the rms error to the fixed interval between 0 and

1, which is advantageous for model performance

comparison. Nonetheless, the TIC is not offset cor-

rected (i.e. shifting both the simulated and measu-

red output by an offset will result in a difference

measure). Thus, it is not suitable as a model per-

formance measure.

In the recent publication ref.
16
, different dimen-

sionless criteria have been evaluated to gain a

normalized, dimensionless performance measure

for time-domain model validation. The index of

agreement d1 was found to give excellent results
comparing two time series by a single measure. The

index of agreement d1 is defined as

(10) d1 =

∑N
i=1 jym;k � yk j∑N

i=1 (jym;k � ymj+ jyk � ymj)

with the mean of the measured output vector ym;k .

The index of agreement d1 is offset corrected by the
measured output mean and ranges from 0 to 1, 1 is

indicating a perfect match. Since d1 is a normalized
and dimensionless criterion it is not depended on

the output scaling nor the perturbation magnitude.

The index of agreement is originated in hydrologic

and hydroclimatic model validation, see ref.
17
.

To the authors’ knowledge, the index of

agreement has only been applied to rate a

single model output as it is defined to compare

two distinct time series. Hence, an overall index

of agreement d1 is defined in this paper to rate
all outputs of a multiple output model in a one

performance measure. As the index of agreement

ranges from 0 to 1, the geometric mean is suitable

to calculate the overall index of agreement

(11) d1 =

ny∏
i=1

(d1;i)
wi
ny

with the scaling factor for the i-th output wi . In this

paper, all scaling factors wi are 1. Since the geo-

metric mean is multiplicative, the overall index of

agreement d1 is zero, if only one output is zero (i.e.
one model output shows low performance).

For the comparison of the rms error Jrms and the

index of agreement d1 an example is given in fi-
gure 2 showing the simulated roll rate of two mo-

dels (1 and 2) and the measured reference (meas)

0 2 4 6 8

-20

0

20

time (s)

p
 (

°/
s
)

meas model 1 model 2

Figure 2: Time series comparison of the roll rate p

0 1 2 3 4 5

rms error (°/s)

0.7

0.8

0.9

1

d
1

(-
) excellent

to perfect good

adequate

Figure 3: Index of agreement d1 as a function of the rms
error for the maneuver shown in figure 2

of a 3211-multistep maneuver. The performance of

model 1 is excellent with Jrms = 0:82 �=s and
d1 = 0:95. Model 2 shows larger differences to
the measurement resulting in Jrms = 1:77 �=s and
d1 = 0:91. The index of agreement d1 is shown as
a function of the resulting rms error for the same

validation maneuver in figure 3. For one rms error

there can be two d1 depending if the models ampli-
tude is too high or the low.

Based on figure 3 themodel performance is rated

for an overall index of agreement as

(12)

d1 � 0:80 to 0:89 adequate;

d1 � 0:89 to 0:94 good;

d1 � 0:94 excellent to perfect:

All identifiedmodels of the ACT/FHS are validated

using the overall index of agreement d1.

4. MODEL SELECTION
4.1. Model Order
For classical system identification the model order

is set beforehand as a model structure is defined

based on physical considerations. Often the model

order is iteratively increased to cover higher dyna-

mics or submodels of the system to be identified.

The PBSIDopt method does not require a prede-

fined model structure, since the states are recon-

structed based on the n largest singular values as
described in equation (A.13). Thus, the model order
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n is a user-definable variable. In this paper, models
with an order between n = 8 and n = 20 are con-
sidered. In this way, low-order rotorcraft models as

well as high-order models are covered. An appro-

priate model order is chosen based on the overall

index of agreement d1 and physical considerations.
For each model order, 4.950 models are identified

due to different p and f as described before.

In figure 4, the distribution of the overall index

of agreement d1 for all identified models is shown
with respect to the model order n. The median of
d1 is given by the black solid line, the minimum and
maximum values in dotted black. The first and third

quartile (Q1 and Q3) are given in shaded gray. Con-

sequently, 75 % of all models lies between the max-

imum and Q1. As expected, the maximum and me-

dian d1 increases with the model order until a cer-
tain saturation is reached. The lowest d1 decreases
with a growing model order as the model variance

increases with increasing model order. The majority

of the identified models have adequate fidelity with

respect to equation (12) and the best (maximum) d1
are achieved for higher model orders n > 15.

8 10 12 14 16 18 20

model order n (-)

0.6

0.7

0.8

0.9

1

d
1
 (

-)

median min/max Q
1
 - Q

3

Figure 4: Distribution of overall index of agreement d
1

for all models with respect to the model order n

The model order n = 12 is chosen for further
evaluation as the overall index of agreement is ade-

quate and it is a common rotorcraft model order.

Furthermore, n = 18 is selected to analyze the dyn-
amics of high-order models as well.

4.2. Best Models
In the second step, the best models are selected

from all 4.950 identified models as a set for furt-

her evaluation. One approach is to select the best

15 % (or any other percentage) of all models. In fi-

gure 5a, all transfer functions
p
�y
(lateral cyclic input

to roll rate) with n = 12 are shown. On the right
hand side in figure 5b the best 750 models (15 %)

with n = 12 are shown for comparison. All trans-

fer functions are located between the dotted black

lines showing the maximum and minimum magni-

tude. The mean magnitude is shown in solid black,

the standard deviation around themean is depicted

in shaded gray. The frequency responses (FR) gene-

rated from the flight test sweeps is plotted in blue

and transfer function of the best model in red.

The variations between all transfer functions

shown in figure 5a is vast for low frequencies ! <
0.4 rad/s. In addition, several mid-frequency spikes

can be found. These effects are originated from we-

akly damped resonances in some models due to an

adverse combination of the PBSIDopt parameters p

and f. As described before, it is still open research

to find the optimal values for p and f automatically.

Thus, in this paper all possible parameter combina-

tion are tested in a parameter study also resulting

in models with undesirable properties or/and low

performance.

The magnitude variations are reduced conside-

rably regarding only the best 750 models’ transfer

functions as shown in figure 5b for n = 12. The
standard deviation around the magnitude mean is

a narrow band and the mean magnitude in black

shows an adequate match with the generated fre-

quency response from the flight test data in blue.

Thus, only a few models cause the remaining low

frequency variations of the minimum and maxi-

mum magnitude. Nonetheless, even the best mo-

del (in red) shows an undesired since non-physical

low frequency resonance. It is concluded that a se-

lection method based on the model performance

index like the overall index of agreement only is not

sufficient if the model’s purpose is model analysis

(e.g. dynamic stability or handling qualities). There-

fore, further criteria have to be introduced to se-

lect reliablemodels from all identified ones. Reliable

models have to be as good as possible on the one

hand, but should not include undesired artifacts like

weakly damped resonances without a physical cor-

respondent on the other. In the next subsection, a

selection method is introduced to gain such reliable

models called “candidate models”.

4.3. Candidate Models
In figure 6 the overall index of agreement d1 is
shown as a function of the past window length p to

analyze the origin of undesired low frequency reso-

nances described in the last subsection. In blue the

d1 of all 4.950 models are shown. The d1 of the se-
lected 750 models from figure 5 are depicted in red.

It can be noticed that a high d1 can be found for a
past window length between 280 and 500 as well as

for p � pmax.

A large p corresponds to a high model order of
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Figure 5: Distribution of identifed transfer functions p=�y for models with n = 12 and measured frequency response

the vector-ARX model estimated in equation (A.9). It

is well known that high-order ARX models tend to

over-fit data and show high variance even if a regu-

larization method is used,
18,19
. Over-fitting can re-

sult in artifacts like weakly damped resonances wit-

hout physical equivalent. Thus, it is concluded that

the high ARX model order (a large p) causes these

artifacts.

0 200 400 600 800 1000
0.75

0.8

0.85

0.9

past window length p (-)

d
1
 (

-)

all

best 750

Figure 6: Overall index of agreement d
1
as a function of

the past window length p for models with n = 12

An obvious decision would be to exclude large p

from the system identification parameter study. Ne-

vertheless, large past window lengths are beneficial

for the estimation of low-order models (i.e. n = 8)
which are not shown in the paper. In consequence,

excluding high p from system identification would

reduce the model performance of low-order mo-

dels significantly. Several techniques for ARX mo-

del order selection can be found in the literature

like the (corrected) Akaike Information Criterion, see

ref.
18
chapter 16, but these techniques do not pro-

vide an useful criterion for model selection in this

case.

A suitable criterion is to investigate the predic-

tor form system matrix AK . In equations (A.3) and

(A.4) it is assumed that AK is stable to set up the

PBSIDopt method. Hence, A
p

K have to be (approx-

imately) zero for large p. This assumption is vali-

dated regarding the spectral norm of the predictor

form system matrix

∥∥Ap

K

∥∥
2
� 0.

In figure 7a, the spectral norm of all identified

models with n = 12 are shown as a function of the
past window length p. From the selected models of

the previous subsection (the best 750models in red,

mostly masked by yellow), the ones with large p all

feature a spectral norm larger than 10�10. Models
with small past window lengths also show this be-

havior.

Thus, the method to select candidate models for

further evaluation comprises two steps. First, the

spectral norm of the identified models is analyzed.

Only models with a spectral norm below a defined

threshold are accepted:

(13)

∥∥Ap

K

∥∥
2
< 1 � 10�10:

This selection procedure can be applied to low-

order as well as to high-order models. In general,

low-order models with large p are accepted since

their spectral norm is still nearly zero. High-order

models (e.g. n = 18) often feature higher spectral
norms and the applied limit must be increased∥∥Ap

K

∥∥
2
< 1 � 10�3. Thus, the spectral norm thres-

hold is a used-defined parameter.

In the second step, the best models are selected

from the remaining valid ones. The number of se-

lected models should match with the purpose of

system identification. In this paper, 750 candidate

models are selected with a model order n = 12,
since the probable dynamic stability and HQ are

predicted and analyzed. Thus, a high number ofmo-

dels is required to cover a wider range of different

models.

The best model shown in figure 5 is not selected

as a candidate model, since its spectral norm is

too high. The spectral norm and overall index of

agreement d1 is shown as a function of the past
window length p for all selected candidate models
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Figure 8: Distribution of identifed transfer functions p=�y for candidate models with n = 12 and n = 18

with n = 12 in figure 7. It can be clearly seen, that
models with a high p are neglected due to their

large spectral norm. The selected candidate models

with n = 12 have a past window length between
250 and 700, the majority of the candidate models

have a p between 250 and 500.

In figure 8a, the transfer functions
p
�y
are shown

for the selected candidate models with n = 12. The
magnitude variations are heavily reduced in the low

frequency region. Thus, the model invariants only

differ slightly from each other. Since the selected

candidate models have an adequate overall index

of agreement, all candidate models are reliable. No-

netheless, high frequency dynamics like the regres-

sive lead-lag (at about 12 rad/s) are not covered by

model with n = 12, since the model order is too
small. For that reason, the candidate models with

n = 18 are shown in the same manner in figure 8b.

Here,

∥∥Ap

K

∥∥
2
< 1 � 10�3 is chosen and the num-

ber of selected models is reduced to 125. The can-

didate models are very accurate over the whole fre-

quency range and the regressive lead-lag resonance

is covered precisely. The low and mid-frequency dy-

namics of the candidate models with n = 12 and
n = 18 are very similar and the corresponding in-
dex of agreement is similar, too. For a larger mo-

del order, the variations between the candidatemo-

dels is increased. This behavior is expected, since

the overall model variance is increased for a larger

n as well.
The selected candidatemodels set up amodel set

for the analysis of the probable system properties

and their uncertainties. The candidate models with

n = 18 are further analyzed in the next section,
since they provide accurate low to high frequency

dynamics.
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5. MODEL ANALYSIS
Handling qualities (HQ)

20
and dynamic stability

21

are analyzed for 125 selected candidate models with

a model order n = 18. Purpose of this analysis is
to evaluate a set of models to have a clear under-

standing of the possible uncertainty of the HQ and

dynamic stability. To select a set of possible mo-

dels and not only the best model, is well aligned

with experience from flight tests with the ACT/FHS:

multiple, repeated sweeps and multisteps do usu-

ally show a set of possible responses and not the

same responses. The candidatemodels are given as

continuous-time state-space models as described

in equation (1) with the inputs and outputs accor-

ding to equation (2). Three kinds of models are in

the focus of the model analysis:

• the bare airframe as derived by system iden-
tification

• the stabilized vehicle which is the bare air-
frame with SCAS (stability control augmenta-

tion system) stabilization

• the optimized vehicle which is the stabilized
vehicle with additional band-stop filter to sup-

press a 1.8 Hz roll oscillation

Additional input delays, structural notches, and ac-

tuator dynamics are not considered for the stabili-

zed and optimized vehicle.

The stabilized vehicle features an output vector

feedback that has been extensively used in ACT/FHS

flight tests at DLR. Respective feedback equations

are:

longitudinal: �x = �pi lot;x �Kqq �K��;(14a)

lateral: �y = �pi lot;y �Kpp �K��;(14b)

pedal: �p = �pi lot;p �Kr r:(14c)

The feedback values were tuned in flight tests and

assessed in several campaigns. In detail, the gains

are Kp = 60, Kq = 50, Kr = 50, K� = 50, and
K� = 60 where the measurements are given in SI-
units and controls in percent (%).

The optimized vehicle is one with improved HQ. It

features the SCAS feedback of equation (14) and an

additional filter in the roll axis. Ref.
22
showed that

roll rate feedback with gains larger approx.Kp > 20
lead to an oscillatory roll motion. The reason for

the observed 1.8 Hz oscillation is the so-called re-

gressive lead-lag motion (obtained after transfor-

ming the blades’ lead-lag motion from the rotating

frame to the non-rotating one) which couples with

the body-roll fuselage mode. This oscillation is sup-

pressed using the filter proposed in ref.
23
. In detail,

the lateral feedback is modified:

~�y = �pi lot;y �Kpp �K��;(15a)

�y = ~�y +Ky

b2s
2 + b1s

s2 + 2D!0s + !2
0

~�y :(15b)

The coefficients have the values Ky = 0:9, b2 =
0:4, b1 = �6, D = 0:6, and !0 = 12:6. Compared
to ref.

23
, the values were slightly adapted to better

fit to the identified models presented in this paper.

The longitudinal and pedal axes are not changed by

a filter.

5.1. Dynamic Stability According to CS27
Dynamic stability as defined by the CS27

21
addres-

ses the system’s oscillation characteristics, e.g. va-

lues such as time period TP and damping coeffi-

cient D. The mean values of these characteristics
together with their uncertainty can be calculated

using the selected candidate models.

The bare airframe’s dynamic stability of the

ACT/FHS at 60 knots forward flight is dominated by

the phugoid motion, as shown in figure 9 with the

grey curves. This pitch rate response was excited

using a impulse control input to the bare and sta-

bilized vehicle. The time period and the damping

coefficient of the bare vehicle’s unstable oscillation

are TP = 19.2 s and D = 0.16, respectively. The

standard deviation of each of these two values is

�(TP ) = 0.1 s and �(D) = 0.01. In case of the stabili-

zed vehicle, the phugoid motion is stable with TP =
4.9 s and D = 0.4, see figure 9. In industry appli-

cation, these values may be used to predict certifi-

cation specifications from the CS27
21
for instrument

flight rules (IFR) in Appendix B on dynamic stability

(section VI). Following these requirements, the sta-

bilized vehicle’s pitch rate response is predicted to

achieve single pilot IFR approval. The bare airframe

vehicle is predicted to have dual pilot IFR approval*.

Although, the SCAS feedback stabilizes the pitch

response, a low-damped roll response still remains

as shown in figure 10 with the blue curves. This fi-

gure shows an impulse input to the lateral control

which primarily excites the roll rate. Two fundamen-

tal eigenmodes contribute to the stabilized vehicle’s

weakly damped roll response: the body roll/rotor

flap mode (TP = 0.45 s � 0.01 s and D = 0.32

� 0.02) and the regressive lead-lag mode (TP =
0.55 s � 0.01 s and D = 0.03 � 0.001). The weakly

damped regressive lead-lag oscillation is almost re-

moved from the optimized vehicle response as de-

picted in figure 10 by the black curves. This is achie-

*It does not fulfill the single pilot’s IFR requirement VI.(a).(3):

"Any oscillation having a period of 10 seconds or more but less

than 20 seconds must be damped.".
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Figure 9: Pitch rate responses due to longitudinal im-

pulse input of the candindate model

Figure 10: Roll rate responses due to lateral impulse input

of the candindate model

ved by the additional filter from equation (15) so that

the respective impulse response in figure 10 almost

only features the body roll/rotor flap mode (TP =
0.43 s� 0.01 s andD = 0.58� 0.01). Thus, the opti-

mized vehicle’s roll rate response fulfills the CS27
21

IFR single pilot requirements on dynamic stability.

As stated in ref.
22
, the suppression of the 1.8 Hz roll

oscillation should also improve HQ.

5.2. Handling Qualities
HQs are well documented by the Aeronautical De-

sign Standard ADS33
20
. One of the ASD33 criteria is

related to dynamic stability. Eigenvalues of the de-

sired response axis are evaluated against the HQ

levels. For the MIMO state-space models in equa-

tion (1), the desired eigenvalues are extracted based

on a reduced SISO transfer function model so that

it is assumed that only one axis is piloted and the

others remain unchanged. Respective plots of the

dynamic stability criteria are provided for the pitch

and roll axis in figure 11 and 12.

The pitch axis is dominated by the phugoid mo-

tion. Additionally, a low-frequency spiral is added

which can hardly be seen in the impulse responses

of figure 9 in the time domain. However, the bare

airframe has level 2 HQ (gray triangles in figure 11).

With SCAS feedback added, the HQ clearly beco-

mes level 1 which correlates well with pilot com-

ments from former ACT/FHS flight tests (blue dia-

mond symbols in figure 11).

Figure 11: Dynamic stability of the candidate models’

pitch axis, ADS33 criteria, compare with figure 9

Figure 12: Dynamic stability of the candidate models’ roll

axis, ADS33 criteria, compare with figure 10

The stabilized vehicle still suffers from a 1.8 Hz roll

oscillation which is the regressive lead-lag eigenva-

lue in figure 12 (blue diamond symbols). Due to this

oscillation, the stabilized vehicle only achieves HQ

level 2. By adding the filter equation (15), the regres-

sive lead-lag response is suppressed and the body

roll/rotor flap eigenvalue (black circles) has a higher

frequency. The optimized vehicle is assigned to level

1 HQ.

6. CONCLUSIONS
A novel approach for rotorcraft system identifica-

tion is presented to estimate reliable candidate mo-

dels from flight test data to predict the possible

properties of the system to be identified. The ap-

proach comprises a parameter study applying the

PBSIDopt method to flight test data of the ACT/FHS

research rotorcraft. In this way, thousands linear

state-space models of the bare airframe vehicle are

identified. A selection method to chose a subset of

reliable candidate models from the identified mo-

del set is introduced. These chosen candidate mo-

dels cover the dynamics of the rotorcraft accurately,

but have slightly different model invariants. Thus,

this subset of candidate models are an excellent

choice to predict the possible vehicle characteris-

tics and their uncertainties. In this paper, the can-

didate models are used to predict dynamic stability

as well as HQ of the bare airframe and two diffe-
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rent closed-loop configurations. The whole appro-

ach can be seen as the second step to provide sy-

stem identification in rotorcraft series production

using the PBSIDopt method as it was suggested in

ref.
12
.

The following conclusions are drawn from this

work.

1. A normalized and dimensionless model per-

formance index is beneficial for model perfor-

mance determination and comparison. The in-

dex of agreement d1 is augmented to the over-
all index of agreement to also rate MIMO mo-

dels in the time domain.

2. Model order selection based in the overall in-

dex of agreement and based on further con-

siderations is suitable as the first step of the

model selection procedure.

3. The whole model set with the same model or-

der shows considerable variations regarding

the low frequency regions of the correspon-

ding transfer functions. Furthermore, weakly

damped resonances can be found which do

not have physical equivalents.

4. Selecting only the best 15 % of the identified

model set reduces the variance between the

selected models. Still, low frequency artifacts

occur which are not visible in the time-domain

model performance index. Thus, selecting the

best model is not sufficient to select reliable

candidate models.

5. The spectral norm of the predictor form sy-

stem matrix is introduced as a further crite-

rion to select candidate models. Models with

a spectral norm larger than a certain thres-

hold result in non-physical resonances which

are not desired.

6. Hence, the second step of the model selection

procedure is the investigation of the before-

mentioned spectral norm. Then, the best mo-

dels of the remaining set are selected as relia-

ble candidate models.

7. The model analysis step rates the dynamic sta-

bility and the HQ levels of all candidate models

representing the bare airframe of the ACT/FHS.

Furthermore, two flight control systems are

evaluated. The respective time constants, dam-

ping coefficients, and their standard deviati-

ons are estimated. The HQ levels correlate

well with pilot comments from former ACT/FHS

flight tests.

For the future, it is planned to evaluate the here-

in presented model selection approach combined

with the closed-loop system identification maneu-

vers presented in ref.
12
on the ACT/FHS rotorcraft.

In this way, the influence of the system identifica-

tion parameters f and p will be further analyzed

and their suitable ranges may be reduced. In addi-

tion, the influence of f and p on the system invari-

ants will be evaluated and a more advanced model

selection technique in the frequency domain will be

investigated.
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A. THE PBSIDOPT METHOD
A linear discrete-time state-space model in innova-

tion form with the input vector uk 2 R
nu , the out-

puts yk 2 R
ny and the states xk 2 R

n
is given by

(A.1)
xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek

with the number of inputs nu , outputs ny and states,
i.e. model order n. The innovations ek 2 R

ny are

assumed to be zero-mean white process noise. For

the PBSIDopt method a finite set of data points uk
and yk with k = 1 : : : N is considered.
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The system in equation (A.1) is transformed into

the one-step ahead predictor form assuming that

direct feedthrough is absent, i.e.D = 000,

(A.2)
xk+1 = AKxk +BKzk

yk = Cxk + ek

with AK = A�KC, BK = (B K) and zk =

(
uk
yk

)
.

It is furthermore assumed that all eigenvalues of

AK are inside the unit circle. Accordingly, the given

predictor model in equation (A.2) is stable and the

(k+p)-th state xk+p is given by

(A.3)

xk+p = AKxk+p�1 +BKzk+p�1

= A
p

Kxk+

(
A
p�1
K BK A

p�2
K BK : : : BK

)︸ ︷︷ ︸
K(p)


zk
zk+1
.
.
.

zk+p�1


and the (k+p)-th output yk+p is

(A.4) yk+p = CA
p

Kxk + CK(p)


zk
zk+1
.
.
.

zk+p�1

+ ek+p

with the extended controllability matrix K(p)
and

the past window length p. Since AK is stable, the

expression A
p

K in equations (A.3) and (A.4) can be

neglected for large p: A
p

K ' 000. Therefore, repeating
equations (A.3) and (A.4) for the (p+1)-th to the N-th
element yields

X = K(p)Zp(A.5)

Y = CK(p)Zp + E(A.6)

with

(A.7) X = X(p+1;N) =
(
xp+1 xp+2 : : : xN

)
and the analogous definition for thematrices Y and

E. The merged input-output matrix Zp is defined as

(A.8) Zp = Z(1;N�p);p =

 z1 z2 ::: zN�p
z2 z3 ::: zN�p+1

.

.

.
.
.
. :::

.

.

.
zp zp+1 ::: zN�1

 :

The predictor Markov parameters CK(p)
are esti-

mated in a least-squares sense with Tikhonov regu-

larization to prevent ill-posed problems. The regula-

rized least-squares problem is

(A.9) min
CK(p)

(∥∥∥Y � CK(p)Zp

∥∥∥2
F
+ �2

∥∥∥CK(p)
∥∥∥2
F

)
:

The Strong Robust Generalized Cross Validation

method is used to choose the regularization para-

meter �, see ref.24 for more details.
The estimated predictor Markov parameters

CK(p)
can be interpreted as a high-order vector-

ARX model (AutoRegressive model with eXogenous

input). High-order ARX models based on equa-

tion (A.6) are asymptotically unbiased by correlation

issues for large N and large p, see ref.25. Thus, this
step is essential for subspace identification met-

hods like PBSIDopt to provide consistent estimates

even in correlated closed-loop experiments.

The extended observability matrix O(f)
with the

future window length f is introduced

(A.10) O(f) =


C

CAK

.

.

.

CAf�1
K

 :

The estimated predictor Markov parameters CK(p)

are used to set up the product of extended obser-

vability matrixO(f)
and the extended controllability

matrixK(p)
from equation (A.4)

(A.11)

O(f)K(p) '
CA

p�1
K BK CA

p�2
K BK : : : CBK

000 CA
p�1
K BK : : : CAKBK

.

.

.
. . .

. . .
.
.
.

000 CAf�1
K BK

 :

Remembering equation (A.5)

(A.12)

O(f)X = O(f)K(p)Zp = USVT

=
(
Un Un

)(Sn 000
000 Sn

)(
VT

n

VT
n

)
the singular value decomposition is applied to re-

construct an estimation of the system states

(A.13) X̃(p+1;N) = X̃ = S
1
2
n VT

n :

The model order n corresponds to the n largest sin-
gular values in Sn used for the state sequence re-

construction.

Finally, the system matrices A, B, C and K from

equation (A.1) are calculated. First,

(A.14)

(
X̃(p+2;N)

Y(p+1;N�1)

)
=

(
A B

C 000

)(
X̃(p+1;N�1)

U(p+1;N�1)

)
is solved for A, B and C in a least-squares sense.

The Kalman gain K is then calculated from the co-

variance matrix of the least-squares residuals and
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the system matrices A and C by solving the stabili-

zing solution of the corresponding discrete-time al-

gebraic Riccati equation, see ref.
18
.

Since multiple maneuvers are used for system

identification of the ACT/FHS, see table 1 in sub-

section 2.2, all data matrices have to be augmented

to consider all maneuvers in one calculation step.

For j maneuvers the output data matrix from equa-
tion (A.7) is extended to

(A.15) Y =
(
Y(p+1;N);1 : : : Y(p+1;N);j

)
:

All other data matrices are augmented to use mul-

tiple maneuvers in the same way.

Finally, the inverse bilinear transform is then ap-

plied to calculate the continuous-time state-space

model

(A.16)
_x = Actx +Bctu

y = Cctx :

The estimated system matrices in equation (A.14)

and equation (A.16) are fully populated and do not

represent physical quantities. The identified model

can be transformed so that the first ny states cor-
respond to the outputs y using the transformation
described in ref.

11
.
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